Searching Efficient 3D Architectures with
Sparse Point-Voxel Convolution

Haotian Tang'*, Zhijian Liu™*,
Shengyu Zhao'2, Yujun Lin', Ji Lin!, Hanrui Wang!, and Song Han'!

! Massachusetts Institute of Technology
2 1IIS, Tsinghua University

Abstract. Self-driving cars need to understand 3D scenes efficiently and
accurately in order to drive safely. Given the limited hardware resources,
existing 3D perception models are not able to recognize small instances
(e.g., pedestrians, cyclists) very well due to the low-resolution voxelization
and aggressive downsampling. To this end, we propose Sparse Point-Vozel
Convolution (SPVConuv), a lightweight 3D module that equips the vanilla
Sparse Convolution with the high-resolution point-based branch. With
negligible overhead, this point-based branch is able to preserve the fine
details even from large outdoor scenes. To explore the spectrum of efficient
3D models, we first define a flexible architecture design space based on
SPVConv, and we then present 8D Neural Architecture Search (3D-NAS)
to search the optimal network architecture over this diverse design space
efficiently and effectively. Experimental results validate that the resulting
SPVNAS model is fast and accurate: it outperforms the state-of-the-art
MinkowskiNet by 3.3%, ranking 15* on the competitive SemanticKITTI
leaderboard*. It also achieves 8-23x computation reduction and 3x
measured speedup over MinkowskiNet and KPConv with higher accuracy.
Finally, we transfer our method to 3D object detection, and it achieves
consistent improvements over the one-stage detection baseline on KITTI.

1 Introduction

3D perception models have received increased attention as they serve as the eyes
of autonomous driving systems: i.e., they are used to understand the semantics of
the scenes to parse the drivable area (e.g., roads, parking areas). As the safety of
the passenger is the top priority of the self-driving cars, 3D perception models are
required to achieve high accuracy and low latency. Also, the hardware resources
on the self-driving cars are tightly constrained by the form factor (since we do not
want a whole trunk of workstations) and heat dissipation; therefore, it is crucial
to design efficient 3D models with low computational resource, e.g., memory.
Researchers have mainly exploited two 3D data representations: point cloud
and rasterized voxel grids. As analyzed in Liu et al. [22], point-based meth-
ods [29, 32, 18] waste up to 90% of their time on structuring the irregular data,

* indicates equal contributions; order determined by a coin toss.
* https://competitions.codalab.org/competitions/20331#results

2 H. Tang™, Z. Liu*, S. Zhao, Y. Lin, J. Lin, H. Wang, and S. Han

=) ss%*&: EE & Xt | il IR
|~ P
% i
== - U
% ® oo
i o0
S «
(a) Large 3D Scene (b) Low Resolution (0.8m)

Fig. 1. Small instances (e.g., pedestrians and cyclists) are hard to be recognized at a
low resolution (due to the coarse voxelization or the aggressive downsampling).

not on the actual feature extraction. On the other hand, voxel-based methods
usually suffer from the low resolution: the resolution of dense voxels [25, 22] is
strictly constrained by the memory; the sparse voxels [9, 6] require aggressive
downsampling to achieve larger receptive field, leading to low resolution at deeper
layers. With low resolution (see Figure 1), multiple points or even multiple small
objects may be merged into one grid and become indistinguishable. In this case,
small instances (e.g., pedestrians and cyclists) are at a disadvantage compared
to large objects (e.g., cars). Therefore, the effectiveness of previous 3D modules
is discounted when the hardware resource is limited and resolution is low.

To tackle these problems, we propose a new 3D module, Sparse Point-Vozel
Convolution (SPVConv) that introduces a low-cost high-resolution point-based
stream to the vanilla Sparse Convolution, which helps to capture the fine details.
On top of the new SPVConv module, we further present 3D Neural Architecture
Search (3D-NAS) to search an efficient network architecture. We refer our whole
framework as Sparse Point-Voxel Neural Architecture Search (SPVNAS). Fine-
grained channel numbers in the search space allow us to explore efficient models;
progressive depth shrinking is introduced for training SPVNAS with elastic
depth stably. Experimental results validate that our model is fast and accurate:
compared to MinkowskiNet, it improves the accuracy by 3.3% with lower latency.
It also achieves 8-23 x computation reduction and 3 x measured speedup over
MinkowskiNet and KPConv, while offering higher accuracy. We also transfer our
method to KITTT for 3D object detection and achieve consistent improvements
over previous one-stage detection baseline.

The contribution of this paper has three aspects:

1. We design a lightweight 3D module, SPVConv, that pays attention to both
local fine details and neighborhood relationship. It boosts the accuracy on
small objects, which used to be challenging under limited hardware resource.

2. We boost the efficiency of the module by 3D-NAS: a fine-grained search space
offers model efficiency balanced against accuracy; the progressive shrinking
gets rid of re-training from scratch and reduces deployment complexity over
various hardware platform and conditions.

Searching Efficient 3D Architectures with Sparse Point-Voxel Convolution 3

3. Our method outperforms all previous methods with a large margin and ranks
1% on the competitive SemanticKITTI leaderboard. It can also be transferred
to the object detection task and achieve consistent improvements.

