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Abstract. Panoramic 360o images taken under unconstrained condi-
tions present a significant challenge to current state-of-the-art recogni-
tion pipelines, since the assumption of a mostly upright camera is no
longer valid. In this work, we investigate how to solve this problem by
fusing purely geometric cues, such as apparent vanishing points, with
learned semantic cues, such as the expectation that some visual elements
(e.g. doors) have a natural upright position. We train a deep neural net-
work to leverage these cues to segment the image-space endpoints of an
imagined “vertical axis”, which is orthogonal to the ground plane of a
scene, thus levelling the camera. We show that our segmentation-based
strategy significantly increases performance, reducing errors by half, com-
pared to the current state-of-the-art on two datasets of 360o imagery. We
also demonstrate the importance of 360o camera levelling by analysing
its impact on downstream tasks, finding that incorrect levelling severely
degrades the performance of real-world computer vision pipelines.

1 Introduction

The ability of 360◦ (or spherical) imaging to record an entire scene with a sin-
gle capture makes them a powerful tool, both for machine perception and for
rapidly documenting entire scenes. For example, 360◦ imaging has been used
to record crime scenes where it is vital to image the entire scene for evidence
[32], to easily create Virtual Reality (VR) videos with minimal cost [24], and is
perhaps most widely recognized in its role in creating Google Street View [12].
Arrays of cameras that can be composed into a full 360◦ image or video are
also important in mobile applications with critical safety requirements, such as
self-driving cars [1]. With the availability of inexpensive 360◦ capture devices,
and the growth of VR headsets, there is an increased demand for techniques to
automatically analyse and process spherical images.

The recent successes of computer vision, with deep learning playing a key role
in the state-of-the-art object detectors [22], segmentation [30], camera pose esti-
mation [20] and many others, seem to indicate that the same techniques should
be directly applicable to 360◦ images. However, there are specific difficulties as-
sociated with this modality that need to be addressed. One common problem
for spherical images is a misalignment between the camera frames’ ground plane
and the world frames’ ground plane (see fig. 2).

This misalignment makes automatically processing spherical images more
challenging than it needs to be. For example, training a spherical object detector
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Fig. 1. Illustration of the problem of levelling spherical images. From left to right: a
spherical image captured at a tilted angle relative to the sky (red arrow), with the
horizon line shown in blue; its 2D representation (equirectangular image), with heavy
distortions due to the rotation; the same image, undistorted by our system; the aligned
spherical image in 3D.

on misaligned images would require the network to learn a representation which
was invariant to rotations away from the vertical axis [15]. In contrast to this,
if all images are level (upright), the representation could be sensitive to these
rotations, simplifying the task to be learned [11].

The ground-plane alignment that we focus on estimates 2 degrees of freedom
(DOF) (roll and pitch), and must be contrasted to general camera pose estima-
tion, which estimates 6 DOF (translation and rotation in 3D) [20]. Ground-plane
alignment can be performed with a single image, by using simple cues (e.g. ver-
tical walls, ground or sky/ceiling positions). Differently, 6D camera pose estima-
tion requires extra reference images [14, 20, 19], making it much less applicable.

Aligning spherical images to the ground is also an important pre-processing
step for downstream tasks (we demonstrate this empirically in sec. 3). State-of-
the-art object detectors, and segmentation networks are trained and evaluated
on upright equirectangular images [37, 38, 8], and do not work under arbitrary
rotations. Similarly, human visual recognition also degrades quickly with extreme
rotations [33], and there are classification problems that are impossible to solve
under arbitrary rotations (the canonical example being the distinction between
the digits 9 and 6). Ground-plane alignment can also make pose estimation more
robust, as estimating the pose of a levelled image requires two fewer DOF [28].

At a high level, our method estimates the axis orthogonal to the ground
(vertical axis) by segmenting the unit sphere (where each point corresponds
to a different direction) into likely candidates. We leverage a state-of-the-art
segmentation network [30], by exploiting the fact that the unit sphere can be
mapped to a 2D image via the equirectangular transform (sec. 2.1). The network
is trained to segment the sphere into those directions likely to correspond to the
vertical axis.

