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Abstract. Radon transform is a popular mathematical tool for shape
analysis. However, it cannot handle affine deformation. Although its ex-
tended version, trace transform, allow us to construct affine invariants,
they are less informative and computational expensive due to the loss of
spatial relationship between trace lines and the extensive repeated calcu-
lation of transform. To address this issue, a novel line integral transform
is proposed. We first use binding line pairs that have the desirable prop-
erty of affine preserving as a reference frame to rewrite the diametrical
dimension parameters of the lines in a relative manner which make them
independent on affine transform. Along polar angle dimension of the line
parameters, a moment-based normalization is then conducted to degrade
the affine transform to similarity transform which can be easily normal-
ized by Fourier transform. The proposed transform is not only invariant
to affine transform, but also preserves the spatial relationship between
line integrals which make it very informative. Another advantage of the
proposed transform is that it is more efficient than the trace transform.
Conducting it one time can allow us to achieve a 2D matrix of affine
invariants. While conducting the trace transform once only generates a
single feature and multiple trace transforms of different functionals are
needed to derive more to make the descriptors informative. The effec-
tiveness of the proposed transform has been validated on two types of
standard shape test cases, affinely distorted contour shape dataset and
region shape dataset, respectively.

Keywords: Shape analysis ·Affine distortions ·Affine invariants · Radon
transform · Trace transform

1 Introduction

Shape analysis is an active research area in the computer vision and pattern
recognition community and has a large body of potential applications such as
human activity recognition [30], target tracking [31], medical image retrieval [32],
etc. The object images captured by the camera are generally subject to various
deformations. One of the typical distortions is perspective transform which oc-
curs on the situation of the pictures of the objects are taken under arbitrary
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orientations. The computer vision systems are also expected to effectively han-
dle the recognition of perspective distorted shapes. Under certain circumstance
like the distance between the camera and the object being far enough, or the
thick of the object being very small that can be approximated a plane, the per-
spective transform can be well approximated by affine transformation [22][33].
In this paper, we focus on recognizing shapes distorted by affine transform.

Conducting line integrals over the image plane and transform the image
function to another 2D function of line parameters (θ, λ) is an effective way
for shape analysis. This is one of the significant applications of the well-known
Radon transform [1]. The main appealing characteristics of the Radon transform
is that it benefits extracting feature of the inner structure of the object and the
image function of the object can be fully reconstructed from its Radon transform.

Numerous efforts have been made on extracting invariant shape features from
Radon transform for object recognition [34][35][36][37][38]. However, these meth-
ods can only handle similar transform (translation, rotation and scaling) which is
a kind of shape-preserving transformation and is a subset of larger affine group.
Although affine transform is line-preserving, the complex behaviours of the line
integrals of the image function make the affine transform challenging to extract
affine invariants from the domain of the line integral transform.

Trace transform [39] is a generalized version of the Radon transform. It ex-
tends the line integral to any 1D functional along lines (termed trace functional).
So, various functionals used will derive different trace transform. However, trace
transform is still sensitive to affine transform because the functionals used along
the line can not yield invariants. To achieve affine invariants, Petrou and Kady-
rov [5] propose to further conduct diametrical functionals along the dimension
of λ and circus functionals along the dimension of θ. It is worth noting that
in this method, a set of functionals including a trace functional, a diametrical
functionals and a circus functionals can only generate one invariant feature. So,
to make the shape descriptors informative, many triples of functionals have to
be developed for yielding more affine invariants. However, it is very difficult to
find appropriate triple of functionals to constructing the desirable invariants and
the expensive computational cost also make it not suitable for real applications.