2 Related Work

2.1 3D Perception Models

Increased attention has been paid to 3D deep learning, which is important for
LiDAR perception in autonomous driving. Previous research [5,25, 31,53, 61]
relied on the volumetric representation and vanilla 3D convolution to process the
3D data. Due to the sparse nature of 3D representation, the dense volumetric
representation is inherently inefficient and it also inevitably introduces information
loss. Therefore, later research [29] proposes to directly learn on 3D point cloud
representation using a symmetric function. To improve the neighborhood modeling
capability, researchers define point-based convolutions on the geometric [18, 24,
32,41,44,45,55,56] or semantic [52] neighborhood. There are also 3D models
tailored for specific tasks such as detection [27, 28, 30,36-38,57,59] and instance
segmentation [11,14, 15, 58] built upon these primitives.

Recently, some research started to pay attention to efficient 3D deep learning
primitives. Riegler et al. [34], Wang et al. [49,50] and Lei et al. [16] proposed to
reduce the memory footprint of volumetric representation using octrees. Liu et
al. [22] analyzed the efficiency bottleneck of point-based deep learning methods
and proposed Point-Voxel Convolution. Graham et al. [9] and Choy et al. [6]
proposed Sparse Convolution which accelerates the volumetric convolution by
skipping non-activated regions.

2.2 Neural Architecture Search

Designing neural networks is highly challenging and time-consuming. To alleviate
the burden of manually designing neural networks [13, 35,23, 60], researchers
have introduced neural architecture search (NAS) to automatically design the
neural network with high accuracy using reinforcement learning [63,64] and
evolutionary search [19]. A new wave of research starts to design efficient models
with neural architecture search [42, 54, 43], which is very important for the mobile
deployment. However, conventional frameworks require high computation cost
(typically 10* GPU hours) and considerable CO, emission [40]. To this end,
researchers have proposed different techniques to reduce the computation cost
(to 102 GPU hours), such as differentiable architecture search [20], path-level
binarization [4], single-path one-shot sampling [10], and weight sharing [39, 2,17,
46]. Besides, neural architecture search has also been used in compressing and
accelerating neural networks, such as pruning [12,21, 3] and quantization [47,
10,48, 51]. Most of these methods are tailored for 2D visual recognition, which
has many well-defined search spaces [33]. To the best of our knowledge, neural
architecture search for 3D deep learning is under-studied. Previous research on
VNAS [62] only focus on 3D medical image segmentation, which is not suitable
for general-purpose 3D deep learning.

4 H. Tang™, Z. Liu*, S. Zhao, Y. Lin, J. Lin, H. Wang, and S. Han

Input Voxel Size (m) Latency (ms) Mean IoU
Sliding Window 0.05 35640 -
PVConv [22] Entire Scene 0.78 146 39.0
SPVConv (Ours) Entire Scene 0.05 85 58.8

Table 1. Point-Voxel Convolution [22] is not suitable for large 3D scenes. If processing
with sliding windows, the large latency is not affordable for real-time applications. If
taking the whole scene, the resolution is too coarse to capture useful information.

3 SPVConv: Designing Effective 3D Modules

We revisit two recent 3D modules: Point-Voxel Convolution [22] and Sparse
Convolution [6] and analyze their bottlenecks. We observe that both of them suffer
from information loss (caused by coarse voxelization or aggressive downsampling)
when the memory is constrained. To this end, we introduce Sparse Point-Vozel
Convolution (SPVConv), to effectively process the large 3D scene (as in Figure 2).

3.1 Point-Voxel Convolution: Coarse Voxelization

Liu et al. [22] proposed Point-Voxel Convolution where the 3D input are repre-
sented in high-resolution points and convolution is applied over low-resolution
voxel grids. Specifically, the point-based branch transforms each point individ-
ually, and the voxel-based branch convolves over the voxelized input from the
point-based branch.

PVCNN (which is built upon Point-Voxel Convolution) can afford the reso-
lution of at most 128 in its voxel-based branch on a single GPU (with 12 GB
of memory). For a large outdoor scene (with size of 100mx100mx10m), each
voxel grid will correspond to a fairly large area (with size of 0.8mx0.8mx0.1m).
In this case, the small instances (e.g., pedestrians) will only occupy a few voxel
grids (see Figure 1). From such few points, PVCNN can hardly learn any useful
information from the voxel-based branch, leading to a relatively low performance
(see Table 1). Alternatively, we can process the large 3D scenes piece by piece so
that each sliding window is of smaller scale. In order to preserve the fine-grained
information, we found empirically that the voxel size needs to be at least lower
than 0.05m. In this case, we have to run PVCNN once for each of the 244 sliding
windows, which will take 35 seconds to process a single scene. Such a large latency
is not affordable for most real-time applications (e.g., autonomous driving).

3.2 Sparse Convolution: Aggressive Downsampling

Volumetric convolution has always been considered inefficient and prohibitive to
be scaled up. Lately, researchers proposed Sparse Convolution [9, 6] that skips
the non-activated regions to significantly reduce the memory consumption. More
specifically, it first finds all active synapses (denoted as kernel map) between the
input and output points; it then performs the convolution based on this kernel
map. In order to keep the activation sparse, it only considers these output points
that also belong to the input point cloud.