In addition to the novel segmentation formulation of this problem, we pro-
pose to combine the strengths of both geometrical methods and learning-based
methods. Geometrical methods, such as those based on detecting and accumu-
lating votes for locations of vanishing points (VP) [10, 21, 37], are very accurate,
but brittle under noise and uncertainty. Learning-based methods are less ac-
curate but very robust. We combine both, by incorporating a residual stream
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Fig. 2. Overview of the proposed method. We train a convolutional network to produce
a segmentation of an equirectangular image, using vanishing point features as extra
geometric information. The output segmentation encodes the endpoints of the vertical
axis, which we use to orient the image upright.

that propagates information about VP likelihoods, and this way informs our
segmentation network with precise geometrical information.

By leveraging the power of feature engineering with state-of-the-art segmen-
tation techniques, our method is the most accurate to date. We compare our
method with the two most recent automatic alignment methods Deep360Up [18]
and Coarse2Fine [27]. We demonstrate improved performance on the Sun360
dataset [35], as well a new dataset of construction images that we collected.

1.1 Related work

Ground plane alignment is related to pose estimation [14, 20, 19], as described
in sec. 1. Another related line of work is rotation invariant (or equivariant)
networks [34, 15], which aims to make models more robust and predictable w.r.t.
rotations, and is complementary to our method. We aim instead to predict and
undo the effect of a single global rotation, with a semantically-defined reference
(the ground plane).

The classical solution to ground plane alignment has been to extract the
straight line segments from an image, and use these to estimate a vanishing
point in the direction of the vertical axis [10, 21, 37]. These methods rely on what
are known as the Manhattan or Atlanta world assumptions [4, 25], which assert
that the scene that has been captured will contain some orthogonal structure,
given the tendency in human construction to build at right angles. It must be
remarked that this assumption does not always hold in practice. One typical way
to extract this orthogonal structure is to determine the direction in which all
straight lines in an image are pointing, and have each line vote on vanishing point
directions [37], in a manner similar to the Hough transform [7] (c.f. sec. 2.3). The
orthogonal directions of the scene can then be found by looking for the three
orthogonal directions which together have the most votes. However, many scenes
may not have this orthogonal structure, and we may not be able to extract many
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straight line segments from the image. Moreover, the maximal orthogonal set
found by maximisation may not be the true orthogonal directions. Due to the
many assumptions of this approach, it is very brittle in practice, despite the
apparent strength of the vanishing point features it uses.

Deep learning solutions to ground plane alignment have shown to be more ro-
bust than the classical vanishing point methods. The existing methods are either
a variation of a deep convolutional regression network [18, 17] or a classification
network [27]. In the most recent regression network, referred to as Deep360Up,
the vertical direction (pointing upwards) is output directly from a DenseNet [16],
which is trained using the logarithm of the hyperbolic cosine between the esti-
mated and ground truth vertical directions [18]. The most accurate and recent
deep approach has been to use a coarse to fine classification network [27]. This
approach, referred to as Coarse2Fine, classifies the pitch and roll of an image as
belonging to a 10◦ bin (coarse), thus adjusting the image to be within ±5◦, and
then classifying the adjusted image to be within a 1◦ bin (fine). Another stan-
dard feature of such solutions is to generate training data from already levelled
images (which we discuss in sec. 2.4). Though these methods have once again
demonstrated the power of deep networks, we show in sec. 3 that the proposed
segmentation approach is more accurate.

A related line of work is to propose network architectures that directly work
with spherical images, for example for classification and detection [3], or for
segmentation and depth prediction [31]. Our levelling method can alleviate any
upright-world assumptions in these works, as well as standard networks, and is
thus complementary.

2 Methods

Our approach can broadly be split into three stages: calculating the vanish-
ing points, segmenting the image, and processing the segmentation into a single
vertical direction. Before describing our method in detail, we provide some back-
ground on equirectangular images and some useful operations.

2.1 Background on equirectangular images

An equirectangular image is a planar representation of an image on the sphere,
where height and width correspond respectively to latitude and longitude. The
explicit transformation (denoted p) between pixel coordinates (x, y) and spheri-
cal coordinates (λ, φ) is straightforward:

p : R2 → S2, p(x, y) =
(πy
h
, 2π − πx

w

)
= (λ, φ) (1)

where w and h are the dimensions in pixels. Note that this is an invertible trans-
formation and so we can move from the image to the sphere and vice-versa. Using
p we will frequently refer to an equirectangular image as being on the sphere,
by which we mean the projection of the image to the sphere. Furthermore we
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Fig. 3. An example equirectangular image, and its corresponding projection on the
faces of a cube. Note the many curved lines in the equirectangular image, which become
straight in the corresponding cube face.

