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Abstract. Where people look when watching videos is believed to be
heavily influenced by temporal patterns. In this work, we test this as-
sumption by quantifying to which extent gaze on recent video saliency
benchmarks can be predicted by a static baseline model. On the recent
LEDOV dataset, we find that at least 75% of the explainable informa-
tion as defined by a gold standard model can be explained using static
features. Our baseline model “DeepGaze MR” even outperforms state-of-
the-art video saliency models, despite deliberately ignoring all temporal
patterns. Visual inspection of our static baseline’s failure cases shows
that clear temporal effects on human gaze placement exist, but are both
rare in the dataset and not captured by any of the recent video saliency
models. To focus the development of video saliency models on better cap-
turing temporal effects we construct a meta-dataset consisting of those
examples requiring temporal information.

Keywords: gaze prediction - saliency - video - temporal modelling -
model evaluation

1 Introduction

The human visual system processes information from the environment selec-
tively. Several attention mechanisms limit the amount of information to be pro-
cessed and thus enable efficient perception of the world (e.g., [9]). The most ob-
vious form of attention is the shifting of gaze, which orients the high-resolution
fovea towards areas of interest.

Modelling those gaze shifts is an important topic in computer vision. Predic-
tive models of human gaze have the potential to advance our understanding of
human visual attention, for example by aiding the development of hypotheses
that can be tested with human subjects [7]. Besides their scientific usefulness,
such models have various technical applications. They can be used for graphic
design [6], automated cropping, video compression [11] or other computer vision
tasks (e.g., [48]).

Great progress has been made recently in predicting where people look in
still images. With the use of pre-trained models the performance improved from
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1/3 to more than 80% of explainable information explained (e.g., [27,25]). Since
the human visual system developed in a dynamic environment, there is growing
interest to also model human gaze on videos. Previous studies revealed that
motion patterns are an important factor attracting visual attention [39, 16, 8]. All
recent video gaze models therefore are based on temporal modeling components
such as recurrent units or spatiotemporal convolutions to capture those dynamic
patterns.

To which degree those temporal patterns influence human gaze on natural
videos and to which degree the recent performance improvements in video gaze
prediction can be attributed to capturing these effects, however, has not been
evaluated thoroughly so far. With our work we aim at filling this gap, by pro-
viding a method to measure the influence of temporal patterns on human gaze.
We construct a static baseline model that by design cannot capture temporal
effects and compare its performance to a gold standard model estimating the
total information in the ground truth gaze data. The performance difference to
the gold standard then represents an upper bound to the influence of temporal
effects on the respective dataset. Furthermore, by looking at the largest failure
cases of our static baseline, we can identify situations in the dataset where hu-
man gaze is driven by temporal patterns. Evaluating gaze prediction models on
those situations then lets us draw conclusions about the capabilities of models
to predict temporal effects.

Applying this method to the recent LEDOV dataset [20] and state-of-the-art
video gaze models we arrive at the following conclusions: (1) Human gaze place-
ment on the videos contained in the LEDOV dataset is largely driven by spatial
appearance. (2) Clearly identifiable temporal effects on human visual attention
exist, but occur rarely in the videos considered. (3) We need to construct suit-
able video data sets to enable learning based models to capture temporal effects.
Indeed, we show that all other recent video gaze models with the capacity for
temporal modelling fail in the same situations as our restricted model.

We explicitly note that the main contribution of our work are above findings
and the proposed evaluation method that we need to come to those findings,
but not the static baseline model that is required for our analysis. Interestingly
though, our baseline model outperforms state-of-the-art video gaze prediction
models on the LEDOV and DIEM [34] datasets—despite deliberately ignoring
all temporal information.

To enable other researches to apply our proposed evaluation method more
easily, we collect a meta-benchmark from existing datasets that contains the
situations requiring temporal information revealed by our analysis. The perfor-
mance of new models on this meta-benchmark indicates how much an improved
predictive performance can be attributed to better handling of temporal effects.
We will make this meta-benchmark as well as our pre-trained baseline model
publicly available.
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2 Related Work

Substantial progress has been made on the task of gaze prediction for free view-
ing of images. While the influential model by Itti and Koch [18], inspired by
Treisman and Gelade’s feature integration theory [45], was devised to explain
effects observed in visual search originally, it also achieved first successes in pre-
dicting where people look. Since then, more than 50 models have been proposed
predicting probable gaze locations based on image content (for a recent com-
parison see, e.g., [12]). As in other areas of computer vision, the advent of deep
learning gave rise to models greatly improving state-of-the-art performance [27,
35,15, 24,46]. DeepGaze 11 [27], the current state of the art model on the MIT
Saliency Benchmark [5], captures 81% of the explainable information gain on
that dataset (explainable information gain is an information-theoretic analogue
of explainable variance, see [25] for details).