In this paper, we propose a novel integral transform that can effectively and
efficiently handle affine-distorted shapes. The proposed transform has the follow-
ing advantages over the trace transform: (1) It is much more discriminative than
the trace-transform based method [5]. The later uses diametrical functionals and
circus functionals to achieve affine invariants which cannot preserve the informa-
tion of diametrical dimension and circus dimension of the trace lines. While the
proposed transform perfectly preserves it; (2) It has the higher efficiency to yield
affine invariants than the trace transform. Conducting it one time can allow us
to achieve a group of shape invariants. While conducting the trace transform
once only generates a single feature and multiple trace transforms of different
functionals are needed to derive more to make the descriptors informative; (3)
The features obtained by the proposed transform has a physical interpretation,
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while the features obtained from the trace transform generally has no clearly
physical meaning.

2 Related Work

The existing affine shape analysis methods can be categorized into two groups.
One is contour based methods which represent the object boundary as ordered
points or parameterized curves. The other is region based methods which attempt
to generate affine invariants from the whole shape region.

A large body of methods have made attempts to model the silhouette of the
shape for characterizing the behavior of the shapes that are subject to affine
transform. The popular ideas of them model the silhouette as a parameterized
curve. Then some mathematical tools can be used for analysis the geometric
properties. The earlier work [22] applied Fourier transform to the affine-length
parameterized boundary description for eliminating its dependency on the affine
transformation. Various wavelet transforms with different wavelet basis functions
are also utilized to generate affine shape invariants [24][25].

B-spline is a kind of continuous curve representation which make it very
suitable for shape analysis. Wang and Teoh [29] modeled the shape contour using
B-spline to construct the Curvature Scale Space (CSS) image for affine invariant
shape matching. Huang and Cohen [19] proposed a fast algorithm for estimating
the B-spline control points and used a new class of weighted B-spline curve
moments to handle the affine transformation between curves. Various algebraic
curve models such as quartic implicit polynomials [16] and conic curve [21] were
proposed for extracting affine or perspective invariants. Zuliani et al. [10] used the
area, centroid, and covariance of the domain enclosed by the curve to normalize
the shape for removing the effect of affine transform.

There are also many methods treating the silhouette of the shape as a se-
quence of order points to construct shape descriptors or building corresponding
to matching shapes. Mai et al. [13] represented shape as a sequence of chained
edge points and proposed to project one shape onto the subspace spanned by the
other. The two shapes are then matched by minimizing a subspace projection
error. This method has a clear physical interpretation and works very fast for
estimating the affine transform. Jia et al. [14] developed a new projective in-
variant, the characteristic number (CN) whose values is calculated on a series of
five sample points along the shape contour. With the sample intervals varying,
a coarse to fine strategy is developed for capturing both the global geometry
described by projective invariants and the local contextual information. Xue et
al. [27] proposed a fuzzy algorithm for aligning shapes under affine transform.
This algorithm can efficiently estimate the point correspondence and the relevant
affine parameters. Recently, Bryner et al. [7][8] presented a contour-based shape
analysis framework based on Riemannian geometry that is invariant to affine
transform and re-parameterization of contours. Three shape space, landmark-
affine, curve-affine and landmark projective are studied in their work.
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Different from the contour based methods, the region based shape analysis
approaches characterize shape considering all the pixels over the shape domain.
Moment invariants are the popular region based shape descriptors. In the ear-
lier work, Flusser and Suk [12] introduced affine moment invariants for object
recognition. Heikkilä [23] used the second and higher order moments of the image
points for both recognition and alignment under affine transform. The advantage
of this method is that it does not require to know any point correspondences
in advance. Yang and Cohen [28] proposed a framework for deriving a class of
new global affine invariants based on a novel concept of cross-weighted moments
with fractional weights.

Besides the moment descriptors, many recent works developed various strate-
gies for region based shape recognition and matching. Domokos et al. [15] pro-
posed a novel parametric estimation of affine deformations for planar shapes.
Instead of finding the correspondences between the landmarks of the template
shape and target shape for computing the affine parametric, they treat the affine
parametric estimation as a solution of polynomial equations in which all the in-
formation available in the input image is used. More recently, Ruiz et al. [26]
proposed a fast and accurate affine canonicalization method for recognizing and
matching planar shapes. Different from many shape analysis methods which ex-
tract invariant features for recognition, this work attempts to produce multiple
canonical versions of the shape for provides a common reference frame for accu-
rate shape comparison.