Searching Efficient 3D Architectures with Sparse Point-Voxel Convolution 5

Candidate Architecture #MAdds Constraint
Dynamic ResBlock Dynamic ResBlock
> / Bvolutionary Architecture Searcher N
[Blastic Res. ¢hannel | Elastid Res. Channel | |
¥ 1 Val.IoU q D¢ i

- { Elastic Mid. Chajinel | Elastic Mid. Channel

Cj :mutateo
¥

¥

& g9

@SPVNAS Super Network Trainer
Weight

i

PH]
2 (Elastic Res. Ghannel | Elastic]Res. Channel | |
= L i
SPVNAS Super Network "*-..._

I T

o
O EE

Elastic

D+

Q.

()
y
-

¥.

Sparse Progressive Depth Shrinkage

o . voxelize @ [- [| |Devoxelize _° . Sharing
‘ [7 == Com:)ll\;ltlon‘flflf‘ o« o Stage I +Con
. i (Depth in [3]) *D*U*U* .
(11 L] g of $ g
ldenmy[Sparse Point-Voxel Convolution l Add Stage IT RN N H
et in 23D (" o™ ™
niform
|

Sampling

T S Stage III L R *l“_l_ ll_l_l_
B i iicccecnerrersarrancacanereersarrancananeneess NN (Depth in II’Z'SI)D 1L m’uy
N 1 GPUA

Cin: Input Channels, Coy: Output Channels.

Fig. 2. Overview of SPVNAS: we first train a super network composed of SPVConv
layers and supports elastic depth and width. Then, we perform computation-constrained
3D-NAS to obtain best candidate model.

As such, Sparse Convolution can afford a much higher resolution than the
vanilla volumetric convolution. However, the network cannot be very deep due to
the limited computation resource. As a result, the network has to downsample
very aggressively in order to achieve a sufficiently large receptive field, which is
very lossy. For example, the state-of-the-art MinkowskiNet [6] gradually applies
four downsampling layers to the input point cloud, after which, the voxel size
will be 0.05 x 24 = 0.8m. Similar to Point-Voxel Convolution, this resolution is
too coarse to capture the small instances (see Figure 3).

3.3 Solution: Sparse Point-Voxel Convolution

In order to solve the problem of both modules, we present Sparse Point-Voxel
Convolution as shown in Figure 2. The point-based feature transformation
branch always keeps high-resolution representation. The voxel-based branch
applies Sparse Convolution to efficiently model over different receptive field size.
Two branches communicate at negligible cost through sparse voxelization and
devoxelization.

Our Sparse Point-Voxel Convolution operates on:

— sparse voxelized tensor representation S = {(p?,, f3),v}, where p5, =
(x2,,ys,, z5)) is the grid coordinates and f3, is the grid feature vector of m-th
nonzero grid, v is the voxel size for one grid in the current layer;

— point cloud tensor representation T = {(p}, fi)}, where pr, = (zk, yx, z1) is
the point coordinates and f is point feature vector of k-th point.

Sparse Voxelization. We start from introducing the voxel-based neighborhood
aggregation branch in Figure 2. We first transform the high-resolution point

6 H. Tang™, Z. Liu*, S. Zhao, Y. Lin, J. Lin, H. Wang, and S. Han

cloud representation T to a sparse tensor S by sparse voxelization:

Bh = (&}, 9. 2{) = (Boor(2}./v), foor(y, /v), floor (=} /v)), (1)
5 1 S kol S 7 S o) S
o= DMk =@ 9k = vh 2 = 20 L (2)
m k=1

where I[-] is the binary indicator of whether p} belongs to the voxel grid p3,,
and N,, is the normalization factor (i.e., the number of points that fall in the
m-th nonzero voxel grid). Such formulation, however, requires O(mn) complexity
where | S| = m, |T| = n. With typical values of m,n at the order of 105, the naive
implementation is impractical for real time applications.

To this end, we propose to use the GPU hash table to accelerate the sparse
voxelization and devoxelization. Specifically, we first build a hash table for all
activated points in the sparse voxelized representation (where the key is the 3D
coordinates, and the value is the index in the sparse voxelized tensor), which can
be finished in O(n) time. After that, we iterate over all points, and for each point,
we use its coordinate as the key to query the corresponding index in the sparse
voxelized representation. As the lookup over the hash table requires O(1) time in
the worst case [26], this query step will in total take O(m) time. Therefore, the
total time of coordinate indexing will be reduced from O(mn) to O(m + n).

Feature Aggregation. We then perform neighborhood feature aggregation
on the sparse voxelized tensor using a sequence of Sparse Convolution residual
blocks [6]. We parallelize the kernel map operation in Sparse Convolution (see Sec-
tion 3.2) on GPU with the same hash table implementation in sparse voxelization,
which offers 1.3x speedup over Choy et al.’s latest implementation. Both our
method and the baseline have been upgraded to this accelerated implementation.

Sparse Devoxelization. With transformed neighborhood features and a sparse
tensor representation, we hope to transform it back to the point-based represen-
tation so that information from both branches can be fused later. Similar to [22],
we choose to interpolate a point’s feature with its 8 neighbor voxel grids using
trilinear interpolation instead of naive nearest interpolation.

Point Transformation and Feature Fusion. We directly apply MLP on
each point to extract individual point features, and then fuse the outputs of two
branches with an addition to combine the complementary information provided.
Compared against Sparse Convolution, MLP layers only cost little computation
overhead (4% in terms of #MACs) but introduce important fine details into the
information flow.