In contrast, gaze prediction for videos only recently attracted more attention.
Several datasets and models have been developed, but neither a widely accepted
benchmark nor an estimate of the amount of explainable information in those
datasets exist. This makes an evaluation of the state of the field difficult.

Recently, two video gaze datasets have been introduced that are large enough
to train deep neural network based models: LEDOV [20] and DHF1K [47].
More recently, Wang et al. also provided gaze recordings for video segmentation
datasets [48]. The gaze recordings provided by Mathe and Sminichescu [32] for
the Hollywood and UCF-Sports dataset are large enough for deep learning based
approaches, but most of the subjects have not been recorded in the free-viewing
setting. Several small datasets exists that provide high-quality recordings (e.g.,
DIEM [34], for an overview see [20]).

Starting with an extension of the Itti and Koch model to videos [17,16],
several models predicting gaze specifically for videos have been proposed [51,
14,41, 38, 40,52, 10, 53, 13, 30]. The performance of video gaze models has been
greatly improved with the advent of deep learning. Bazzani et al. [3] trained
a recurrent neural network based on features extracted from a spatiotemporal
DNN predicting gaze using a mixture of Gaussians. The models by Wang et
al. [47) and Wu et al. [50] pair convolutional LSTM units with an attention
mechanism. Bak et al. [2] proposed a two-stream network using optical flow in
parallel to RGB features. This two-stream approach has also been combined
with convolutional LSTM units by [19, 20] and with convolutional GRU and an
attention mechanism by [28]. Linardos et al. [31] proposed a model based on an
exponential moving average of frame-wise features. Very recently, [33] and [43]
proposed spatio-temporal encoder-decoder networks for video gaze prediction.

3 Methods

The main objective of our work is to evaluate the influence of temporal patterns
on human gaze. To that end, we propose a baseline model that cannot learn
temporal patterns by design but predicts human gaze on videos solely relying
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on static appearance. This baseline model is then compared to a gold standard
model as an estimate of the total information in the ground truth gaze data.
The performance difference between those models represents an upper bound of
the influence of temporal patterns on human gaze placement.

3.1 Center Bias

The center bias is an important lower baseline. It is obtained by blurring and
normalizing a histogram of all gaze positions in the training set. As humans tend
to look at the center of images [44] and videos are usually recorded such that
interesting objects are in the middle of videos, there is a clear bias in the gaze
data towards the center of the videos. The center bias therefore represents a
prior distribution of gaze position independent of visual content. Predicting this
spatial prior for every frame yields a lower baseline, comparable to the chance
level performance in classification tasks.

The center bias is much stronger in the beginning of each video due to the
subjects fixating the center of the screen before each trial. As described later,
we ignore this effect by not evaluating on the first 15 frames and confirmed
experimentally that a stationary center bias models the remaining data well.
Furthermore, we optimized the blur size using a grid search.

3.2 Gold Standard Model

The maximal performance that gaze prediction models can achieve is limited by
the consistency of the subjects and varies from frame to frame. We use a gold
standard model [49] to measure the inter-subject variability of the gaze positions.
The model predicts where each subject looked given the ground truth informa-
tion from all other subjects on the same frame. This is done by blurring the gaze
positions of all but one subject and performing leave-one-out cross validation.
Moreover, the prediction of the gold standard model is mixed with a uniform
distribution to handle outliers. The gold standard therefore predicts subjects to
look where other subjects look with a high probability, and to randomly look
anywhere on the image with a small probability defined by the mixing coeffi-
cient. The optimal blur size of the gaussian filter and the mixing weight of the
uniform distribution are determined using a grid search.

A high gold standard performance indicates very consistent gaze locations
across all subjects and vice versa. Therefore, the gold standard model yields an
estimate of the maximal performance that can be achieved for every frame. All
reported gold standard performances refer to the leave-one-subject-out perfor-
mance.

