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Abstract. Affine correspondences (ACs) have been an active topic of
research, namely for the recovery of surface normals. However, current
solutions still suffer from the fact that even state-of-the-art affine feature
detectors are inaccurate, and ACs are often contaminated by large levels
of noise, yielding poor surface normals. This article provides new for-
mulations for achieving epipolar geometry-consistent ACs, that, besides
leading to linear solvers that are up to 30× faster than the state-of-
the-art alternatives, allow for a fast refinement scheme that significantly
improves the quality of the noisy ACs. In addition, a tracker that auto-
matically enforces the epipolar geometry is proposed, with experiments
showing that it significantly outperforms competing methods in situa-
tions of low texture. This opens the way to application domains where
the scenes are typically low textured, such as during arthroscopic proce-
dures.

Keywords: Affine Correspondences, Photoconsistency Optimization, Track-
ing, Surface Normal Estimation

1 Introduction

Affine correspondences (ACs) encode important information about the scene
geometry and researchers have been actively exploiting them for solving very
different Computer Vision tasks, ranging from plane segmentation to the esti-
mation of radial distortion parameters. In particular, Perdoch et al. [16] generate
point correspondences from ACs for estimating the epipolar geometry, Bento-
lila and Francos [6] estimate the fundamental matrix from 3 ACs, Raposo and
Barreto [21, 19] use them to estimate the essential matrix and perform plane
segmentation, Pritts et al. [17] retrieve distortion parameters from affine maps,
and Hajder and Barath [9] accomplish planar motion estimation from a single
AC. More recently, the estimation of affine transformations from two directions
if the epipolar geometry is known has been proposed in [15];

The fact that an AC encodes information about the normal to the surface
has motivated a series of recent works to estimate normals from ACs when
the epipolar geometry is known [8, 7, 2, 4, 3], with important applications in the
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(a) Affine multi-view tracks

(b) Oriented 3D points

Fig. 1: a) A calibrated camera whose pose is known at all times observes a 3D
scene from different viewpoints. ACs extracted across multiple frames are shown
and identified with colors. b) For each multi-view track of affine maps, the pro-
posed method provides an oriented 3D point, i.e., its 3D location and normal to
the surface. Reconstructed 3D points are shown in black and red arrows represent
normals.

fields of object detection, 3D registration and segmentation. In general terms,
two families of algorithms exist: one that estimates the surface normal directly
from the extracted ACs [8, 2, 4] and another that starts by correcting the AC to
be consistent with the epipolar geometry and afterwards retrieves the normal [7,
3]. All solutions in the second family of algorithms perform an initial correction
of the point correspondence and afterwards modify the affine transformation.
When considering highly textured scenes, this assumption is valid since point
correspondences are usually accurate and it is the affine component that is sig-
nificantly affected by noise. However, when working in low textured scenes, it
cannot be assumed that point correspondences are known or can be corrected
by triangulation [10] since accurate ones are difficult to extract, with methods
typically yielding very sparse and inaccurate reconstructions.

This article provides new insights on how to solve the problem of obtaining
3D oriented points, i.e. 3D points augmented with the information about the
surface normal, from ACs. In addition, schemes for the refinement and tracking
of ACs based on photoconsistency that automatically enforce the epipolar con-
straints and that work well in situations of low texture are proposed. A valid
alternative would be to formulate the problem using the plane equation to rep-
resent homographies. However, working directly with ACs enables the extracted
affine regions to be used as the integration domain in photoconsistency. In the
case of homographies, the optimal integration region depends on the scene ge-
ometry, which is unknown and not straightforward to determine.

Being able to obtain accurate and rich reconstructions of 3D oriented points
in low-texture scenes greatly benefits several monocular vision algorithms. Exam-
ples include the reconstruction of indoor scenes, which are typically dominated
by large low-textured planes, and the detection and 3D registration of objects