The works that are most relevant to our research in this paper are various
transform based methods. Ruiz et al. [11] proposed a multiscale autoconvolution
(MSA) transform based on a probabilistic interpretation of the image function.
The MSA transform is a 2D function derived from the shape image function
which can present infinitely many affine invariant features by varying its two
variable. So, it can be directly applied for shape recognition. The trace transform
is a generalization of the Radon transform. Petrou and Kadyrov [5] proposed
to conduct several trace functionals on the original image function firstly to
obtain the same number of trace transforms of the image function, then for each
available trace transform, several diametrical functionals are used to transform
them to the same number of 1D functions of directional angle of line. The affine
invariants are finally achieved by further performing circus functionals to the
available 1D functions. The number of the available affine invariant features
is the number of the combinations of the used three types of functionals. It
can be directly used for shape recognition and its theory can be extended for
affine parametric estimation [29]. Recently, Zhang and Chu [30] developed a ray
projection transform and apply it for recovering a geometric transformation and
an affine lighting change between two objects.

3 Affine Theory of Line Integral

Given a 2D function f (x) and a straight line ` with equation λ−
−→
θ Tx=0, where

−→
θ = (cosθ, sinθ)T is a unit vector in the direction of the normal to the line `,
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and x=(x, y)T ∈ R2 denote the coordinates of a point of the line `. The integral
of the function f (x) over the line ` can be mathematically expressed as

<f(λ, θ) =

∫
f (x)δ(λ−

−→
θ Tx)dx, (1)

where δ(·) denotes a Dirac delta function. Through the line integral, the function
f (x) is transformed into another 2D function <f(λ, θ) of line parameters (λ, θ)
(in the later sections, we directly use the parameters (λ, θ) to denote a line).
This is the well-known Radon transform [1] that has been widely applied for
image analysis. In this section, we study the behavior of the line integral of the
function f (x) under affine transform.

An affine transform H = H(A, s) can be defined as x
′

= Ax + s, where A
is a 2 × 2 nonsingular real matrix and s ∈ R2.Using it, a function f (x) can
be transformed to another function g(x) = f (A−1x − A−1s).The relationship
between their Radon transformed versions,<f(λ, θ) and <g(λ, θ),can be deduced
as

<g(λ, θ) =

∫
g (x)δ(λ−

−→
θ Tx)dx

=

∫
f (A−1x−A−1s)δ(λ−

−→
θ Tx)dx.

(2)

Let y = A−1x−A−1s, Eq.(2) can be rewritten as

<g(λ, θ) = |det(A)|
∫

f (y)δ(λ−
−→
θ T s− (AT

−→
θ )Ty)dy. (3)

Note that the vector AT
−→
θ is a transformed version of the vector

−→
θ and may

not be a unit vector. Here, we use the scaling property [2] of the Dirac delta
function, that is δ(αx) = |α|−1δ(x) for α 6= 0, to normalize it and Eq. (3) can
be rewritten as

<g(λ, θ) =
|det(A)|∥∥∥AT−→θ ∥∥∥

∫
f (y)δ

 λ∥∥∥AT−→θ ∥∥∥ −
−→
θ T s∥∥∥AT−→θ ∥∥∥ − (AT

−→
θ )T∥∥∥AT−→θ ∥∥∥ y

 dy, (4)

where ‖·‖ denotes the length of the vector. Defining following functions of vari-
able θ:

ε(θ) = |det(A)|∥∥∥AT−→θ ∥∥∥ , ζ(θ) = 1∥∥∥AT−→θ ∥∥∥ , η(θ) = −
−→
θ T s∥∥∥AT−→θ ∥∥∥ ,

and

ρ(θ) =
〈
AT
−→
θ
〉
, (5)

where 〈·〉 denotes the direction angle of the vector, we then have
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<g(λ, θ) = ε(θ)

∫
f (y) δ

(
ζ(θ) · λ+ η(θ)−

−−→
ρ(θ)Ty

)
dy

= ε(θ) · <f(ζ(θ) · λ+ η(θ), ρ(θ)).