3.3 Static Baseline Model

Our proposed evaluation method requires a static baseline model that cannot
handle temporal effects by design. Initial experiments revealed that DeepGaze 11
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Backbone Readout Finalization

Fig. 1: Architecture of our static baseline model “DeepGaze MR”: A feature represen-
tation is extracted from individual frames in a fixed size window using the VGG-19
network. A non-linear readout network transforms this representation into a priority
map by first averaging the feature channels over time, and then applying a series of
1x1 convolutions. The resulting map is then resized, blurred, weighted by the center
bias, and normalized to obtain the final prediction.
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[27], the current state-of-the-art model for images, achieves a very competitive
performance when simply applied to videos frame-by-frame (see section 4). How-
ever, this instantaneous model ignores delays due to the required processing in
the human brain. This suggests a way to improve the DeepGaze II architecture
for videos by averaging deep features over multiple recent video frames. Based
on this approach, we propose a space-time separable variant of DeepGaze II us-
ing a temporal box filter as static baseline model (see Figure 1), which we call
DeepGaze Mean Readout (DeepGaze MR).

Input to our model is a fixed length window of consecutive frames, which
is used to predict the gaze distribution on the last frame (“target frame”) in
this window. We use a window length of 16 frames, which was the optimal value
found using a grid search (see supplement for details).

Backbone. Our model applies the VGG-19 network pretrained on Imagenet
[42] to every frame individually and extracts the representation from the last
convolutional layer (conv5_4) after the nonlinearity. We keep the parameters of
the backbone fixed to prevent overfitting.

Readout. A non-linear readout network is used to transform the feature
representation into a priority map of probable gaze locations. The readout net-
work first averages the feature representation over time. A series of 1x1 pixel
convolutions is then used to non-linearly combine the feature channels to the
priority map. Layer Normalization [1] is used after all but the last convolutional
layer to stabilize training. As non-linearity we use the softplus function, which
is a smooth approximation of the commonly used ReLLU and avoided units ze-
roing out early in training. We use three convolutional layers with 32, 32, and
one channel, respectively. This optimal instantiation of the readout network has
been found using a random search (see supplement for details).
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Finalization. Finally, the output of the readout network is turned into the
predicted probability distribution: First, the priority map is resized to the reso-
lution of the input. It is then smoothed using a Gaussian with learnable standard
deviation per x and y dimension. The logarithm of the center bias density from
the training set is added to the map using a learnable weight, acting as a spatial
prior. Finally, a softmax is applied to obtain the predicted spatial probability
distribution of gaze locations.

Training. Our model is trained using maximum-likelihood learning (Kiimmerer
et al. [26] suggest that this allows for best metric scores in all classic saliency
metrics). Thus, the loss function is the average log-density at gaze locations for
each frame. We use the Adam optimizer [23] with a learning rate of 0.01, which
is decreased by a factor of ten after one and five epochs. In each epoch, only one
random target frame per video is used for training. Experiments confirmed, that
this training scheme is sufficient for our model to converge.

Since our model averages features over time, it is by design not able to rep-
resent temporal patterns such as movements, or appearing and disappearing
objects.

4 Experiments

In this section, we evaluate our baseline models described above on recent video
gaze datasets. We then analyse the baseline predictions in comparison to state-
of-the-art video gaze models to better understand the importance of temporal
effects in video saliency.

The evaluation of gaze prediction models comes with challenges: different
evaluation protocols and metrics typically lead to inconsistent model rankings.
Building on recent work to better understand this evaluation process, we first
describe and motivate the model evaluation approach used in this work.

4.1 Metrics

A large number of metrics exist that are used to evaluate gaze predictions (for
a review see [4]). As typically used, these metrics give rise to inconsistent model
rankings. Kiimmerer et al. [26] proposed to adapt a probabilistic setting, i.e.,
to formulate models so that they predict spatial probability distributions, train
them for log-likelihood and differentiate between predictions and derived saliency
maps. In this way, consistent model ratings can be achieved.