Accurate Reconstruction of Oriented 3D Points using ACs 3

with low texture. In particular, this would add significant value to the domain
of arthroscopic procedures where obtaining 3D reconstructions of bone surface
solely from the arthroscopic images is difficult mainly due to their inherent low
texture [22]. In summary, the contributions are the following:
Fast correction of ACs and normal estimation: Building on a recent
study [21] that provides the relation between an AC and the epipolar geometry,
we show how to write the AC as a function of only two unknown parameters (2
degrees of freedom (DoF)), in case the point correspondence is fixed, and three
unknown parameters (3 DoF) otherwise, and propose fast linear solvers for en-
forcing noisy ACs to be consistent with the epipolar geometry. For the 2-DoF
case, the multi-view solution comes in a straightforward manner. In addition,
a fast linear solver for the estimation of normals from multiple frames is also
presented.
Multi-view refinement of ACs consistent with the epipolar geometry:
A fast method for multi-view photoconsistency refinement of the affine transfor-
mation of the AC that is the first to automatically enforce the epipolar geometry
is proposed. Experiments show that it significantly improves the quality of the
estimated normals, providing accurate oriented 3D points (Fig. 1).
Tracking of ACs consistent with the epipolar geometry: We present the
first formulation for correction of ACs to be consistent with the epipolar geome-
try that also corrects the point depth, avoiding the common two-step process [3]
of fixing the point correspondence and the affine frame sequentially. Building
on this formulation, a novel tracker that enables the accurate reconstruction
of oriented 3D points in low textured scenes, outperforming a standard KLT
tracker [1], is proposed.

2 Epipolar Geometry-Consistent ACs

Let (x,y,A) be an affine correspondence (AC) such that the patches surrounding
x and y are related by a non-singular 2× 2 matrix A, with

x =
[
x1 x2

]T
,y =

[
y1 y2

]T
,A =

[
a1 a3
a2 a4

]
. (1)

A point correspondence (u,v) in the patch is related by v = Au + b, with
b = y − Ax. As demonstrated in [18], an AC is consistent with the epipolar
geometry if the following is verified: x1y1 x1y2 x1 x2y1 x2y2 x2 y1 y2 1

a3x1 a4x1 0 y1+a3x2 y2+a4x2 1 a3 a4 0
y1+a1x1 y2+a2x1 1 a1x2 a2x2 0 a1 a2 0

E(:)=0, (2)

with D(:) denoting the vectorization of matrix D by columns and E being the
essential matrix.

From the relation y = Ax + b, Equation 2 can be written as

M(E,x) [mT 1]T = 0, (3)
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where M only depends on the essential matrix E and the point in the first image
x, and m = [A(:)T bT]T. By taking the null space of M, whose dimension is
3× 7, a basis for the full AC A = [A b] is obtained, and thus A can be written
as a linear combination of this null space:

A(:) = N6×4 [αT 1]T, (4)

with N6×4 being the matrix that is obtained by removing the last row of the
null space matrix of M3×7 and α being the set of unknown parameters αT =
[α1 α2 α3]. It comes in a straightforward manner that an AC Ã extracted
from a pair of images can be corrected to an AC A that is consistent with the
epipolar geometry by finding the solution α∗ to the system N6×4[α∗T 1]T = Ã(:)
in the least-squares sense and afterwards computing A = N6×4[α∗T 1]T.

As mentioned in the introduction, when extracting ACs in real scenarios,
the level of noise present in the affine component is significantly larger than the
one that affects the point correspondence. Thus, it may be desirable to assume
that the point correspondence (x,y) is known, and only the affine component A
is to be corrected to be consistent with the epipolar geometry. In this case, the
problem is simplified since the two bottom equations of the system of equations 2
can be written as

P(E,x,y) [A(:)T 1]T = 0, (5)

where P is a 2 × 5 matrix that only depends on the essential matrix E and
the point correspondence (x,y). By taking the null space of P, the following is
obtained

A(:) = Q4×3[αT 1]T, (6)

where Q is the matrix that is obtained by removing the last row of the null space
of P, having the following format

Q =


q1 0 q2
1 0 0
0 q1 q3
0 1 0

 . (7)

In this case, the number of degrees of freedom (DoF) is 2, i.e., α = [α1 α2]T.
The corrected AC is estimated similarly to the 3-DoF case.

2.1 Extension to the Multi-view Case

2-DoF Formulation Consider a 3-view affine track consisting of two ACs
(x,y,A) and (y, z,B) that relate patches in frames 1 and 2 and frames 2 and 3,
respectively. By assuming that the point correspondences are fixed, it is possible
to correct ACs A and B independently by performing as previously described.
However, a multi-view formulation for correcting one AC using information from
more than two views simultaneously yields more accurate results [7].