4 3D-NAS: Searching Efficient 3D Architectures

Even with our module, designing an efficient neural network is still challenging.
We need to carefully adjust the network architecture (e.g., channel numbers and
kernel sizes of all layers) to meet the constraints for real-world applications (e.g.,
latency, energy, and accuracy). To this end, we introduce 8D Neural Architecture
Search (3D-NAS), to automatically design efficient 3D models (as in Figure 2).

Searching Efficient 3D Architectures with Sparse Point-Voxel Convolution 7

4.1 Design Space

The performance of neural architecture search is greatly impacted by the design
space quality. In our search space, we incorporate fine-grained channel numbers
and elastic network depths; however, we do not support different kernel sizes.

Fine-grained Channel Numbers. The computation cost increases quadrati-
cally with the number of channels; therefore, the channel number selection has
a large influence on the network efficiency. Most existing neural architecture
frameworks [4] only support the coarse-grained channel number selection: e.g.,
searching the expansion ratio of the ResNet/MobileNet blocks over a few (2-3)
choices. In this case, only intermediate channel numbers of the blocks can be
changed; while the input and output channel numbers will still remain the same.
Empirically, we observe that this limits the variety of the search space. To this
end, we enlarge the search space by allowing all channel numbers to be selected
from a large collection of choices (with size of O(n)). This fine-grained channel
number selection largely increase the number of candidates for each block: e.g.,
from constant (2-3) to O(n?) for a block with two consecutive convolutions.

Elastic Network Depths. We support different network depth in our design
space. For 3D CNNs, reducing the channel numbers alone cannot achieve signifi-
cant measured speedup, which is very different from the 2D CNNs. For example,
by shrinking all channel numbers in MinkowskiNet [6] by 4x and 8x, the number
of MACs will be reduced to 7.5 G and 1.9 G, respectively. However, although
#MAC s is drastically reduced, their measured latency on the GPU is very similar:
105 ms and 96 ms (measured on a single GTX 1080Ti GPU). This suggests that
scaling down the number of channels cannot offer us with very efficient models,
even though the number of MACs is very small. This might be because 3D
modules are usually more memory-bounded than 2D modules; #MACs decreases
quadratically with channel number, while memory decreases linearly. Motivated
by this, we choose to incorporate the elastic network depth into our design space
so that these layers with very small computation (and large memory cost) can
be removed and merged into their neighboring layers.

Small Kernel Matters. Kernel sizes are usually included into the search space
of 2D CNNs. This is because a single convolution with larger kernel size can
be more efficient than multiple convolutions with smaller kernel sizes on GPUs.
However, it is not the case for the 3D CNNs. From the computation perspective,
a single 2D convolution with kernel size of 5 requires only 1.4x more MACs than
two 2D convolutions with kernel sizes of 3; while a single 3D convolution with
kernel size of 5 requires 2.3x more MACs than two 3D convolutions with kernel
sizes of 3 (if applied to dense voxel grids). This larger computation cost makes it
less suitable to use large kernel sizes in 3D CNNs. Furthermore, the computation
overhead of 3D modules is also related to the kernel sizes. For example, Sparse
Convolution [9, 6] requires O(k3n) time to build the kernel map, where k is the
kernel size and n is the number of points, which indicates that its cost grows
cubically with respect to the kernel size. Based on these reasons, we decide to
keep the kernel size of all convolutions to be 3 and do not allow the kernel size to

8 H. Tang™, Z. Liu*, S. Zhao, Y. Lin, J. Lin, H. Wang, and S. Han

change in our search space. Even with the small kernel size, we can still achieve a
large receptive field by changing the network depth, which can achieve the same
effect as changing the kernel size.

4.2 Training Paradigm

Searching over a fine-grained design space is very challenging as it is impossible
to train every sampled candidate network from scratch [42]. Motivated by Guo et
al. [10], we incorporate all candidate networks into a single super network so that
the total training cost can be reduced from O(n) to O(1): we train the super
network once, and after that, each candidate network can be directly extracted
from this super network with inherited weights.

Uniform Sampling. At each training iteration, we randomly sample a candidate
network from the super network: randomly select the channel number for each
layer, and then randomly select the network depth (i.e. the number of blocks to
be used) for each stage. The total number of candidate networks to be sampled
during training is very limited; therefore, we choose to sample different candidate
networks on different GPUs and average their gradients at each step so that more
candidate networks can be sampled. For 3D, this is more critical because the 3D
datasets usually contain fewer training samples than the 2D datasets: e.g. 20K
on SemanticKITTI [1] vs. 1M on ImageNet [7].

Weight Sharing. As the total number of candidate networks is enormous,
every candidate network will only be optimized for a small fraction of the total
schedule. Therefore, uniform sampling alone is not enough to train all candidate
networks sufficiently (i.e., achieving the same level of accuracy as being trained
from scratch). To this end, we adopt the weight sharing technique so that every
candidate network can be optimized at each iteration even if it is not sampled.
Specifically, given the input channel number Cj, and output channel number C
of each convolution layer, we simply index the first Cj, and Cyy, channels from
the weight tensor accordingly to perform the convolution [10]. For each batch
normalization layer, we similarly crop the first ¢ channels from the weight tensor
based on the sampled channel number c. Finally, with the sampled depth d for
each stage, we choose to keep the first d layers, instead of randomly sampling d
of them. This ensures that each layer will always correspond to the same depth
index within the stage.