We adopt this setting in our work, and use information gain (average log-
likelihood per fixation compared to the center bias, [25]) as our primary metric.
To enable a comparison to models that did not use a probabilistic approach, we
additionally evaluate the AUC [22], NSS [36], CC [21], KLDiv [37,29] and SIM
[22] metrics to judge the performance of our model relative to state-of-the-art.
To obtain an overall score for a model, the metrics are applied to the prediction
for every frame individually, and then averaged first over frames and then over
videos.
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4.2 Datasets

The main dataset for this work is the LEDOV dataset [19]. It contains 538 short
videos (11s on average) with eye tracking data of 32 subjects. The authors re-
moved smooth pursuits and saccades and artificially stabilized fixations during
their preprocessing, so this dataset does not allow to investigate the precise dy-
namics of individual gaze trajectories. However, the dataset covers the common
factors driving human gaze placement sufficiently well to develop and compare
models. All videos have been rescaled to 640x360px and resampled to 30Hz.
Models from other groups are evaluated using the resolutions and frame rates
that the respective models have been trained on.

For additional analyses we are using the DIEM dataset [34] (84 videos, 66
subjects on average, mean duration 95.2s). The videos have been padded to
match the viewing conditions reported in the paper and rescaled to 640x480px.

The DHF1K dataset [47] is comparable in scope to LEDOV, but contains
artifacts in the provided gaze maps. As those artifacts affect the model scores and
make it impossible to properly evaluate the gold standard model, we excluded
this dataset from our analysis. In the supplemental information we provide more
details on this issue together with overall performance results which suggest that
our conclusions are also valid for DHF1K.

For all datasets, the subject had to fixate the center of the screen before each
trial. We do not evaluate models on the first 15 frames to ignore the centered
gaze due to the experimental paradigm.

4.3 Performance Results

In Table 1, we show the performances of our baselines and other recent gaze
models on LEDOV. Despite deliberately ignoring all temporal effects, DeepGaze
MR performs very well and explains as much as 75% of the explainable infor-
mation (as a comparison, the state-of-the-art for images on MIT1003 is 81%).
Moreover, DeepGaze MR performs substantially better than DeepGaze II which
confirms the effectiveness of our proposed adaptations. Interestingly, in AUC
our model matches the gold standard performance, which might be due to the
fact that AUC saturates very quickly. Furthermore, the AUC metric might suffer
from the leave-one-subject-out cross validation applied in the gold standard.
We further compare the performances of our baselines to recent video gaze
prediction models: The DeepVS model [20, 19] allows the most direct comparison,
as it was trained on the LEDOV dataset as well. ACLNet [47], SalEMA [31],
TASED-Net [33] and STRA-Net [28] are recent video gaze models developed
on the DHF1K dataset [47]. For all models, we used the published weights and
adapted size and frame rate of the input videos to match the samples encountered
in the respective model training. As the results in Table 1 show, DeepGaze MR
clearly outperforms all evaluated previous state-of-the-art models on the LEDOV
dataset across all metrics, despite being designed as a static baseline model.
Additionally, we evaluated the models on the DIEM dataset. The size of
the dataset is rather small (84 videos), therefore we did not train but only
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LEDOV val
[ Model | IG % [AUC ] CC [KLDiv]| NSS | SIM |
Center bias 0 0 [0.833]0.157 [ 3.521 [ 1.546 | 0.062
TASED-Net [33] | - - [ 0.887 [ 0.647 | 3.214 | 3.498 | 0.496
STRA-Net [28] - - | 0.890 | 0.610 | 2.315 | 3.324 | 0.460
SalEMA [31] - - | 0.890 | 0.596 | 2.573 | 3.331 | 0.466
ACLNet [47] - - | 0.892 | 0.587 | 1.905 | 3.156 | 0.430

DeepVS [19] - - 0.894 | 0.397 | 2.445 | 3.098 | 0.210
DeepGaze II [27] | 1.216 62.8 | 0.908 | 0.588 | 1.259 | 3.368 | 0.434
DeepGaze MR | 1.445 74.6 | 0.917 | 0.665 | 1.105 | 3.857 | 0.498

Gold standard | 1.961 100 | 0.917 | - - (4992 -
LEDOV test

[ Model | IG % [AUC] CC [KLDiv]| NSS [ SIM |
Center bias 0 0 [0.844 [0.142 [ 3.689 [ 1.585 [ 0.057
SalEMA [31] - - [ 0.897 [ 0.590 | 2.377 | 3.152 | 0.465
TASED-Net [33] | - - | 0.897 | 0.650 | 2.965 | 3.361 | 0.505
ACLNet [47] - - | 0.898 | 0.573 | 1.667 | 2.922 | 0.435
STRA-Net [28] - - | 0.899 | 0.597 | 2.024 | 3.130 | 0.466
DeepVS [19] - - | 0.903 | 0.394 | 2.398 | 3.081 | 0.218
DeepGaze II [27] | 1.117  61.0 | 0.909 | 0.606 | 1.195 | 3.403 | 0.447
DeepGaze MR | 1.367 75.5 | 0.920 | 0.667 | 1.035 | 3.657 | 0.506
Gold standard 1.810 100 | 0.920 - - 4.676 -