This section proposes a new linear solver for accomplishing this task. Let
(x, z,C) be the AC that relates the patch in frame 1 surrounding x with the
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patch in frame 3 surrounding z, so that C = BA. By representing each AC as in
Equation 6, i. e., A(:) = QA[αT 1]T, B(:) = QB[βT 1]T and C(:) = QC[γT 1]T,
it is possible to write the unknown parameters β and γ as a function of α so
that the latter can be estimated using the information from all three views:

β1 = λ1α1 + λ2α2/λ3α1 + λ4α2

β2 = λ5α1 + λ6α2 + λ7/λ3α1 + λ4α2

γ1 = λ8α1 + λ9
γ2 = λ8α2 + λ10

, (8)

where λi, i = 1, . . . , 10 are parameters that only depend on the known matrices
QA, QB and QC.

Since the relationship between γ and α is linear, a linear system of equations
relating ACs A and C with the unknown parameters α,

L[αT 1]T = [A(:)T C(:)T]T, (9)

can be written, where

L =

[
QA

λ8Q
[1,2]
C QC[λ9 λ10 1]T

]
, (10)

with Q
[1,2]
C denoting columns 1 and 2 of matrix QC. This formulation can be ex-

tended to more than 3 views in a straightforward manner by performing similarly
for each new frame and stacking the new equations to the linear system 9.

3-DoF Formulation Performing multi-view correction of ACs in the general
case, i.e., when it is not assumed that the point correspondences are known and
thus the full AC A is accounted for, is possible but not as simple as described
for the 2-DoF case. The reason for this is that, when attempting to follow a
procedure analogous to the 2-DoF case, since point y is not known, it becomes
impossible to directly obtain a representation of B as in Equation 4. However, y

can be written as y = A[xT 1]
T

, which, together with the null-space represen-
tations of ACs A and C,

A(:) = NA [αT 1]T

C(:) = NC [γT 1]T
, (11)

yields, after considerable algebraic manipulation3, the following system of equa-
tions

G [βT γT]T = g, (12)

where G and g depend on α. Unfortunately, this dependency precludes a linear
system such as the one in Equation 9 from being obtained, making this formula-
tion significantly more complex than the 2-DoF one. One possibility for achieving

3 We used MATLAB’s symbolic toolbox for performing the algebraic manipulation.
The MATLAB code for deriving all the equations in this section is provided as
supplementary material.
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AC correction in this case is to devise an iterative scheme for minimizing the
Frobenius norm of the difference between the extracted and the corrected ACs.
This could be done by starting with an initialization for α obtained from the
extracted AC Ã, estimating β and γ using Equation 12, retrieving the corrected
ACs A, B and C and iterating for every new estimation of α until the sum of
the squared Frobenius norms of the differences between the extracted and the
corrected ACs is minimal. Generalization to an arbitrary number of views comes
in a straightforward manner.

3 Multi-view Linear Estimation of Surface Normals

It is well known that the affine transformation A of an AC is the Jacobian of
the homography in point x [21, 12, 11]. This result enables to relate the AC with
the normal to the surface at the corresponding 3D point X, also enabling the
latter to be estimated. Solutions for this problem, in the 2-view and multi-view
cases, that formulate the problem in the 3D space have been proposed [4, 2]. In
this section we derive a simpler formulation that allows to build a linear solver
for normal estimation in the multi-view case.

It has been shown in [21] that an AC (x,y,A) induces a two-parameter family
of homographies H that can be written up to scale as

H(j; x,y,A) =

[
A + yjT y − (A + yjT)x

jT 1− jTx

]
. (13)

The equality H(j; x,y,A) = R + tnT, where R, t is the known rotation and
translation between the cameras and n is the normal to be estimated, can be

rewritten as F[nT jT]
T

= −R(:), with F being a 9 × 6 matrix that depends on
t,x,y and A. By stacking the equations obtained for each view and solving the
linear system, the multi-view estimation of n is accomplished.

Unlike in [2] where only the direction of the normal is recovered, this solver
also provides the distance of the plane tangent to the surface, encoded in the
norm of the normal vector. This extra information allows to reconstruct the 3D
point by intersecting the back-projection rays of each camera with the plane.