can map spherical to Cartesian coordinates and vice versa using the spherical
to cartesian transformation: f(λ, φ) = (cos(φ) sin(λ), sin(φ) sin(λ), cos(λ)). We
can use these transformations to rotate an equirectangular image Isrc to create
another image Idst of different orientation, by rotating the sphere. Starting from
a point xdst in the pixel space of Idst we project xdst to the sphere p(xdst), and
rotate the sphere with a rotation matrix R ∈ SO(3). Note that R represents
an arbitrary rotation in 3D space, with an axis of rotation not necessarily cor-
responding to latitude or longitude. Doing so gives the following relationship
between coordinate systems:

ysrc = Rf(p(xdst)) (2)

After this transformation we project back to image space: xsrc = p−1(f−1(ysrc)).
The transformation of image coordinates xdst to xsrc allows us to re-sample an
image Isrc to create Idst, for example by bilinear interpolation [15]. As can be
seen in eq. (2), we may rotate the image so that we have an equirectangular
image of any orientation, which we will use to generate training data for our
segmentation network.

Another subtle but important aspect about equirectangular images is how to
extract straight line segments visible within the scene. Straight lines in the scene
do not in general map to straight lines in an equirectangular image (see fig. 3). To
recover straight lines from an equirectangular image, we need to convert it to one
or more perspective images. We cover the full 360o view with perspective views,
corresponding to 6 cube faces (see fig. 3). Each one is produced by rendering
the sphere (with the mapped texture) from 6 different points-of-view, at right
angles. This “cube mapping” is commonly used in computer graphics to render
far-away scenes [26]. This allows using unmodified line segment detectors.

2.2 Segmentation framework

Our method is based on a convolutional neural network optimised for segmen-
tation, with side-information about vanishing points as input to an attention
module. The output of our network is a binary segmentation of the original
equirectangular image, which by applying the pixel to spherical transform p
may be thought of as a segmentation of the sphere into background and likely
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directions for the vertical axis. Specifically, we segment all points on the sphere
which are within 5 degrees of the north or south pole, where the poles are taken
relative to camera coordinates (see fig. 2 for an example segmentation). By em-
bedding all useful inputs and outputs in a 2-dimensional space, we can leverage
highly successful 2D segmentation networks, and allow predictions to be based on
both geometric and semantic cues (i.e., vanishing points and poses of distinctive
objects in images).

Network architecture. The base architecture that we use is the Gated-Shape
CNN (GSCNN) [30]. The GSCNN is a fully convolutional network, designed to
utilise side information about object boundaries to improve its performance on
semantic segmentation tasks. It consists of a backbone feature extractor, in our
case InceptionV3 [29], an ASPP (atrous spatial pyramid pooling) layer, and the
shape stream. The shape stream in the original work accepts image gradients and
intermediate backbone features as inputs, and outputs a single channel feature
image. The output shape stream features are then combined with other backbone
features in the ASPP layer to generate a dense feature map of the same resolution
as the input image.

Our architecture modifies GSCNNs so that it would be more informative to
call the shape stream the vanishing point stream, as we replace image gradients
with the vanishing point image V (see sec. 2.3). The reasoning behind this is
that V is a feature that is highly informative w.r.t. the vertical axis, and we
would like to let the network exploit this source of information. Also, feeding V
to the network in this manner allows us to use a pre-trained backbone network,
which would not be possible by just concatenating V to the channels of the
image. Using a GSCNN enabled us to introduce information relating to vanishing
points, whilst also retaining the ability to use pre-trained backbones.

2.3 Vanishing point image

Vanishing points have proven to be a strong geometric cue for many computer
vision tasks, including ground plane alignment [10]. In many scenes a horizon
line is visible, or orthogonal structures such as the corners of buildings. These

Fig. 4. An equirectangular image and the corresponding vanishing point image
(sec. 2.3). The 6 regions highlighted in red are areas which have received a large
number of votes. Note that each highly-voted region corresponds to one face of the
approximately cuboid room (the four walls, floor and ceiling).
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Fig. 5. Illustration of how to calculate vanishing point features from line segments in
a cube face. We can see that every point on the great circle formed by intersecting the
plane and the sphere will be orthogonal to the normal vector. Therefore, every point
in this circle receives a vote. In practice the 2D surface of the sphere is discretised
(sec. 2.1), and every bin within some threshold distance of this circle receives a vote.

structures are useful for determining the vertical axis, and can be emphasised
by calculating vanishing points (see fig. 4). Moreover, these features can be
computed directly from images, with no learning required. This makes them
excellent features for our purpose.