(6)

The above equation indicates the following effects of the affine transform H(A, s)
on the line integral of the function f (x): (1)its amplitude is scaled by ε(θ); (2)its
parameter λ is scaled by ζ(θ) and shifted by η(θ), and (3) its parameter θ is
transformed to be ρ(θ).

Let the inverse transform ofH(A, s) beH−1(A−1,−A−1s). The inverse trans-
formed versions ε−1(θ), ζ−1(θ), η−1(θ), and ρ−1(θ) of the functions ε(θ), ζ(θ),
η(θ), and ρ(θ) can be defined by replacing A and s appeared in the Eq. (5) with
A−1 and −A−1s, respectively. From Eq. (6), we can also conclude that when
a line (λ, θ) is subject to the affine transform H(A, s), it will become the line
(ζ−1(θ) ·λ+η−1(θ), ρ−1(θ)). In the next section, we will use the affine theories of
the line and line integral under affine transform to construct a novel line integral
transform for affine shape analysis.

4 The Proposed line Integral Transform

A shape is defined as region D that is a subset of pixels in the image plane R2

[3]. The shape image function f (x) can then be defined an indicator function
f(x)=1 if x ∈ D and f (x)=0 otherwise.

4.1 Binding Line Pair and Its Affine Property

Using the line integral <f (λ, θ) of the function f (x), we define a 1D function of
the variable θ as

σf (θ) = argmin
λ
{<f (λ, θ) > 0} . (7)

Then for an angle θ ∈ [0, 2π],we can uniquely derive a line pair (σf (θ), θ) and
(−σf (θ+ π), θ).It can be easily concluded that they have the following relation-
ships with the shape region D:

∃x ∈ D,σf (θ)−
−→
θ Tx = 0. (8)

and

∀x ∈ D,σf (θ) ≤
−→
θ Tx ≤ −σf (θ + π). (9)

The Eq. (8) and Eq. (9) indicate that the shape region D is located between the
line pair (σf (θ), θ) and (−σf (θ + π), θ) and has at least one intersection point
with them which also means that the shape region D is bound by the line pair.
We term the line (σf (θ), θ) and (−σf (θ+π), θ) as binding line pair. An example
of binding line pair is presented in Fig. 1.
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Fig. 1. An example of a binding line pair for a shape (marked in green color).

Now, we analysis the property of the binding line pair under the affine trans-
form H(A, s).According to Eq. (7), we can conclude that the function σf (θ) has
the following relationship with the function σg(θ):

σf (θ) =
σg(ρ

−1(θ))− η−1(θ)

ζ−1(θ)
. (10)

Under the affine transform H(A, s), the line (σf (θ), θ) is transformed to be the
line (ζ−1(θ)·σf (θ)+η−1(θ), ρ−1(θ)) which can be rewritten as (σg(ρ

−1(θ)), ρ−1(θ))
in terms of Eq. (10). Therefore, we can conclude that the affine transformed ver-
sion of a binding line of the shape is the binding line of the affine transformed
version of the shape. Note that the parameters (−σf (θ + π), θ) and the pa-
rameters (σf (θ + π), θ + π) represent the same line. Thus, another binding line
(−σf (θ + π), θ) also keeps its binding property under the affine transform. A
graphical illustration of this property is shown in Fig. 2.

