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Supplementary material

The following pages contain: A more details about the three datasets used in
this work, B more details about the architecture of the predicate classifier and
hyperparameter optimization, C additional relationship detection experiments
and ablation studies, and D additional qualitative results from the three datasets.

A Datasets

Table 5: Comparison of the datasets used in this work

Number of images Vocabulary size Unique triplets
Train Test Subject Predicate Object Train Test

HICO-DET [6] 38118 9658 1 117 80 600 600
VRD [24] 4006 1001 100 70 100 6672 2741

UnRel [30] - 1071 100 70 100 - 76

A.1 HICO-DET

The Humans Interacting with Common Objects dataset [7], in its detection ver-
sion [6], is available at http://www-personal.umich.edu/~ywchao/hico. The
subject of the relationships is always a person. The object vocabulary is the same
as MS-COCO [23]. Its predicates indicate human-object interactions, e.g. carry.
Some images from MS-COCO are also contained in HICO-DET, but the authors
made sure that the test set of HICO-DET has no overlap with MS-COCO. We
warn future users to ignore the EXIF rotation tags present on some of the im-
ages, in fact all bounding boxes are annotated w.r.t. the non-rotated images. See
table 5 for a comparison of dataset and vocabulary size.
We use the pre-trained object detector made available through the detectron2

implementation [43] of Faster R-CNN [36]. Since the object detector is an impor-
tant part of visual relationship detection pipelines, we report object detection
metrics obtained for this dataset in table 6.

person eat sandwich
person sit on bench

person drive motorcycle
person hold motorcycle

Fig. 6: Ground-truth triplet annotations from the HICO-DET dataset



20 F. Baldassarre et al.

A.2 Visual Relationship Detection dataset

The Visual Relationship Detection Dataset (VRD) [24] is available at https:

//cs.stanford.edu/people/ranjaykrishna/vrd. Its images and annotations
correspond to those in the Scene Graph dataset [18], but the vocabularies of
objects and predicates have been carefully curated, e.g. figure 7 We warn future
users to ignore the EXIF rotation tags present on some of the images, in fact all
bounding boxes are annotated w.r.t. the non-rotated images. Also, we note that
for some images the annotation file contains 0 objects and 0 relationships. See
table 5 for a comparison of dataset and vocabulary size.

Since no pre-trained model is publicly available for this dataset, we fine-
tune an object detector based on detectron2 [43]. Object detection metrics are
reported in table 6 for future reference.

person has cellphone
tree in the front of building

person read book
backpack next to person

Fig. 7: Ground-truth triplet annotations from the VRD dataset

A.3 Unusual Relationships dataset

The Unusual Relationships dataset (UnRel) [30] is available at https://www.

di.ens.fr/willow/research/unrel. It is meant as an evaluation-only dataset
for rare and unusual relationships, e.g. figure 8. See table 5 for a comparison of
dataset and vocabulary size.

Since it shares the same object and predicate vocabulary of VRD, we use the
same object detector, of which we report object detection metrics in table 6

person hold plane dog drive car

Fig. 8: Ground-truth triplet annotations the UnRel dataset
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Table 6: Object detection metrics for the datasets used in this work

Mean Average Precision
IoU@[0.5:0.95] IoU@0.5 IoU@0.75 small medium large

HICO-DET [6] 20.2 34.1 20.8 2.3 11.5 29.7
VRD [24] 21.2 35.3 22.6 4.9 14.3 25.0
UnRel [30] 21.0 35.3 22.6 4.9 14.3 25.0

Mean Average Recall
top-1 top-10 top-100 small medium large

HICO-DET [6] 30.3 39.3 40.2 11.6 29.2 48.6
VRD [24] 34.0 45.0 45.1 14.9 33.2 48.3
UnRel [30] 34.0 45.0 45.1 14.9 33.2 48.3

B Architecture and hyperparameters

B.1 Introduction to GNNs

In our work, an image is first represented as a fully-connected graph of ob-
jects and then processed through a graph neural network to predict predicates.
Specifically, we use a message-passing implementation of graph convolution. At
the input, each node i is associated to a feature vector vi. Similarly, each edge
i → j is associated to a feature vector ei,j . A global bias term u can be used
to represent information that is not localized to any specific node/edge of the
graph. With this graph representation, one layer of message passing performs
the following updates.