4 Photoconsistency Optimization for Accurate Normals

Although there has been intensive research on affine region detectors [25, 14],
state-of-the-art methods still provide ACs that present high levels of noise [7].
Thus, in order to obtain accurate 3D oriented points, it does not suffice to correct
the ACs to be consistent with the epipolar geometry. In this section, we propose
two novel methods for photoconsistency error minimization that are based on the
2-DoF and 3-DoF formulations derived in Section 2. The first method works as
an optimizer of ACs and is designed to work in scenes with texture, where point
correspondences can be accurately extracted. The second method is a tracker as
it only requires feature detection in one frame and performs tracking for every
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incoming frame. It handles situations of low texture by performing the tracking
constrained by the epipolar geometry.

4.1 2-DoF Formulation

The refinement of the affine component of the ACs is formulated as a non-linear
optimization problem whose cost function is the photoconsistency error, i.e., the
sum of the squared error between a template T, considered as the patch from
the first frame that encloses the affine region, and the second frame I. Given
an initial estimate for the parameters to optimize p, the goal is to iteratively
compute the update parameters δp by minimizing the cost function [1]

∑
x∈N

I(w(x; p + δp))− T(x)︸ ︷︷ ︸
E(δp)


2

, (14)

where w is the image warping function and N denotes the integration region.
The Efficient Second-order Minimization (ESM) alignment formulation [13,

5] states that the incremental update δp which minimizes the error at each
iteration is given, considering a second-order Taylor expansion approximation,
by

δp ≈ −
(
J(0) + J(δp)

2

)+

E(0), (15)

where the symbol + denotes the pseudoinverse and J(i) is the Jacobian of the
error E(i), having as general formula

J(i) =
∂E(i)

∂i
=
∂I (w (x; p + i))

∂i
. (16)

The Jacobian J(0) evaluated using the current solution is given by

J(0) =
∂I (w (x; p + i))

∂i

∣∣∣∣
i=0

=
∂I(x′)

∂x′

∣∣∣∣
x′=w(x;p)

∂w (x; p + i)

∂i

∣∣∣∣
i=0

. (17)

The first term on the right-hand side of Equation 17 is the gradient of the image
warped at the current solution. The second term is the Jacobian of the warp
function evaluated at i = 0 which, using the formulations derived in Section 2,
is easy to compute. For the sake of computational efficiency, we obtain the incre-
mental update by solely considering J(0), i.e., by computing δp = −J(0)+E(0),
which is a valid approximation.

In the present case, where the point correspondence (x,y) is fixed, the un-
known parameters p to be refined correspond to α in Equation 6 and the warp
function w transforms points u in the template into points v in the second image
by an affine projection HA = [A(QA,p) y − A(QA,p)x], where A(QA,p) is the
2× 2 matrix computed using QA and p, as described in Section 2.
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The extension to the multi-view case is obtained by writing the warp function
that transforms points u in the template into points w in the third image as
a function of the unknown parameters p using the relation between α and γ
derived in Equation 8. The Jacobian of this warp function is then computed,
as well as the gradient of the third image warped at the current solution. By
stacking the errors E and their Jacobians, obtained using frames 2 and 3, the
update δp is computed using the information of the 3 frames simultaneously. By
performing similarly for every incoming frame, the multi-view photoconsistency
refinement of the affine transformation A is achieved.

4.2 3-DoF Formulation

The formulation for the case of 3 unknown parameters is analogous to the 2-DoF
case, with the unknown parameters vector p corresponding to α in Equation 4,
and the warp function being determined using matrix N. Since in this case the
unknown parameters p allow to optimize both the affine component and the
translation part, this formulation can be used as a tracker, with the affine features
being extracted in the first frame for creating the templates to be tracked.

As previously explained, one drawback of this formulation is that, since it
is not possible to obtain a linear relation between α and γ, as in the 2-DoF
case, this formulation cannot be extended to the multi-view case in a straight-
forward manner. However, an alternative formulation for minimizing the cost
function 14 can be devised using non-linear optimization algorithms such as
Levenberg-Marquardt and the relation between α, β and γ derived in Equa-
tion 12.