Table 1: Performance comparison of recent gaze prediction models on the LEDOV
dataset. The information gain can only be evaluated for models that predict a spatial
probability distribution. All models have been applied using the published weights.
TASED-NET, SalEMA, ACLNet and STRA-Net have been trained on the DHF1K
dataset, DeepGaze II on SALICON and MIT1003.

evaluate the models on this dataset. As the results in Table 2 show, our model
performs clearly better than all other video saliency methods on this dataset
except TASED-Net [33]. Interestingly, the original DeepGaze II model for images
performs even better than the variant adapted to videos.

The performances on DIEM are worse than those on LEDOV for two reasons.
First, this dataset is much harder as the videos in this dataset contain much more
temporal activity. Second, the domain gap to LEDOV is rather large, as DIEM
contains cuts and many objects not present in LEDOV. The good performance
of DeepGaze II on this dataset could therefore be explained by the much broader
range of objects it has seen during training. Moreover, DeepGaze 1II is applied
purely frame-by-frame, so it probably copes better with the many cuts in DIEM.

4.4 Analyzing Temporal Effects

In the following, we try to better understand the influence of temporal infor-
mation on gaze placement. As motivated earlier, we use the information gain
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DIEM
[ Model | IG % [AUC ] CC [KLDiv]| NSS | SIM |
Center bias 0 0 [0.892[0.436 | 1.511 [ 2.053 | 0.341
DeepVS [19] - - | 0.853 [ 0.424 | 2.070 | 2.096 | 0.309
SalEMA [31] - - | 0911 | 0.576 | 1.743 | 2.987 | 0.465
STRA-Net [28] - - | 0914 | 0.595 | 1.975 | 3.069 | 0.477
TASED-Net [33] - - [ 0914 | 0.621 | 2.098 |3.194 |0.493
ACLNet [47] - - | 0914 | 0.558 | 1.468 | 2.826 | 0.428
DeepGaze MR 0.660 43.1 | 0.920 | 0.602 | 1.091 | 3.116 | 0.471
DeepGaze II [27] | 0.674 44.0 | 0.926 | 0.619 | 1.058 | 2.898 | 0.477

Gold standard 1.531 100 | 0.940 | - - 4659 ] -

Table 2: Performance comparison of recent gaze prediction models on the full DIEM
dataset. Due to the small number of videos, none of the models has been trained on
this dataset.
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Fig. 2: Distribution of the unexplained information across frames in the LEDOV val-
idation set (x-axis shows distinct videos). The remaining explainable information is

estimated by the difference of our model to the gold standard in bit using the infor-
mation gain metric. The videos marked are the largest failure cases of our model.

difference of the gold standard and DeepGaze MR as an estimator of the infor-
mation that is not captured by our model. Since the model cannot learn temporal
patterns by design, temporal effects on human gaze placement should result in
large differences to the gold standard.

In Figure 2 we plot the distribution of those differences grouped by video.
The median remaining information is close to Obit for roughly half of the videos
in the validation set. This indicates that our static baseline model successfully
predicts gaze positions on a large number of frames. However, the results also
clearly show two kinds of failure cases: (1) There are some videos for which
the average performance gap to the gold standard is large. For the first three
videos in the plot, the median difference is almost 2bit. (2) For other videos
there is a large number of outlier frames whose performance gap is much greater
than for most of the other remaining frames in the video. As our model is not
able to exploit temporal structure by design, they should include cases in which
temporal patterns affect human gaze placement.
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Fig. 3: Failure cases with a high average difference to the gold standard: (a) Most of
the subjects look at the robot’s hand while it puts a glass into a dishwasher. The models
however distribute their prediction over the whole robot. (b) After roughly two seconds
a small penguin becomes visible under the big penguin in the foreground, shifting the
gaze of most subjects to the small penguin for the rest of the video. Markers on the
x-axis of the NSS plots indicate frames that are part of our proposed meta-benchmark
(see Section 4.5).