Progressive Depth Shrinking. Suppose we have n stages, each of which has
m different depth choices from 1 to m. If we sample the depth dj for each stage
k randomly, the expected total depth of the network will be

E[d]:Z]E[dk]:nxm;l, 3)

k=1

which is much smaller than the maximum depth nm. Furthermore, the probability
of the largest candidate network (with the maximum depth) being sampled is
extremely small: m~™". Therefore, the largest candidate networks are poorly
trained due to the small possibility of being sampled. To this end, we introduce

Searching Efficient 3D Architectures with Sparse Point-Voxel Convolution 9

progressively shrinking the depth to alleviate this issue. We divide the training
epochs into m segments for m different depth choices. During the k" training
segment, we only allow the depth of each stage to be selected from m — k + 1
to m. This is essentially designed to enlarge the search space gradually so that
these large candidate networks can be sampled more frequently.

4.3 Search Algorithm

After the super network is fully trained, we use evolutionary architecture search
to find the best architectures under a certain resource constraint.

Resource Constraints. We use the number of MACs as the resource constraint.
For the 3D CNNs, the number of MACs cannot be simply determined by the
input size and network architecture: e.g., Sparse Convolution only performs the
computation over the active synapses; therefore, its computation is also related
to the kernel map size, which is determined by the input sparsity pattern. To
address this, we first estimate the average kernel map size over the entire dataset
for each convolution layer, and we can then measure the number of MACs based
on these statistics.

Evolutionary Search. We automate the architecture search with evolutionary
algorithm [10]. We first initialize the starting population with n randomly sampled
candidate networks. At each iteration, we evaluate all candidate networks in
the population and select the k& models with the highest accuracies (i.e., the
fittest individuals). The population for the next iteration is then generated with
(n/2) mutations and (n/2) crossovers. For each mutation, we randomly pick
one among the top-k candidates and alter each of its architectural parameters
(e.g., channel numbers, network depths) with a pre-defined probability; for each
crossover, we select two from the top-k candidates and generate a new model
by fusing them together randomly. Finally, the best model is obtained from the
population of the last iteration. During the evolutionary search, we ensure that
all the candidate networks in the population always meet the given resource
constraint (otherwise, we will resample another candidate network until the
resource constraint is satisfied).

5 Experiments

We conduct experiments on 3D semantic segmentation and 3D object detection
for outdoor scenes. Benefit from our designed module (SPVConv) and neural
architecture search framework (3D-NAS), our model (denoted as SPVNAS) con-
sistently outperforms previous state-of-the-art methods with lower computation
cost and measured latency (on an NVIDIA GTX1080Ti).

5.1 3D Scene Segmentation

We first evaluate our method on 3D semantic segmentation and conduct experi-
ments on the large-scale outdoor scene dataset, SemanticKITTTI [1]. This dataset
contains 23,201 LiDAR point clouds for training and 20,351 for testing, and it is
annotated from all 22 sequences in the KITTI [8] Odometry benchmark. We train
all models on the entire training set and report the mean intersection-over-union

10 H. Tang™, Z. Liu*, S. Zhao, Y. Lin, J. Lin, H. Wang, and S. Han

#Params (M) #MACs (G) Latency (ms) Mean IoU

PointNet [29] 3.0 - 500 14.6
PointNet++ [32] 6.0 - 5900 20.1
PVCNN [22] 2.5 42.4 146 39.0
KPConv [45] 18.3 207.3 279 58.8
MinkowskiNet, [6] 21.7 114.0 294 63.1

2.6 15.0 110 63.7

SPVNAS (Ours) 12.5 73.8 259 66.4

Table 2. Results of outdoor scene segmentation on SemanticKITTI: our SPVNAS
outperforms the state-of-the-art MinkowskiNet with 2.7 x measured speedup.

#Params (M) #MACs (G) Latency (ms) Mean IoU

DarkNet21Seg [1] 24.7 212.6 73 474
DarkNet53Seg [1] 50.4 376.3 102 49.9
SPVNAS (Ours) 1.1 8.9 89 60.3

Table 3. Results of outdoor scene segmentation on SemanticKITTI: our SPVNAS
outperforms the 2D projection-based DarkNets by more than 10% in mIoU.

(mIoU) on the official test set under the single scan setting. We provide more
implementation details and experimental results in the appendix.

Results. As in Table 2, our SPVNAS outperforms the previous state-of-the-
art MinkowskiNet [6] by 3.3% in mIoU with 1.7x model size reduction, 1.5x
computation reduction and 1.1x measured speedup. We further downscale our
SPVNAS by setting the resource constraint to 15G MACs. This offers us with a
much smaller model that outperforms MinkowskiNet by 0.6% in mIoU with 8.3 x
model size reduction, 7.6 x computation reduction, and 2.7 x measured speedup.
In Figure 3, we also provide some qualitative comparisons between SPVNAS and
MinkowskiNet: our SPVNAS has lower errors especially for small instances.