5 Experimental Validation

In this section, the proposed algorithms for AC correction, normal estimation, re-
finement of ACs using photoconsistency and tracking of affine regions are tested
and compared with the state-of-the-art methods, both using synthetic data and
real-world datasets. In all experiments using real data, affine covariant features
are extracted with the Hessian Laplace detector [14, 25] using the VLFeat li-
brary [26].

5.1 Synthetic Data

This experiment serves to compare the accuracy and computational efficiency of
the two proposed linear solvers for correcting ACs and estimating normals with
the state-of-the-art solutions [7] and [2], respectively.

The synthetic setup was generated as described in [7, 2]4, consisting of N
cameras randomly located on the surface of a sphere of radius 5 and looking
towards the origin of that sphere. Random oriented 3D points were generated and

4 We thank the authors for kindly providing the source code.
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(a) Error in affine component

(b) Time (ms) for a C++
implementation (c) Error in normal (deg)

(d) Time (ms) for a Mat-
lab implementation

Fig. 2: Comparison of the proposed multi-view solver for correcting ACs (a and
b) and the proposed multi-view method for normal estimation (c and d) with
the state-of-the-art alternatives [7] and [2], respectively. a) The proposed and
competing methods provide the same solutions when performing AC correction,
with b) our method being over an order of magnitude faster for N > 5 views.
c) Similar results are obtained by both methods, with [2] being slightly more
accurate for N > 6 and the highest noise level. Correcting the AC prior to esti-
mating the surface normal is systematically the best option. d) While our method
scales well, having a nearly constant computational time for increasing number
of views, [2] presents higher computational times that increase approximately
linearly with the number of views.

projected onto the cameras, allowing the estimation of ground truth affine maps
and point locations. Zero-mean Gaussian noise with standard deviation σ was
added to the affine components. Fig. 2 gives the comparison of our solvers with
the ones presented in [7, 2], in terms of accuracy and computational time. The
ACs correction solvers are implemented in C++, while the normal estimation
algorithms are implemented in Matlab. The number of views N varies from 2 to
10 and different noise levels are considered, by varying σ. Results were obtained
over 1000 trials.

Fig. 2a shows the distribution of errors in the affine components of the ex-
tracted ACs and of both the ACs corrected with the method proposed in [7] and
our approach. The error in the affine component is computed as the Frobenius
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(a) (b) (c) (d) (e)

Fig. 3: Datasets used in the photoconsistency refinement experiment. The
datasets consist of images acquired in very different scenes and the camera poses
come from distinct sources, including detection of fiducial markers (a and b),
application of an SfM pipeline (c and d) and GPS measurements (e). The high
variability of the datasets evinces the large range of possible applications of the
proposed approach. The datasets are identified in Fig. 4 by a) Bone model, b)
Bone model arthro, c) herzjesu-p8, d) fountain-p11 and e) freiburg3.

norm of the difference between each AC 2× 2 matrix and the ground truth one.
It can be seen that our proposed solver provides the exact same solution as [7],
while being significantly faster, as shown in Fig. 2b that it achieves a speed
up of over 30× for N = 10. While the solution in [7] involves computing SVD
of a 2N × C-matrix, with C being the combination of all pairs of views, and
performing two multiplications of matrices with considerable size, our solution
solely requires the computation of the SVD of a 4(N − 1) × 3 matrix. As an
example, for N = 10, the matrices sizes are 20× 45 ([7]) vs 36× 3 (ours). This
difference in the solver results in a dramatic decrease in computational times.
In addition, it can be seen that for the considered noise level (σ = 1) correcting
the ACs always makes them closer to the ground truth ones.

In order to compare the performance of the multi-view normal estimation
algorithm presented in [2] with our linear solver, we fed both algorithms with
the noisy ACs and computed the angle between the obtained normals and the
ground truth ones. Results are shown in Fig. 2c, where the angular errors of the
normals estimated after correcting the ACs are also plotted. In this case, since
the two solvers provide different solutions, we tested for different noise levels
by considering σ = 0.2, 1, 2. It can be seen that although the solutions are not
identical, they are very similar, demonstrating the effectiveness of our proposed
linear solver. This result also confirms the findings reported in [7] that correcting
the ACs before estimating the surface normal is beneficial in almost every case.
Regarding the computational time, our solver is about 6.5× faster than [2] for
10 views, and, unlike the latter, scales well for increasing number of views. The
reason for this considerable speed up is that while the number of equations in
our normal estimation solver is equal to 9(N − 1), the complexity of the one
presented in [2] increases quadratically with N .