We analyze the found failure cases in more detail by visualizing them in
Figures 3 and 4. We plot the NSS scores of the models over time (bottom) and
visualize the model log predictions at interesting frames (top, frame position
indicated by dashed lines in the NSS plot). As SalEMA averages features and
thus cannot handle temporal effects by design, we don’t consider it in this case
study. The figures reveal three common factors that strongly influence where
people look and are difficult for all models:

Interactions between objects occur in several of the videos. Here, most
subjects look at the interaction point, not at the objects themselves. This is
clearly observable in Figure 4b, when the child is feeding the giraffe or in Figure
3a when the robot is grabbing objects.

Suddenly appearing objects have a very strong ability to attract human
attention as well. As can be seen in Figure 4a the shifting of the gaze to the
appearing text is very consistent across all subjects. We assume that this effect
can be observed with suddenly appearing objects in general, but cannot verify
this hypothesis properly due to the small number of samples. A related effect is
the appearing of the two persons due to the camera motion in Figure 4d. They
also clearly attract attention, however much less than the sudden appearing of
the text in Figure 4a.
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Fig.4: Failure cases due to localized events: (a) A text suddenly appearing draws
almost all attention for a short time, whereas the models predict people to mainly look
at the person talking. (b) When a child is feeding a giraffe, the subjects’ attention
focuses at their interaction point and not at the giraffe’s head that is looked at during
the remainder of the video. (c) Gaze concentrates on the gymnast’s torso during a
swinging exercise, whereas other body parts are much less looked at. (d) Two persons
enter the scene due to the movement of the camera, which temporarily attracts the
attention of most of the subjects.
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Movements of objects also clearly have the potential to change which parts
of a scene are observed. In Figure 4c, none of the subjects looks at the gymnast’s
arms or hands, but all are looking at his torso that is moving in the respective
scene. This stands in contrast to most cases in which humans appear, where sub-
jects tend to look at people’s hands or faces. Also global camera movements seem
to be able to shift people’s gaze towards the side of the direction of the move-
ment, as indicated in Figure 4d. However the effect in this example is small and
entangled with the appearing persons. A closer investigation would be necessary
to address this effect.

The temporal effects described are compiled from the qualitative analysis
of our model’s largest failure cases. As their number is small, the list given is
most likely not exhaustive. Moreover, it is not possible to reliably draw any
general conclusions about the relative strengths of those effects. However, the
cases presented clearly reveal the existence of such temporal effects and show
that they are not captured by all recent video gaze models that should have the
capacity to model them.

4.5 Evaluating Temporal Modelling

The detailed analysis of the failure cases in the previous section showed that
none of the considered models was able to correctly predict cases in which tem-
poral information influences where people look. As our proposed method requires
training and evaluating two baseline models, the hurdle to apply it is quite high.
To facilitate applying our method to new models, we propose a principled new
meta-benchmark consisting of those hard cases.

Our meta-dataset contains all frames of videos where our static baseline’s
information gain is at least 1bit worse than the gold standard (indicated by
markers on the x-axis of the NSS plots in Figures 3 and 4). We propose to
run the models on the full videos, but only average the performances over the
frames included in our meta-dataset. This evaluation scheme discards roughly
80% of the frames in LEDOV and 65% of the frames in DIEM. As our model
cannot learn temporal effects by design, gaze on the discarded frames can be
explained by spatial features. The performance on the remaining frames reflects
the ability of models to handle cases in which temporal information is necessary
much better than existing benchmarks.

In Table 3 we report the model performances on this meta-benchmark derived
from LEDOV and DIEM. As indicated by our previous analysis, all models con-
sidered in this work perform poorly. As this benchmark was derived from failure
cases of our model, the performance reduction of our model is disproportionally
large. When using DeepGaze II as a baseline model, our model performs much
better in this meta-benchmark (see supplement for details).