To build the vanishing point image in fig. 4 we extract all of the straight lines
in the scene and use each line to vote on vanishing directions. The first step of
this process is to project the equirectangular image to the 6 cube faces (fig. 3,
right) and extract line segments from each face. To extract the line segments
we use Canny edge detection combined with a probabilistic Hough transform [2,
9]. We then convert each line segment to a plane, defined by the line endpoints,
and the origin of the sphere. Let n be the normal vector to this plane. We use n
to vote for vanishing point locations, by voting for all directions on the sphere
which are orthogonal to n. Geometrically this means all points on the great circle
defined by the intersection of the plane and sphere receive a vote. In practice we
split the sphere into h × w bins by projecting each pixel in an equirectangular
image I to the sphere and then voting via

V n
h0,w0

=

{
1 |n · f(p(Ih0,w0))| < λvanishing

0 otherwise
. (3)

We calculate a normal vector n for every line segment and accumulate votes by
summing V =

∑
n V

n. Finally we normalise V to be an intensity image with
values in the range of [0, 255]. High values will correspond to probable vanishing
points, which have many line segments pointing towards them, and will assist
our network in finding the vertical axis (fig. 5).

2.4 Training method

To train our network, we use a weighted generalised dice loss [5] on uniformly
distributed points on the sphere. This is in contrast to the original GSCNN work
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which utilises auxiliary and regularising losses [30], and which have no direct
analogue in our setting. We chose to use the generalised dice loss as this has
been shown to perform well in situations where there are large class imbalances
between foreground and background classes [5]. This is a concern in our setting,
since vanishing points are sparse.

We do not compute the loss directly on the 2D segmentation image, as this
would over-sample the polar regions, thus disproportionately weighing vertical
directions near them. Instead, we select points that are uniformly distributed
around the sphere, and project these into the equirectangular segmentation,
and ground truth. Finally, we interpolate the values of each projected point to
construct y and ŷ.

Training data. The data fed to our network during training are equirectangular
images (e.g. from the Sun360 dataset [36]), and ground truth equirectangular
segmentations, which we generate from already levelled equirectangular images.
The dataset we begin with consists only of levelled equirectangular images. For
all of these images, we know that the vertical direction is z = (0, 0, 1). By rotating
a levelled image with a random rotation R and using eq. (2), we know that the
resulting vertical direction of the rotated image will be R−1z. From this we can
generate training pairs of image and vertical direction. Now, given a vertical
direction, it is simple to construct a binary equirectangular segmentation. Let u
be the generic vertical direction for some image and I an equirectangular image.
After applying f ◦ p to all pixel values in I, we can consider the i, jth pixel as
sitting at xi,j on the sphere in R3. Our segmentation si,j is 1 where |u·xi,j | > λseg
and 0 otherwise, which means that we consider pixels that project near to the
vertical axis as foreground (1) and all others as background (0). Rotating level
images whilst keeping track of the vertical axis allows us to construct many pairs
of image and segmentation from a single levelled image.

To actually generate our dataset we compute nrot rotations which will place
the vertical axis uniformly around the sphere, and then apply a small offset ro-
tation. Performing these almost uniform rotations avoids using the same nrot
rotations for every image, whilst ensuring that the directions completely cover
the sphere (c.f. Appendix A). Note there are infinitely many rotations placing the
vertical direction at a specific point (by rolling around the vertical axis). We in-
corporate this rotation online during training, as the rotation can be represented
via rolling the equirectangular image along its width axis.

Even when using high quality interpolation methods, we cannot avoid ro-
tational artifacts appearing in the rotated images, which can adversely impact
generalization performance. This relatively subtle issue will be discussed in sec. 3.

2.5 Test-time prediction

Once we have an equirectangular segmentation, we can extract a vertical direc-
tion by selecting the most probable connected component and taking its centroid
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Fig. 6. Accuracy evaluation on the test splits of 3 datasets. From left to right: Sun360
with the same artificial rotations as used by Deep360up [18], Sun360 without rotation,
and the construction dataset (sec. 3.3). We report the accuracy over different angular
thresholds, for 4 methods: ours, vanishing points (VP, a purely geometric method), and
2 state-of-the-art deep learning methods (360Up and Coarse2Fine). Our method sig-
nificantly outperforms others on images without artificial rotations (center and right).

as the vertical direction. Given such a centroid c and eq. (1) we recover the ver-
tical direction via p(c) ∈ S2. While this is a simple computer vision operation,
for completeness we describe it fully in Appendix A.