1. For every edge i → j, the edge vector is updated using a function fe that
takes as input the adjacent nodes vi and vj , the edge itself ei,j and the
global attribute u:

e′i,j = fe (vi,vj , ei,j ,u)

2. For every node i, features from incident edges { e′j,i } are aggregated using a
pooling function agge→v:

ē′i = agge→v { e′j,i }

3. For every node i, the node feature vector is updated using a function fv that
takes as input the aggregated incident edges ē′i, the node itself vi and the
global attribute u:

v′i = fv (ē′i,vi,u)

4. All edges are aggregated using a pooling function agge→u:

ē′ = agge→u { e′i,j }
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5. All nodes are aggregated using a pooling function aggv→u:

v̄′ = aggv→u {v′i }

6. The global feature vector is updated using a function fu of the aggregated
edges ē′, of the aggregated nodes v̄′ and of the global attribute u:

u′ = fu (ē′, v̄′,u)

These convolutional layers can be stacked to increase the receptive fields
of a node. However, in this work, we used a single layer to focus on pairwise
relationships. Furthermore, we did not use a global attribute u, which could
encode for example context and background.

B.2 Predicate classifier

For the predicate classifier we optimize the hyperparameters reported in ta-
ble 7. Rather than performing a grid-search over the whole space, we perform
a ”guided” search: we iteratively perform parallel runs and only keep the best-
performing combinations of parameters. This process of trial and elimination
allows us to quickly prune unpromising regions of the search space.

Table 7: Hyperparameter space of the predicate classifier

Parameter Choices Final value

Optimizer
Learning rate 10−2, 10−3, 10−4 10−3

Weight decay 10−3, 10−5, 0 10−5

Max epochs 35 18
Model

Linear layers 1, 2 1
Linear features 256, 512, 1024 1024
Convolutional layers 1, 2 2
Convolutional kernels 256, 512 256
Pooling function add, max, mean max
Bias in fp yes, no yes

The best set of hyperparameters is chosen to maximize recall@5 over a held-
out validation set (15% of training data). The train/val split is made at random
for every training run. Random seeds are fixed at the beginning of each run
and recorded for reproducibility. Note that recall@5 refers to the image-level
predicate predictions, and relationship detection metrics are not involved in the
optimization of the predicate classifier.

On the test set of HICO-DET, relative to predicate classification only, these
parameters achieve a mAP of 0.44, recall@5 of 0.90 and recall@10 of 0.96.
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B.3 ResNeXt baseline and Grad-CAM

We finetune a ResNeXt-50 [44] for predicate classification on the Visual Re-
lationship Detection dataset. All parameters are initialized from an ImageNet
[38] pretraining, except the final classification layer that is adapted to output
70-dimensional vector of predicate predictions and is initialized from a Normal
distribution. Given an input image I ∈ [0, 1]3×H×W , the convolutional architec-
ture can be summarized as:

h = ResNeXt(I) ∈ R2048×H̃×W̃ backbone (17)

zc =
1

H̃W̃

H̃∑
i=1

W̃∑
j=1

hc,i,j ∀c = 1, . . . , 2048 global average pooling (18)

y = softmax(Wz + b) ∈ [0, 1]K classification (19)

where H̃ and W̃ represent the height and width of the feature volume extracted
by the backbone before global average pooling.

We use Adam optimizer [19] to minimize the same loss of the GNN-based
predicate classifier described in the main text. The learning rate is set to 10−3

for the classification layer and to 10−4 for the rest of the network.

We optimize only the number of epochs and whether the final layer should
include a bias term or not. Based on performances on the validation set, the
best hyperparameters are training for 6 epochs and including the bias. The final
CNN-based model achieves similar recall@5 as the GNN-based classifier on the
test set for predicate classification.