5.2 Photoconsistency Refinement

In this experiment we evaluate our proposed algorithm for optimizing ACs based
on photoconsistency by considering 5 datasets of very different scenes for which
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# views 2 3 4 5

Avg. time (ms)
Ref2DoF 19.7 39.7 62.0 103.6
Ref4DoF 36.3 71.9 108.8 168.5

Table 1: Average times in ms of Matlab implementations of the proposed
Ref2DoF method and Ref4DoF, for different number of views.

dense 3D models exist, and containing images for which the cameras’ poses are
known, as well as their intrinsic calibrations. For each dataset, multi-view tracks
of affine maps were extracted and the ground truth 3D points and normals were
obtained by intersecting the back-projection rays of the first camera with the
3D model, and retrieving both the point of intersection and the normal at that
point. In order to enforce the epipolar geometry assumptions, for each multi-view
track, the point was triangulated [10] and projected onto each camera, yielding
correspondences that perfectly satisfy the epipolar geometry.

The considered datasets, described in Fig. 3, are the two sequences from
the Strecha dataset [23] fountain-p11 and herzjesu-p8 with publicly available
ground truth 3D point cloud, the sequence freiburg3 nostructure texture far from
the RGB-D SLAM Dataset and Benchmark [24] and two other sequences we
acquired similarly to what is described in [22]. In more detail, we considered a 3D
printed model of a bone to which a fiducial with printed binary square patterns
is attached and can be tracked, providing the camera pose for every frame.
We acquired two sequences, one with a large-focal distance lens and another
with an arthroscopic lens. For both sequences we undistorted the images before
extracting ACs.

The proposed approach, referred to as Ref2DoF, is compared with 4 alter-
native methods: (1) estimating the normals directly from the extracted ACs, (2)
correcting the ACs and afterwards estimating the normals, (3) performing a pho-
toconsistency refinement using a 4-DoF formulation (referred to as Ref4DoF),
where all 4 parameters of the affine transformation are considered as unknown
parameters, and applying (1), and (4) performing (3) followed by (2).

Fig. 4 shows the angular errors of the normals obtained by all 5 methods
for the different datasets, and Table 1 gives the runtimes for Ref2DoF and
Ref4DoF, for a varying number of views. Results show that although Ref4DoF
significantly improves the quality of the estimated normals, it is always less accu-
rate than our 2-DoF refinement algorithm, while also being considerably slower.
In addition, it can be seen that, as expected, the improvement obtained by
correcting the ACs is irrelevant when compared to the one achieved by a pho-
toconsistency refinement. This experiment shows not only that refining ACs is
crucial for achieving accurate 3D oriented points, but also that incorporating the
constraints of the epipolar geometry into the refinement benefits both the accu-
racy and the computational efficiency. Fig. 1b depicts some of the 3D oriented
points obtained on the bone model dataset, where it can be visually confirmed
that the normals are nearly perpendicular to the surface.
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Fig. 4: Average errors in the normals estimated by 5 alternative methods, on the
datasets described in Fig. 3. Methods 1 to 5 correspond to: (1) - estimating the
normals directly from the extracted ACs; (2) - correcting the ACs and afterwards
applying (1); (3) - Ref4DoF + (1); (4) - Ref4DoF + (2); (5) - Ref2DoF

5.3 Tracking

This final experiment serves to assess the performance of our proposed 3-DoF
tracker (Track3DoF) under very challenging conditions of low texture, where
existing solutions perform poorly. For this, we selected the sequence freiburg3
nostructure notexture far from the RGB-D SLAM Dataset and Benchmark [24]
and extracted affine covariant features from the first frame. Fig. 5a shows the
frame with the point locations of the features. These features were tracked across
10 frames both using the proposed method Track3DoF and a formulation using
6 DoFs, referred to as Track6DoF, which is equivalent to a standard KLT affine
tracker [1]. Fig. 5b shows the obtained 3D oriented points by Track3DoF, as
well as a green and a yellow planes. The green plane is obtained by finding
the plane that best fits to the point cloud provided by the depth camera, and
the yellow plane is obtained similarly from the reconstructed points. In order to
quantitatively assess the quality of the oriented 3D points, we computed the angle
between each obtained normal and the normals of both the green and the yellow
planes, and the distance of each 3D point to both planes. Results are shown in
Figs. 5c and 5c, and also include the errors obtained for Track6DoF, which were
computed in a similar manner. It can be seen that 75% of the normals estimated
by our method have an error below 20◦, while for Track6DoF the value for the
third quartile is 1.8× larger. Also, while our approach managed to successfully
track 76% of the features, the 6-DoF formulation yielded only 64.8% of tracks
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(a) Extracted features
(b) Oriented 3D points