We further compare our SPVNAS with 2D projection-based models in Table 3.
With the smaller backbone (by removing the decoder layers), SPVNAS outper-
forms DarkNets [1] by more than 10% in mIoU with 1.2x measured speedup
even though 2D convolutions are much better optimized by modern deep learning
libraries. Furthermore, our SPVNAS achieves higher mIoU than KPConv [45],
which is the previous state-of-the-art point-based model, with 17x model size
reduction, 23 x computation reduction and 3 x measured speedup.

5.2 3D Object Detection

We also evaluate our method on 3D object detection and conduct experiments on
the popular outdoor scene dataset, KITTI [8]. We follow the generally adopted
training-validation split, where 3,712 samples are used for training and 3,769
samples are left for validation. We report the mean average precision on the test

Searching Efficient 3D Architectures with Sparse Point-Voxel Convolution 11

Ty ' i

. i
T e

S R ‘"”w“ et L T B N,
o L boundary |
boundary] s
S ««— traffic sign

traffic sign

(a) Error by MinkowskiNet (b) Less error by SPVNAS (¢) Ground Truth

Fig. 3. MinkowskiNet has a higher error recognizing small objects and region boundaries,
while SPVNAS recognizes small objects better thanks to the high-resolution point-based
branch.

split using the official evaluation code (with 40 recall positions) under 3D IoU
theresholds of 0.7 for car, 0.5 for cyclist and pedestrian. We refer the readers to
the appendix for additional results on the validation set.

Results. We compare our method against SECOND [57], the state-of-the-art
single-stage model for 3D object detection. SECOND consists of a sparse encoder
using 3D Sparse Convolutions and a region proposal network that performs 2D
convolutions after projecting the encoded features to the bird’s-eye view (BEV).
We reimplement and retrain SECOND: our implementation already outperforms
the results in the original paper [57]. As for our model, we only replace the 3D
Sparse Convolutions in SECOND with our SPVConv while keeping all the other
settings the same for fair comparison. As summarized in Table 4, our SPVCNN
achieves significant improvement in cyclist detection, for which we argue that the
high-resolution point-based branch carries more information for small instances.

6 Analysis

Our SPVNAS significantly outperforms the previous state of the art, Minkowsk-
iNets with better efficiency. After carefully examining the per-class performance
of both methods on the test split (Table 5), we find that SPVNAS has very
large advantage (up to 25%) on relatively small objects such as pedestrians and

12 H. Tang™, Z. Liu*, S. Zhao, Y. Lin, J. Lin, H. Wang, and S. Han

Car Cyclist Pedestrian
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard
SECOND [57] 84.7 76.0 68.7 758 608 53.7 453 355 33.1

SECOND (Repro.) 87.5 779 744 760 59.7 529 49.1 41.7 39.1

SPVCNN (Ours) 87.8 78.4 74.8 80.1 63.7 56.2 49.2 414 384

Table 4. Results of outdoor object detection on KITTI: our SPVCNN outperforms
SECOND in most categories especially for the cyclist.

Person Bicycle Bicyclist ~ Motorcycle Motorcyclist

MinkowskiNet [6] 60.9 40.4 61.9 47.4 18.7

65.7 51.6 65.2 50.8 43.7

SPVNAS (Ours) (+4.8) (+11.2) (+3.3) (+3.4) (+25.0)

Table 5. Results of per-class performance on SemanticKITTI: SPVNAS has a large
advantage on small objects, such as bicyclist and motorcyclist.

cyclists, which justifies our design of a high resolution point-based branch in
SPVConv. In this section, we provide more detailed analysis on the effectiveness
of SPVConv and also perform ablation experiments on our 3D-NAS pipeline to
further explain the benefit of SPVNAS.

6.1 Sparse Point-Voxel Convolution

We analyze the effectiveness of SPVConv by comparing the point and sparse-
vozxel activations from the last SPVConv layer in SPVCNN. The model is trained
on part of SemanticKITTT [1] training set with the ninth sequence left out
for visualization. Specifically, we first calculate the norm of point/sparse voxel
features from each point. Then, we rank the feature norms from both branches
separately and define points with top 10% largest feature norm from each branch
respectively as activated points of that branch. In Figure 5 we show the top 50%
activated points of the point-based branch with red color and all other points
with gray color. Clearly, the point branch of our SPVCNN learns to attend to
small objects such as pedestrians, cyclists, trunks and traffic signs. As a result,
our method does achieve compelling performance on these small classes.

We also collect the statistics of class-wise averaged percentage for activated
points from both point-based and sparse voxel-based branch in Figure 4. On
small objects, the percentage of activated points from the point-based branch is
significantly higher than the sparse voxel-based branch. For some classes like the
bicyclist, more than 80% of its points are activated on the point branch, which
validates that our observation in Figure 5 is general.

6.2 Architecture Search

Searching Efficient 3D Architectures with Sparse Point-Voxel Convolution

90
80
70
60
50
40
30
20
10

0

I Voxel Branch
B Point Branch

Percentage (%)

&

&%

&> Wb o
o ¢

o

&
&
&
<

Larger Objects

EREPCy
o

13

Smaller Objects

o 9 JEa

S
o
o e

Fig. 4. Average percent of activated points on voxel/point branches from all 19 classes
of SemanticKITTI [1] dataset: the point-branch attends to smaller objects as the red

bar is much higher.

g
7

1 = - I' i
2 » %
: A }
N
person\ e §§
person g sEE
e % : =y 2

: \ traffic sign .
) i 4 E =# | trunk -
<= cyclist f - g e ','
t ~ 5 = =
4 5/ ‘f‘ E

Fig.5. The point-based branch learns to put its attention on small instances (i.e.,
pedestrians, cyclists, traffic signs). Here, the points in red are the ones with the top 5%
largest feature norm in the point-based branch.