5 Discussion

Human gaze on dynamic stimuli such as videos is hypothesized to be strongly
driven by temporal patterns in the stimuli, e.g., temporal popup and motion
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Meta-Benchmark: LEDOV & DIEM

[ Model | IG % [ AUC | CC [KLdiv] NSS | SIM |
Center bias 0 0 [0853]0.274 [ 2580 [ 1.679 [ 0.195
DeepVS [19] - - [ 0854 [ 0337 | 2.599 | 2.152 | 0.225
SalEMA [31] - - | 0.887 | 0.477 | 2.584 | 2.596 | 0.394
STRA-Net [28] - - | 0889 | 0.497 | 2.681 | 2.658 | 0.39
ACLNet [47] - - | 0.891 | 0.483 | 2.044 | 2579 | 0.377
TASED-Net [33] - - | 0.893 | 0.583 | 2.995 | 2.855 | 0.430
DeepGaze MR 0.528  24.2 | 0.898 | 0.454 | 1.568 | 2.458 | 0.365
DeepGaze 11 [27] | 0.787 36.1 | 0.908 | 0.507 | 1.420 | 2.693 | 0.389
Gold Standard 2.182  100.0 | 0.948 - - 5.093 -

Table 3: Performance of state-of-the-art models on our proposed meta-benchmark,
which discards frames in which the information gain of our model is more than 1bit
less as the gold standard. As our model cannot exploit temporal patterns, the reported
performances reflect the ability to handle cases in which temporal information is needed
to predict where people look much better.

[16,8]. In this work, we measured the importance of temporal features in video
saliency. To that end, we developed and analysed DeepGaze MR, a static base-
line model predicting gaze positions on the LEDOV dataset, and compared it’s
performance to a gold standard model. DeepGaze MR is adapted from the suc-
cessful DeepGaze II model for still images and is not able to learn temporal
patterns by design. Nevertheless, our model outperforms previous state of the
art with a large margin on the LEDOV dataset and captures 75% of the explain-
able information gain.

When we analyzed failure cases of our model, we found clear temporal effects
that drove the subject’s gaze such as sudden appearances and movements and,
to a certain degree, also interactions. We found that the gold standard perfor-
mance and therefore the consistency among subjects is very high in those cases.
This confirms the hypothesis that temporal patterns are an important factor
influencing human gaze placement.

Given this importance of temporal effects, we would expect a good video
saliency model to predict human gaze in those cases well. While our model
wasn’t able to capture those effects by design, we found that all other models
we tested consistently failed to capture those effects either. In particular, this
is the case also for models like DeepVS, ACLNet, STRA-Net and TASED-Net
that have explicitly been designed to capture temporal patterns.

We argue that the main reason for this shortcoming is a deficiency of the
datasets used to train video saliency models. Temporal patterns in the videos
can influence gaze placement in ways that are highly consistent over subjects
(Figure 4, see also [16, 8]). However, these effects turn out to be rare compared
to the influence of spatial patterns such as faces on gaze placement. We suppose
that they are so rare that current state-of-the-art models do not benefit from
investing modelling capacity into modelling them. This difficulty for learning-
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based approaches to handle rare, but important, events correctly is a general
problem relevant for many fields. In autonomous driving, for example, it is crucial
to handle rare events correctly, e.g. when children running onto the street.

Several aspects can contribute to tackling this issue: the model architecture,
the loss function and the datasets.

Adding general temporal modelling components, as done by previous works
on video saliency, has shown to be ineffective to learn temporal effects. However,
our study reveals distinct temporal effects on human gaze. Models might benefit
from adding modules that are explicitly designed to detect effects that we know
to be relevant, such as appearing objects.

To evaluate models predicting gaze on videos, image-based metrics are typ-
ically applied per frame and averaged. As a result, some of the failure cases
seen above do not substantially affect the overall model performance as those
effects tend to be short compared to the whole video. This is opposed to our
subjective impression of the clear failure of the model on those samples. A loss
function that penalizes such failures more visibly would align the benchmark
results better with human judgement.

We see the most fundamental need for improvement in the datasets. Obvi-
ously, one could explicitly collect and add cases of relevant temporal patterns to
the training datasets. In particular, it would be possible to have multiple valida-
tion datasets tailored towards effects that might be considered relevant, such as
appearing objects, motion and interactions. In this way, one can quantitatively
judge how well new models incorporate effects that researchers consider relevant
for understanding behaviour, but that are rare in the usual training datasets.

Finally, we introduced a meta-benchmark derived from existing datasets
that allows to quantify the ability of models to handle those temporal effects
much better: Instead of averaging performances over all frames, we only consider
frames in which the information gain of our model is more than 1bit smaller than
the gold standard. As our model cannot learn temporal patterns, only frames
are discarded in which spatial information is sufficient. The low performance
of existing models on this meta-dataset confirms our previous analysis. We will
make a list of the frames we considered in this study available. In the future,
our proposed benchmark could be improved by considering more datasets and
by improving our spatial baseline model.
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