(c) Error in normal (deg) (d) Distance to plane (m)

Fig. 5: Experiment of tracking features in very low texture conditions. a) Affine
features extracted from the first image to be tracked across multiple images. b)
Oriented 3D points, represented as blue spheres with red arrows, reconstructed
using the proposed Track3DoF method, with 76% of the features being cor-
rectly tracked. The obtained 3D points are fitted to a plane (yellow plane), as
well as the ground truth 3D points provided in the dataset (green plane). Since
the depth sensor presents non-negligible noise, we computed the errors in (c)
the normals and in (d) the 3D point locations for both planes. Our method
outperforms a standard 6-DoF affine KLT formulation (Track6DoF) that only
successfully tracks 64.8% of the features and is 1.25× slower.

with symmetric epipolar distance below 5 pix. In terms of computational time,
our formulation is 1.25× faster, taking on average 45ms per tracklet in a Matlab
implementation. In addition, we attempted to perform feature matching with
the other frames in the dataset but, in this case, most retrieved correspondences
were incorrect, and only 29% yielded a symmetric epipolar distance below 5 pix.

These experimental results confirm that including information about the
epipolar geometry in the estimation of oriented 3D points significantly improves
their quality. In particular, when working in very low textured situations, where
feature matching algorithms fail and standard 6-DoF trackers perform poorly,
our proposed solution is a viable alternative.
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6 Conclusions and Future Work

We investigate the use of ACs in the tasks of normal estimation and reconstruc-
tion of oriented 3D points. Existing solutions still suffer from the low accuracy
of affine detectors, yielding normals that are far from the ground truth. This
paper proposes methods that greatly improve the quality of noisy ACs, being an
advance in the literature on this subject and also having practical relevance.

We provide new, simpler representations for ACs consistent with the epipolar
geometry. As a consequence, we obtain a multi-view AC correction linear solver
that outperforms the state-of-the-art in terms of computational time for any
number of views, reaching a speed up of 30× for the case of 10 views. A novel
linear solver for the multi-view estimation of normals is also presented, and ex-
periments demonstrate that it is a valid faster alternative to the existing solvers.
The novel simple representation of epipolar geometry-consistent ACs enables re-
finement schemes to be formulated as photoconsistency-based trackers, which,
as demonstrated by the experimental results, significantly improve the quality
of the extracted ACs. In addition, another important contribution of this paper
is the new 3-DoF tracker that works in scenes presenting low texture, which is
faster and accurately tracks more features than the standard affine 6-DoF KLT
tracker.

The proposed 3-DoF tracker opens the way to applications in new domains.
One important area where this type of tracker would be very useful is in surgi-
cal arthroscopic procedures, such as the reconstruction of the anterior cruciate
ligament in the knee joint or the resection of the femoroacetabular impingement
in the hip joint, where the access to the joint is made through two portals for
inserting the arthroscopic camera and the surgical instruments. Existing solu-
tions make use of instrumented touch probes for reconstructing bone surface
and afterwards perform registration with a pre-operative model of the bone [22].
However, since the maneuverability inside the joint is limited, this procedure is
often difficult. Also, existing image-based surface reconstruction procedures fail
in providing acceptable results due to the very low texture of the bone surface.
As future work, we intend to explore the possibility applying the new 3-DoF
tracker to the arthroscopic images for the reconstruction of bone surface, which
would then enable registration with the pre-operative model to be performed
with schemes that make use of surface normals [20]. Additionally, we will further
investigate how to perform multi-view photoconsistency refinement/tracking us-
ing the 3-DoF formulation in an efficient manner.
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