Fig. 2. An example to indicate the binding line pairs (marked by the same color for
each) having the property of being affine transform preserved, i.e. the affine transformed
version of a binding line pair of the shape is the binding pair of the affine transformed
version of the shape.
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4.2 The Proposed Transform

Given an image function f (x) and a direction angle θ ∈ [0, 2π), a binding line
pair (σf (θ), θ) and (−σf (θ+π), θ) can be calculated. The distance between them
is −σf (θ + π)− σf (θ).The line that has equal distance to the binding line pair,
i.e., the center line, can be represented as ((σf (θ)− σf (θ + π))/2, θ).Taking the
center line and the binding line (σf (θ), θ) as the reference lines, each line that is
located between them can be then uniquely represented as the parameter form
of (Γf (µ, θ), θ). Where θ ∈ [0, 2π] is the direction angle of the line which is also
the direction angle of the reference lines and the parameter Γf (µ, θ) is a 2D
function of the variables (µ, θ) defined by

Γf (µ, θ) =
σf (θ)− σf (θ + π)

2
− µ · −σf (θ + π)− σf (θ)

2
, (11)

where µ ∈ [0, 1] is the ratio of the distance between the line with the reference
line (σf (θ), θ) to the distance between the two reference lines, (σf (θ), θ) and
((σf (θ)− σf (θ + π))/2, θ).

Let the parameter θ vary from 0 to 2π and the parameter µ vary from 0 to
1, all the lines that go through the shape region D can then be available to form
a line set denoted by

{(Γf (µ, θ), θ) : µ ∈ [0, 1], θ ∈ [0, 2π)} . (12)

We integral the shape image function f (x) over each line in the above set and
obtain a novel integral transform for the function f (x) as follows:

Ψf (µ, θ) = <f (Γf (µ, θ), θ). (13)

which is a 2D function of the parameters µ ∈ [0, 1] and θ ∈ [0, 2π].
The proposed transform Ψf (µ, θ) has the following property under the affine

transform H = H(A, s) of the shape image function f (x):

Ψg(µ, θ) = ε(θ) · Ψf (µ, ρ(θ)). (14)

Comparing the above equation with Eq. (6), we can find the difference be-
tween the proposed transform with the Radon transform under affine transform
as follows: the first parameter λ for the Radon transform embeds the parame-
ters of affine transform, while the first parameter µ for the proposed transform
is independent of the affine transform. However, Eq. (14) also indicates that the
second parameter θ and the amplitude of the proposed transform still encode the
affine transform parameters. Since the parameter µ of the proposed transform is
independent of the affine transform, we fix it and rewrite the function Ψf (µ, θ)
as the function Ψµf (θ) which has only one variable θ. Delimited by the function

Ψµf (θ), a region Wµ
f can be derived and mathematically defined as

Wµ
f =

{
w ∈ R2 : ∃ θ ∈ [0, 2π] ∧ ∃ r ∈ [0, 1]such that w = (r · Ψµf (θ))

−→
θ
}
. (15)
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Similarly, a region Wµ
g that is delimited by the function Ψµg (θ) can be defined

by replacing f with g in Eq. (15). We are interested in the relationship between
the available regions Wµ

f and Wµ
g . For any w

′ ∈Wµ
g , there exists w ∈Wµ

f such
that

w
′

= |det(A)|A−Tw. (16)

and on the other hand, for any w ∈Wµ
f , there exists w

′ ∈Wµ
g which also makes

Eq. (16) hold, where A−T denotes the transpose matrix of A−1. Therefore, we
can deduce that the region Wµ

f and the region Wµ
g are correlated by the affine

transform H′
= H′

(|det(A)|A−T , 0). This is a desirable property which allows us
to use their respective second-order geometric moment to derive a transformation
for reducing the relation between them from an affinity into a similarity. Similar
ideas can be found in [4][5].

For the region Wµ
f , we construct its second-order geometric moment matrix

as

Mµ
f =

∫
Wµ
f

wwT dw. (17)

Similarly, the second-order geometric moment matrix Mµ
g for the region Wµ

g

can be available. For the integration expression of calculating the moment ma-
trix Mµ

g ,by making following changes: the variable w
′

= |det(A)|A−Tw, the

derivative dw
′

= |det(A)|dw, and the integration region Wµ
g → Mµ

f , we can
easily deduce that

Mµ
g = |det(A)|3A−TMµ

f A
−1. (18)

which indicates the relationship between the moment matrix Mµ
f and the mo-

ment matrix Mµ
g .Define M1/2 as any matrix that satisfies (M1/2)(M1/2)T = M .