Grad-CAM heatmaps as in figure 3 are produced by computing:

αk
c =

1

H̃W̃

H̃∑
i=1

W̃∑
j=1

∂yk
∂hc,i,j

∀c = 1, . . . , 2048 (20)

si,j = ReLU

(
2048∑
c=1

αk
chc,i,j

)
∀i = 1, . . . , H̃; j = 1, . . . , W̃ . (21)

Then the 2D vector s is upsampled to the H ×W size of the input image, and
its values are normalized to the range [0, 1].
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B.4 Training and inference

The graph neural network described in section 3.2 is trained to classify the
predicates present in an image from image-level annotations.

Algorithm 1: Training Algorithm

Input: Pretrained object detector (detectron2),
Dataset of images with image-level predicate annotations.

repeat
Extract objects from image I
Build a fully-connected image graph G using features from eq. 14, 15
Apply the predicate classifier to G
Compute the predicate classification loss L (equation 10)
Minimize L using Adam optimizer

until convergence
Output: Trained predicate classifier

Once trained, the predicate classifier can be used for relationship detection.
Specifically, each pred prediction is attributed to pairs of objects in the input
by means of explanation, thus retrieving the full 〈subj,pred, obj〉 triplet.

Algorithm 2: Explanation-based Relationship Detection Algorithm

Input: Pretrained object detector (detectron2),
Trained predicate classifier,
Image of interest I.

if Predicate Detection then
Extract ground-truth objects from image I

else if Phrase Detection ∨ Relationship Detection then
Detect objects in I using the object detector

end
Build a fully-connected scene graph G using features from eq. 14, 15
Apply the predicate classifier to G
Visual relations R ← ∅
for pred ∈ {N top-scoring predicates } do

/* Predicate predictions are explained in terms of

relevant pairs of objects in the image graph G */

Compute node and edge relevances using eq. 11, 12
Score each 〈subj, obj〉 pair using equation 13
Multiply the score by the object detection scores of subj and obj
Multiply the score by the classification score of pred
Multiply the score by the relationship prior (equation 5)
Store high-scoring triplets 〈subj,pred, obj〉 in R

end
Output: K top-scoring visual relations from R
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C Additional experiments

C.1 Pooling function

As explained in appendix B, the pooling function for equation 9 is selected
according to predicate classification performances (figure 9) on a 15% split of
the training set. Figure 9 shows recall@5 for sum, max, and mean pooling over
10 runs on the VRD dataset. Due to higher recall on the validation set, max
pooling is selected and used for all results reported in the main text. We notice,
however, that mean pooling performs closely to max.

Fig. 9: Recall@5 for predicate classification on VRD using different pooling func-
tions. Validation set (15% of training) on the left, and test set on the right

To further test the role of pooling, we evaluated relationship detection met-
rics for several predicate classifiers trained using sum, max, and mean pooling.
Figure 10 shows that mean pooling outperforms the other two, despite perform-
ing slightly worse for predicate classification.

Fig. 10: Recall@50 and @100 for relationship detection on VRD using different
pooling functions. mean pooling outperforms the other two, despite performing
slightly worse for predicate classification
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C.2 Number of explained predicates

Given an image, the GNN classifier outputs a distribution of binary probabilities
over the predicates contained in the image. To recover 〈subj,pred, obj〉 triplets,
we consider the top N predicates and explain them one at the time w.r.t. the
input image graph. Therefore, the choice of N influences the diversity of pred-
icates contained in the detected relationships, e.g. if we only explained the top
scoring predicate we could still recover many triplets but they would all share
the same predicate.

For the main results, we set N = 10, assuming that in natural images the
chance of having more than ten different predicates depicted in the same picture
would be rather low. To further prove this point, in figure 11 we plot recall@50
and recall@100 for various choices of N on the VRD dataset. Notably, con-
sidering very few predicates in the explanation phase, gives poor results on all
three relationship detection scenarios. However, increasing N to consider more
predicate categories yields diminishing returns after N = 20.