Test-time augmentation. The final stage of our approach is an optional test
time augmentation, which may rotate an image and rerun the segmentation. Let
u be a candidate vertical direction obtained after running a single forward pass of
the network. If the image was already close to level, i.e. u is close to z = (0, 0, 1),
then we rotate the images pitch by 20◦ and rerun the entire inference and post-
processing steps to get a new u′. The reason for this is that, if the image is
already close to level, the vanishing point features for the vertical axis are close
to the points of most distortion: ±z. Following this, we rotate u′ back 20◦ and
take the resulting vector as the vertical direction.

Testing data. We collected a test set of unlevelled images, where the verti-
cal direction has been calculated manually. To calculate the vertical direction
manually two vertical lines, vertical in the world frame, are manually identified,
which allows us to construct a plane parallel to the ground plane, by computing
the normals as in sec. 2.3. This plane parallel to the ground trivially gives us
the vertical axis, as the axis orthogonal to the plane. By ensuring we use unro-
tated test images, we avoid data leakage due to rotational artifacts present in
the images (see sec. 3).

3 Experiments

We trained and tested our methods on three datasets: the Sun360 dataset, a
synthetic dataset of noise, and a dataset of construction images. Training on
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synthetically rotated Sun360 images can lead to rotational artifacts (sec. 3.2)
being learned by the network, a common problem with similar synthetic train-
ing regimes [23, 6]. As all images in the Sun360 dataset are level, we could only
evaluate our networks’ performance on levelled images without introducing rota-
tional artifacts. To measure the extent to which the network relies on rotational
artifacts, we created a dataset of rotated noise images. Lastly, to accurately
estimate the networks’ performance on unlevelled images, without the aid of
artifacts, we collected a dataset consisting of images which were not level, and
for which the vertical direction was known.

In the following experiments, we compare our method with that of Deep360Up
[18] and a baseline vanishing point (VP) method based on [38]. We made use of
the publicly available Deep360Up implementation. When possible we also report
the performance of the Coarse2Fine [27] approach, by testing on the same test
set. On the Sun360 dataset we also show the importance of the vanishing point
stream, by removing it from the network and observing a reduced performance.

Finally, we demonstrate the importance of levelling images for downstream
tasks by training a segmentation network on levelled and unlevelled images. We
make use of our implementation of the original GSCNN work as the segmentation
network, and the dataset from [13].

3.1 Sun360 dataset

This dataset consists of 30,000 levelled images, and we use a 80-10-10 split for
training, validation and test. As all images in this dataset are already level, we
cannot test on any images which do not contain rotational artifacts. To account
for this, we evaluated the network on the original, level, images as well as ro-
tated images. We report performance on 3 subsets of data: the unrotated level
test set (referred to as Test Flat), the unrotated validation set, and a rotated
validation set where all vertical directions are in the upper-hemisphere. To com-
pare our method with both Deep360Up and Coarse2Fine we also report results
on a synthetically rotated test set, referred to as Test Deep360Up, consisting of
17,825 images that were used to evaluate both methods in the original works.

The accuracy of our method as well as the brittleness of the classical vanishing
point method is shown in table 1. Our approach is the most accurate on both
the level and synthetically rotated test sets, when considering a threshold of at
least 2◦. The Coarse2Fine approach does achieve a higher accuracy than our
method when considering a 1◦ threshold, but then falls off to be the lowest
out of all considered deep learning methods, at larger thresholds. A possible
explanation for this dropoff is that the Coarse2Fine approach solves the problem
in two stages: first adjusting the image to be within 10◦ of level, and then
refining this adjusted image to be within 1◦. Therefore, if the initial estimation
is incorrect, the network can never recover the true vertical direction. In contrast,
our method is completely end-to-end, and so we do not depend on the output of
a previous stage, giving a more robust approximation. Here we also demonstrate
the importance of the vanishing point stream, as removing it significantly reduces
performance. The poor performance of the vanishing point method is explained
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Table 1. Performance for different subsets of the Sun360 dataset (see text for details).
We report the percentage of images for which the vertical axis is correctly estimated
within a threshold of x◦.