Since det(M) > 0,the M1/2 can be always achieved. It can be calculated by
using an eigenvalue method [5][6]. Let ∆f = (Mµ

f )1/2 and ∆g = (Mµ
g )1/2, we

accordingly achieve Mµ
f = ∆f∆

T
f and Mµ

g = ∆g∆
T
g . Using the matrices ∆f and

∆g, we can produce a transformation matrix as

E = ∆−1g (|det(A)|A−T )∆f . (19)

Then we have

EET = ∆−1g (|det(A)|A−T )∆f∆
T
f (|det(A)|A−1)∆−Tg . (20)

Using Eq. 18, the above equation can be rewritten as

EET = |det(A)|−1∆−1g Mµ
g ∆
−T
g

= |det(A)|−1∆−1g ∆g∆
T
g∆
−T
g

= |det(A)|−1I.
(21)

where I is an identity matrix. The above equation indicates that E is a similarity
matrix which encodes the relation of the matrices A,∆f and ∆g. According to
Eq. (21), the transform matrix E can be denoted by E = αRθ0 for det(E) > 0
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and E = αR̃θ0 for det(E) < 0, where α = |det(A)|−1/2 play the role of scale
factor, Rθ0 and R̃θ0 are

Rθ0 =

[
cosθ0 −sinθ0
sinθ0 cosθ0

]
(22)

and

R̃θ0 =

[
cosθ0 sinθ0
sinθ0 −cosθ0

]
(23)

which can transform a vector
−→
θ to be

−−−→
θ + θ0 and

−−−→
θ0 − θ respectively. It is worth

noting that for Eq. (19), since det(∆f ) > 0 and det(∆g) > 0 [5][6], det(E) takes
the same sign as det(A). While det(A) < 0 indicates that besides the scaling,
rotation and shearing, the affine transform with the affine matrix A also includes
a mirror transform.

We have now obtained the matrices ∆f and ∆g, they are then be used to
normalize the function Ψµf (θ) and its affine-transform version Ψµg (θ) respectively.

We first normalize the function Ψµf (θ) as

Ψ̇µf (θ) =
1∥∥∥∆f
−→
θ
∥∥∥Ψµf

(〈
∆f
−→
θ
〉)

. (24)

Similarly, the normalized version of Ψµg (θ) is defined as Ψ̇µg (θ). The relationship
between them can be achieved as

Ψ̇µg (θ) = α · Ψ̇µf (θ − θ0) for det(A) > 0, (25)

and
Ψ̇µg (θ) = α · Ψ̇µf (θ0 − θ) for det(A) < 0. (26)

which indicate that the normalized versions Ψ̇µf (θ) and Ψ̇µg (θ) are only correlated
by a similar transform. The Eq. (26) also indicates that when the affine transform
include a mirror transform, the original function Ψ̇µf (θ) is also subject to an
additional mirror transform.

Also, we can see that for any µ ∈ [0, 1], its corresponding 1D function Ψ̇µf (θ)
for the shape f only suffers from scaling, translation and mirror distortions when
the shape f is subject to affine transform. In the former section, we fix the vari-
able µ for the convenience of presenting the details of the proposed transform.
Now, we set it free and rewrite the 1D function Ψ̇µf (θ) to a 2D function Ψ̇f (µ, θ).

Obviously, the affine transform makes the 2D function Ψ̇f (µ, θ) occur only shift-
ing and mirror effects on the dimension of θ and a scaling of the amplitude of
the function.