Fig. 11: Recall at 50 (R@50) and at 100 (R@100) on the VRD dataset as the
number N of predicates considered for explanation increases from 1 to 50. Di-
minishing returns are observed, with an elbow at approximately N = 10

C.3 Relationship prior

As explained in section 3.4, a weakly-supervised method trained only on predi-
cate labels is not able to learn the directionality of the relations, e.g. it could not
distinguish car on street from street on car. Therefore, we introduced a simple
relationship prior based on the frequency of relationships in a small subset of
training data. Specifically, we compute:

freq(ci, cj |k) =
| { 〈csubj, bsubj, k, cobj, bsubj〉 | csubj = ci, cobj = cj , kpred = k } |

| { 〈csubj, bsubj, k, cobj, bsubj〉 | kpred = k } |

In the main experiments, we use a 15% split of the training set to compute
this prior, assuming that it would be enough to disambiguate most cases. In
figure 12, we show how recall@50 and recall@100 on the VRD dataset change
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according to the percentage of training triplets used to compute the relationship
prior. For each percentage value, we plot the mean recall over 5 random subsets
and shade the area corresponding to two standard deviations. We observe that
all percentages obtain approximately the same recall, except for 0% that corre-
sponds to a uniform prior. Notably, the randomness introduced when choosing
a subset of the given percentage of training data has little effect on the result.

Fig. 12: Recall at 50 (R@50) and at 100 (R@100) on the VRD dataset as the per-
centage of training data used to compute the relationship prior increases. At each
percentage, we run 5 evaluations and plot mean and two standard deviations.
Each evaluation uses a different random subset to compute the prior. All per-
centages obtain approximately the same recall, except for 0% that corresponds
to a uniform prior
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D Additional results

In this section we report additional qualitative results to evaluate the relation-
ship detection pipeline. We include examples of: correct relationship detections,
correct detections missing from the ground truth, incorrect detections due to
object misclassification, and incorrect detection due to subject-object inversion,
wrong choice of pair, or wrong predicate. All images in figures 13, 14 and 15
are chosen at random from the test sets of each dataset. Then, representative
examples are chosen from the top 10 detections of each image (top 25 for UnRel).

person hold suitcase person sip bottle (not possible with
ground-truth objects)

dining table eat at pers.
(subj-obj inversion)

p. type on keyboard p. straddle motorcycle (not possible with
ground-truth objects)

person check mouse
(wrong predicate)

person row boat p. hug cat p. wield umbrella
(correct object: flag)

p. pet bottle
(wrong predicate)

p. eat at dining table person wear tie p. no interaction horse
(correct object: cow)

mouse control person
(subj-obj inversion)

Fig. 13: Additional detections on HICO-DET. Top two rows use ground-truth
objects, bottom two rows use Faster R-CNN objects. Subjects are framed in red, objects
in blue. Left to right: correct relationship detection, correct but missing ground-truth,
incorrect due to object misdetection, incorrect detection. Images are chosen at random
from the test set, all depicted triplets are selected from the top 10 detections
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person wear watch person wear pants (not possible with
ground-truth objects)

person hold glasses
(wrong predicate)

person wear watch shirt on person bottle on table
(wrong object)

person hold bottle
(no interaction)

person wear shirt person near person (not possible with
ground-truth objects)

person hold umbrella
(wrong subj-obj pair)

person under umbrella person on street (none for this image) person wear shirt
(wrong subj-obj pair)

Fig. 14: Additional detections on VRD. Odd rows use ground-truth objects, even
rows use Faster R-CNN objects. Subjects are framed in red, objects in blue. Left to
right: correct relationship detection, correct but missing ground-truth, incorrect due
to object misdetection, incorrect detection. Images are chosen at random from the test
set, all depicted triplets are selected from the top 10 detections of an image
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dog ride motorcycle cat next to cat (not possible with
ground-truth objects)

dog under motorcycle
(wrong predicate)

cat ride skateboard tree behind car (not possible with
ground-truth objects)

person wear jacket
(wrong predicate)

person in refrigerator street under trees person wear shirt (correct
subj: dog)

dog next to jacket
(wrong predicate)

car above street skateboard above street truck below sky tree next to person
(wrong predicate)

Fig. 15: Additional detections on UnRel. Top two rows use ground-truth objects,
bottom two rows use Faster R-CNN objects. Subjects are framed in red, objects in
blue. Left to right: correct relationship detection, correct but missing ground-truth,
incorrect due to object misdetection, incorrect detection. Images are chosen at random
from the test set, all depicted triplets are selected from the top 25 detections