Percentage of estimated axes within x◦

Dataset Method 1◦ 2◦ 3◦ 4◦ 5◦ 7.5◦ 10◦ 12◦

Val Rotated Ours 25.1 60.5 80.5 90.3 94.7 97.5 98.1 98.4
Ours (no VP) 20.9 45.6 57.0 74.4 90.2 96.5 97.4 97.8
Deep360Up 4.9 17.6 34.8 54.7 70.1 91.0 95.7 97.5
VP 0.2 0.7 1.2 1.5 1.7 2.2 2.5 2.8

Val Flat Ours 34.7 78.8 92.4 96.4 97.9 99.0 99.3 99.4
Ours (no VP) 0.3 1.0 2.9 67.0 97.0 98.9 99.3 99.4
Deep360Up 9.8 20.5 33.3 45.5 58.8 81.4 93.2 97.1
VP 0.5 2.8 5.1 7.3 9.4 12.9 16.0 17.6

Test Deep360 Ours 19.7 53.6 75.5 87.2 92.6 97.1 98.2 98.4
Ours (no VP) 7.5 23.5 40.3 55.9 68.2 87.1 94.8 97.4
Deep360Up 7.1 24.5 43.9 60.7 74.2 91.9 96.6 97.9
Coarse2Fine 30.9 51.7 65.9 74.1 79.1 NA NA 91.0
VP 0.3 0.9 1.6 2.1 2.5 3.3 3.8 4.2

Test Flat Ours 34.0 78.4 92.4 96.2 97.8 98.8 99.3 99.4
Ours (no VP) 0.4 1.3 3.1 63.9 96.5 98.6 99.0 99.2
Deep360Up 10.2 22.5 35.3 48.2 60.1 82.3 93.4 97.3
VP 0.3 2.5 6.1 8.8 11.0 14.1 16.7 18.5

by the nature of the Sun360 dataset, which consists of mostly natural scenes (eg.
forests), and therefore does not satisfy the Manhattan world assumption.

3.2 Noise dataset

As we synthetically rotate images during training, it was crucial to ensure the
network was not “cheating”, i.e. simply using visual artifacts induced by syn-
thetic rotations to solve the problem, and not learning high-level cues that gen-
eralize to images with real rotations. Deep networks are very efficient at finding
the simplest solution to a problem, and the existence of shortcuts is a prevalent
problem in unsupervised learning, for example taking advantage of boundary
effects [23, sec. 4.2] or chromatic aberrations of lenses [6, sec. 3.1].

We demonstrate empirically that, in fact, a network can invert a rotation
on pure noise successfully. To do this, we generated images of random (white)
noise, rotated them, and used them to train both our method and the Deep360Up
method. We found that in both cases the network could learn to undo the trans-
formation. This highlights the need for an unrotated test set to be sure of the
network’s performance at test time. Note that we generated a new random noise
image at each training and validation step, meaning that this was not a result of
over-fitting, as every image the network saw was different. For Deep360Up, we
observed the average angular error in this case to be around 5 degrees, and for
our method we saw the generalised dice loss fall to 0.04. Both indicate that the
network was able to significantly beat chance using only rotational artifacts.
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Fig. 7. Visualisation of automatically levelled validation images: proposed method
(top), Deep360Up (middle), and the misaligned counterparts (bottom row).

3.3 Construction dataset

To ensure our network was actually solving the problem at hand, we collected a
dataset of images from construction sites where we had the raw capture, and the
vertical axis of the raw capture. This dataset consists of 10,054 images where
we use a 90-10 split for training and validation, and 1006 images for testing.
The imbalance in the number of images for training and validation compared to
testing images is due to the nature of the data collection process: the training
and validation images were already rotated to be level; in contrast, the testing
data was gathered manually and consisted of the original capture, which in many
cases was not level. This permitted us to test our approach on unlevelled images,
that did not contain rotational artifacts. A total of 9365 distinct locations were
captured from 16 construction sites, with no overlap in locations between the
training and testing data. 48.7% of images were within 3◦ of level, and 90% were
within 12◦ of level, see figure 8 for typical example scenes from this dataset.
Again, our method was considerably more accurate than existing state-of-the-
art techniques. Table 2 shows that our approach is the most accurate on all
datasets, achieving 98% of estimates within 5 degrees for the test set.