4.3 Affine Invariants

Here we apply the proposed transform Ψ̇f (µ, θ) to affine invariant shape recog-

nition. As discussed in the former section, the transform Ψ̇f (µ, θ) is only subject
to a shifting and a mirror transform on the dimension of θ and a scaling on
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the amplitude of the function. So, it is very easy to remove these effects from
the proposed transform. To do so, we apply the 1D Fourier transform to the
dimension of θ against the proposed transform Ψ̇f (µ, θ). Assume that Ψ̇f (µi, θj),

i = 1, ..., k and j = 1, ..., N is the digital form of the proposed transform Ψ̇f (µ, θ),
where K and N are the number of the points uniformly sampled from the range
[0, 1] and the range [0, 2π] respectively. Then we obtain a matrix of size K ×N .
For each row of the matrix, we perform discrete 1D Fourier transform against
it and keep the magnitudes of Fourier coefficients. According to the theory of
Fourier transform, the shifting and mirror effects are removed from the trans-
form Ψ̇f (µi, θj). As for the scaling effect, we normalize each row of the matrix
using its respective 0th-order Fourier coefficient. Then we obtain a completely
affine invariant version of the transform Ψ̇f (µi, θj) which can be directly utilized
for shape recognition. The dissimilarity between two shapes can be measured by
calculating the L1 norm between their transforms Ψ̇(µi, θj).

5 Experimental Results and Discussions

To examine the feasibility and effectiveness of the proposed method on shape re-
trieval, we perform the proposed method on two groups of shape image datasets:
(1) Contour shape dataset in which each shape is enclosed by a single silhouette
and no content is contained inside, and (2) Region shape dataset in which each
sample has several separated regions or its whole region is though enclosed by
a single silhouette, it also contain some contents inside which usually have com-
plex structure. For all the experiments, we uniformly sample 18 values from the
range [0,1] and 180 values from the range [0, 2π] for conducting the proposed
transform.

To quantify the retrieval performance of the algorithms, the standard metric
for information retrieval, knee-point score [7][8], is used in our experiments. For
any query shape Qi, calculate the distances of all the dataset samples to it and
rank them to a sequence in ascending order. Let H be the number of all the
dataset samples and Vi be the number of the relevant ones to the query shape
Qi in the dataset. For each integer number 1 ≤ h ≤ H, count the number vi,h
of the relevant samples of the top k best matches in the sequence. Then for the
given query Qi, its precision and recall at the top h best matches are defined as

pi,h =
vi,h
h

and ri,h =
vi,h
Vi

, (27)

respectively. We calculate their average values over all the queries Qi. In our
experiments, each sample from the dataset is taken in turn as a query. So, there
are a total of H queries. When Vi = h, precision and recall will take the same
value which is termed knee-point score as measurement [7][8].

Multiview Curve Database (MCD): To evaluate the performance of the
algorithms on recognizing the curved shapes in presence of affine distortion, Zu-
liani et al. [10] chose 40 samples from the MPEG-7 CE-1 contour shape dataset
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[9] with each selected from one shape class. Each of them is then printed on a
white paper and 7 pictures are taken to it from different view angles using a dig-
ital camera. Another 7 images are achieved by randomly rotating and reflecting
the available seven samples. So, there are a total of 40×14 = 560 samples in the
MCD which consists of MPEG-7 shapes that are affected by natural perspective
skew due to the manner of extracting from real images. Some typical samples
from the MCD are shown in Fig. 3. This dataset is publicly available and has
been used as test case in many works [7][10][14].

Fig. 3. Part of typical samples in the dataset MCD. Left: the 14 affine-distorted insect
shapes, right: the 14 affine-distorted camel shapes.

To make a fair comparison, we choose those approaches which are partic-
ularly designed for affine shape recognition. Three region based methods, in-
cluding Trace transform based method [5], Multiscale autoconvolution (MSA)
[11] and Affine moment invariants [12] which are state-of-the-arts descriptors
for affine shape recognition, are used as benchmarks in our experiments. Since
the template sample of the shapes in MCD database are from the MPEG-7 CE-
1 dataset which is a contour based test case, four recently published contour
based methods including Affine-invariant elastic metric [7], Hierarchical projec-
tive invariant contexts [14], subspace approach [13] and Affine-invariant curve
matching [10] are selected as benchmarks for a wide comparison. All of them take
the MCD dataset as the test case in their experiments. The Knee-point scores
of the proposed method together with the benchmark methods are summarized
in Table 1. It can be seen that the proposed method achieves 97.07% of retrieval
accuracy which is about 17% higher than the Trace transform based method [5]
and much more than the other two region based methods [12] and [11]. While
compare with the other four contour based methods which generally perform
better on the contour based test case than those region based methods, the pro-
posed method still achieves more than about 7% of retrieval accuracy than them.