Note that the performance of the vanishing point method on the construction
data is significantly better than when applied to the Sun360 data. This can be
explained due to the construction dataset consisting of rooms that satisfy the
Manhattan world assumption, in contrast to the Sun360 dataset.

3.4 Downstream segmentation task

To illustrate the importance of levelling images for downstream tasks we trained
several segmentation models using the dataset in [13], which consists of 666
images from the Sun360 dataset, for which the authors have added segmentation
labels for 15 classes. As all images in the Sun360 dataset are already level, we
created a rotated segmentation dataset by randomly rotating each image so
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Table 2. Performance for different subsets of the construction dataset (see text for
details). We report the percentage of images for which the vertical axis is correctly
estimated within a threshold of x◦.

Percentage of estimated axes within x◦

Dataset Method 1◦ 2◦ 3◦ 4◦ 5◦ 7.5◦ 10◦ 12◦

Val. rotated Ours 23.1 59.0 79.2 88.2 93.2 96.4 97.2 97.5
Deep360Up 3.0 12.1 27.4 42.7 58.3 82.5 91.6 95.7

VP 4.2 13.4 22.3 28.9 33.3 38.9 41.6 43.0

Val. flat Ours 25.3 66.3 87.4 93.5 96.0 97.9 98.3 98.7
Deep360Up 12.4 25.3 39.6 50.8 61.5 82.4 93.5 96.7

VP 2.8 11.6 25.7 39.1 47.4 60.8 68.6 73.2

Test Ours 26.9 67.3 88.6 95.0 97.5 99.4 99.7 99.7
Deep360Up 9.0 29.3 49.2 62.1 73.0 88.5 94.2 96.2

VP 4.9 15.1 27.9 38.1 46.7 62.4 70.5 74.9

Table 3. Downstream task performance (mean IOU, in percentages) on different sub-
sets of data (sec. 3.4). For each model we highlight the worst performance in bold.

Evaluation Dataset
Original Levelled Rotated

Original 40.1 40.0 26.7
Training Dataset Levelled 42.5 42.0 31.4

Rotated 43.0 42.7 39.1

that its vertical direction was at most 45◦ away from level. We also constructed
a levelled dataset by applying our method to the rotated images, using the
estimated rotations to level the images and their annotations. In total we used
these 3 datasets: original, rotated, and levelled, to train 3 segmentation models.

The segmentation models consist of our own implementation of GSCNNs.
Our training regime followed the original work [30] except that we trained for
100 epochs. After training each model, we then evaluated the mean IOU on the
original, rotated, and levelled validation sets, consisting of 100 images.

Table 3 shows that all models performed the worst on the rotated dataset,
even the model trained specifically on rotated images. This drop in performance
is particularly striking for models trained on levelled images, with drops of 13.3%
and 10.6% for the model trained on the original dataset and levelled dataset re-
spectively. This highlights a significant problem for many 360◦ processing meth-
ods, which have been trained and evaluated on levelled images. These methods
may not generalise well at test time where images may not be level. Our method
solves this problem as can be seen in table 3, where the automatically levelled
images achieve close to the same performance as the original, levelled dataset.

4 Conclusion

In this paper, we presented the most accurate auto-alignment method to date,
developed by combining state-of-the-art segmentation methods with classical
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Fig. 8. Top row: Qualitative results for the downstream task of semantic segmentation
(sec. 3.4). Middle row: Ground truth. The model performs well on the original images
(left), but significantly worse on rotated images (center). Levelling with our method
(right) recovers the performance. This highlights the importance of levelling for realistic
downstream tasks. Bottom row: Example scenes from the construction dataset.

vanishing point features. We have demonstrated that care needs to be taken when
generating training data to avoid data leakage. Moreover, we have demonstrated
that casting the vertical axis estimation problem as a segmentation problem
results in improved performance, whilst using standard segmentation techniques.

One issue with our approach is that we make the assumption that the ver-
tical direction is already in the upper hemisphere. Though this is a reasonable
assumption given how images are captured (where such misalignment is rarely
an issue), and the availability of onboard sensors to roughly align an image, we
could remedy this problem by instead segmenting the image into three classes:
up, down and background. Doing so would allow us to calculate a vertical axis
as before, but then use the up or down label to vote for the up direction. Fu-
ture work could also try directly regressing the location of the vertical direction
following the segmentation. We leave this for future work as it would require a
considerable modification of the proposed framework.
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