MPEG-7 CE-2 Perspective Transform Test: MPEG-7 CE-2 database
is developed for evaluating the performance of those region based shape analysis
methods. Here, we perform the MPEG-7 CE-2 perspective test to validate the
effectiveness of the proposed on the retrieval of region shapes in presence of
perspective transform. In this test protocol, all the 3101 region-based shape
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Table 1. The retrieval accuracy on the MCD dataset

Algorithm Knee-point score (%)

Affine-invariant elastic metric [7] 90.00∗

Hierarchical projective invariant contexts [14] 88.14∗

Subspace Approach [13] 90.15
Affine-invariant curve matching [10] 80.00∗

Affine moment invariants [12] 66.01
Mutiscale Autoconvolution (MSA ) [11] 71.84
Affine invariant features from the Trace transform [5] 80.08
Proposed method 97.07

∗ The results from the original papers.

Fig. 4. Example samples from the MPEG CE-2 database which consists of 3101 region
shape images. (a) Some typical samples that are used as gallery images. (b) Some
typical images that are used as queries, where for each row, the top left one is template
shape and the remaining ones are part of its various perspective transformed versions.

images in the database are used as gallery images (Some typical samples are
shown in Fig. 4(a)). Among them, 330 images of 30 classes with 11 images in
each class are labeled as queries for the retrieval experiment. In each query class,
one image is the original shape, and the other ten images are its perspective
transformed versions (Example images are shown in Fig. 4(b)). As can be seen
that different from the CE-1 shapes, the CE-2 samples usually have complex
interior structures and some samples have even separate shape regions.

In our experiments, we follow the protocol of the CE-2 perspective trans-
form test. Since the contour based shape recognition methods used in the for-
mer experiments can not handle region shapes, we only compare the proposed
method with the other three region based methods. The knee-point scores for
all the compared methods are summarized in Table 2. It can be seen that the
proposed method achieved an accuracy of 97.49%, much higher than those of
all the benchmarks (2.48% higher than the second best approach), on retriev-
ing shapes with various perspective transformations. As can be seen that on the
CE-2 perspective test, the proposed method keeps the best retrieval performance
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over the benchmark methods. The encouraging experimental results demonstrate
the effectiveness of the proposed transform in describing shapes in presence of
perspective transform and its superior discriminability over the existing region
based methods on handling the shapes with complex interior structures.

Table 2. The retrieval accuracy for the MPEG-7 CE-2 perspective test

Algorithm Knee-point score (%)

Affine moment invariants [12] 42.53
Mutiscale Autoconvolution (MSA ) [11] 62.09
Affine invariant features from the Trace transform [5] 95.01
Proposed method 97.49

6 Conclusions

A novel line integral transform has been presented for affine-invariant shape
recognition. It is a 2D function which is not only invariant to affine transform,
but also preserves the spatial relationship between the line integrals which makes
it more discriminative than those shape descriptors from the trace transform.
In additional, the proposed method is more efficient than the trace transform.
In the proposed method, a 2D matrix of affine invariants can be generated by
conducting the proposed transform once. While conducting the trace transform
once can only generate a single feature and multiple times of transforms should
be performed make shape descriptors discriminative. The proposed transform
has been tested on the standard affinely distorted contour shape database and
region shape database and compared with the state-of-the-art shape descriptors
that are designed for affine shape analysis. The encouraging experimental results
showed that the proposed method is effective for affine shape recognition.
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