In Figure 6 we show the MACs
(Figure 6a) and latency (Fig-
ure 6b) tradeoff curves on Se-
manticKITTI [1]. Manually de-
signed SPVCNN and Minkowsk-
iNets with uniform channel shrink-
ing are the baselines. Clearly, a
better 3D module (SPVConv) and
a well-designed network architec-
ture contribute equally to the per-
formance boost. Remarkably, the
improvement over MinkowskiNets
exceeds 6% mloU at 110 ms la-
tency. We believe the improvement
comes from the non-uniform chan-

© Random Search @ Evolutionary Search
46 4
solieo
il n:ﬁgﬁl“
424 o“'!!!!l!g. :: e
82
olih b iesetiietingig
o [] ® ¢
ML HHIHIT TN
® ° ® °
SHIHHHTHIN
° - ! H
MR FEE bR EH 1S
e %e00 %o o
0 é /:1 é é 1b 1'2 1'4 1'6 1'8 2'[)
Iteration

Fig. 7. Evolutionary Search has better sample
efficiency comparing with Random Search.

nel scaling and depth selection in our 3D-NAS. In the original MinkowskiNets [6]

14 H. Tang™, Z. Liu*, S. Zhao, Y. Lin, J. Lin, H. Wang, and S. Han

—— SPVNAS SPVCNN —+— MinkowskiNet —— SPVNAS SPVCNN —+— MinkowskiNet
11y
66 1 w 66 L1y bettey|
651 4 o)
] 5 &
. 64 z . 64 (s
634 — 3 63 v
2 R v
o 62 & g 62
B 8 61
611 5
=" =
601 60
591 59
58 1 58
57 57 — 1
0 10 20 30 40 50 60 70 S0 9 100 110 120 100 125 150 175 200 225 250 275 300 325
#MACs (G) GPU Latency (ms)
(a) #MACs v.s. IoU Tradeoff (b) Latency v.s. IoU Tradeoff

Fig. 6. An efficient 3D module (SPVConv) and a well-designed network architecture
(3D-NAS) are equally important to the final performance of our SPVNAS.

or SPVCNN, 77% of the total MACs is concentrated on the upsampling stages.
However, this ratio is reduced to 47% to 63% in 3D-NAS, making computation
more balanced and downsampling stages more emphasized.

We also compare our evolutionary search method with random architecture
search to prove that the succeed of 3D-NAS doesn’t entirely come from the search
space. As is shown in Figure 7, random architecture search has poor sample
efficiency in our search space: the best model at the 20" generation performs even
worse than the best model in the 4" generation. In contrast, our evolutionary
search is capable of progressively finding better architecture as iteration increases,
and the final best architecture performs around 4% better than the best one in
the first generation.

7 Conclusion

We present Sparse Point-Voxel Convolution (SPVConv), a novel module for
efficient 3D deep learning, especially for small object recognition. With SPVCNN
built upon the SPVConv module, we solve the problem that Sparse Convolution
cannot always keep high resolution representation and that Point-Voxel Con-
volution doesn’t scale up to large outdoor scenes. We then propose 3D-NAS,
the first AutoML method for 3D scene understanding, to greatly improve the
efficiency and performance of SPVCNN. Extensive experiments on outdoor 3D
scene benchmarks demonstrates that SPVNAS models are lightweight, fast and
powerful. We hope that this work will inspire more future research on efficient
3D deep learning model design.

Acknowledgements. We thank MIT Quest for Intelligence, MIT-IBM Watson
ATl Lab, Xilinx, Samsung for supporting this research. We also thank AWS
Machine Learning Research Awards for providing the computational resource.

Searching Efficient 3D Architectures with Sparse Point-Voxel Convolution 15

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss, C., Gall, J.:
SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences.
In: ICCV (2019)

Cai, H., Gan, C., Wang, T., Zhang, Z., Han, S.: Once for All: Train One Network
and Specialize it for Efficient Deployment. In: ICLR (2020)

Cai, H., Lin, J., Lin, Y., Liu, Z., Wang, K., Wang, T., Zhu, L., Han, S.: AutoML
for Architecting Efficient and Specialized Neural Networks. IEEE Micro (2019)
Cai, H., Zhu, L., Han, S.: ProxylessNAS: Direct Neural Architecture Search on
Target Task and Hardware. In: ICLR (2019)

Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese,
S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., Yu, F.: ShapeNet: An Information-
Rich 3D Model Repository. arXiv (2015)

Choy, C., Gwak, J., Savarese, S.: 4D Spatio-Temporal ConvNets: Minkowski Con-
volutional Neural Networks. In: CVPR (2019)

Deng, J., Dong, W., Socher, R., Li, L..J., Li, K., Fei-Fei, L.: ImageNet: A Large-Scale
Hierarchical Image Database. In: CVPR (2009)

Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets Robotics: The KITTI
Dataset. IJRR (2013)

Graham, B., Engelcke, M., van der Maaten, L.: 3D Semantic Segmentation With
Submanifold Sparse Convolutional Networks. In: CVPR (2018)

Guo, Z., Zhang, X., Mu, H., Heng, W., Liu, Z., Wei, Y., Sun, J.: Single Path
One-Shot Neural Architecture Search with Uniform Sampling. In: ECCV (2020)
Han, L., Zheng, T., Xu, L., Fang, L.: OccuSeg: Occupancy-aware 3D Instance
Segmentation. In: CVPR (2020)

He, Y., Lin, J., Liu, Z., Wang, H., Li, L.J., Han, S.: AMC: AutoML for Model
Compression and Acceleration on Mobile Devices. In: ECCV (2018)

Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T.,
Andreetto, M., Adam, H.: MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications. arXiv (2017)

Jiang, L., Zhao, H., Shi, S., Liu, S., Fu, C.W., Jia, J.: PointGroup: Dual-Set Point
Grouping for 3D Instance Segmentation. In: CVPR (2020)

Lahoud, J., Ghanem, B., Pollefeys, M., Oswald, M.R.: 3D Instance Segmentation
via Multi-Task Metric Learning. In: ICCV (2019)

Lei, H., Akhtar, N., Mian, A.: Octree Guided CNN With Spherical Kernels for 3D
Point Clouds. In: CVPR (2019)

Li, M., Lin, J., Ding, Y., Liu, Z., Zhu, J.Y., Han, S.: GAN Compression: Efficient
Architectures for Interactive Conditional GANs. In: CVPR (2020)

Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: Convolution on
X-Transformed Points. In: NeurIPS (2018)

Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.J., Fei-Fei, L., Yuille, A.,
Huang, J., Murphy, K.: Progressive Neural Architecture Search. In: ECCV (2018)
Liu, H., Simonyan, K., Yang, Y.: DARTS: Differentiable Architecture Search. In:
ICLR (2019)

Liu, Z., Mu, H., Zhang, X., Guo, Z., Yang, X., Cheng, K.T., Sun, J.: MetaPruning:
Meta Learning for Automatic Neural Network Channel Pruning. In: ICCV (2019)
Liu, Z., Tang, H., Lin, Y., Han, S.: Point-Voxel CNN for Efficient 3D Deep Learning.
In: NeurIPS (2019)

Ma, N., Zhang, X., Zheng, H.T., Sun, J.: ShufleNet V2: Practical Guidelines for
Efficient CNN Architecture Design. In: ECCV (2018)

16

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

H. Tang™, Z. Liu*, S. Zhao, Y. Lin, J. Lin, H. Wang, and S. Han

Mao, J., Wang, X., Li, H.: Interpolated Convolutional Networks for 3D Point Cloud
Understanding. In: ICCV (2019)

Maturana, D., Scherer, S.: VoxNet: A 3D Convolutional Neural Network for Real-
Time Object Recognition. In: TROS (2015)

Pagh, R., Rodler, F.F.: Cuckoo Hashing. Journal of Algorithms (2001)

Qi, C.R., Chen, X., Litany, O., Guibas, L.J.: ImVoteNet: Boosting 3D Object
Detection in Point Clouds with Image Votes. In: CVPR, (2020)

Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep Hough Voting for 3D Object
Detection in Point Clouds. In: ICCV (2019)

Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: Deep Learning on Point Sets for
3D Classification and Segmentation. In: CVPR (2017)

Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum PointNets for 3D Object
Detection from RGB-D Data. In: CVPR (2018)

Qi, C.R., Su, H., Niessner, M., Dai, A., Yan, M., Guibas, L.J.: Volumetric and
Multi-View CNNs for Object Classification on 3D Data. In: CVPR (2016)

Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: Deep Hierarchical Feature
Learning on Point Sets in a Metric Space. In: NeurIPS (2017)

Radosavovic, 1., Johnson, J., Xie, S., Lo, W.Y., Dollar, P.: On Network Design
Spaces for Visual Recognition. In: ICCV (2019)

Riegler, G., Ulusoy, A.O., Geiger, A.: OctNet: Learning Deep 3D Representations
at High Resolutions. In: CVPR (2017)

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2:
Inverted Residuals and Linear Bottlenecks. In: CVPR (2018)

Shi, S., Guo, C., Jiang, L., Wang, Z., Shi, J., Wang, X., Li, H.: PV-RCNN: Point-
Voxel Feature Set Abstraction for 3D Object Detection. In: CVPR (2020)

Shi, S., Wang, X., Li, H.: PointRCNN: 3D Object Proposal Generation and Detection
from Point Cloud. In: CVPR (2019)

Shi, S., Wang, Z., Shi, J., Wang, X., Li, H.: PV-RCNN: Point-Voxel Feature Set
Abstraction for 3D Object Detection. TPAMI (2020)

Stamoulis, D., Ding, R., Wang, D., Lymberopoulos, D., Priyantha, B., Liu, J.,
Marculescu, D.: Single-Path NAS: Designing Hardware-Efficient ConvNets in less
than 4 Hours. arXiv (2019)

Strubell, E., Ganesh, A., McCallum, A.: Energy and Policy Considerations for Deep
Learning in NLP. In: ACL (2019)

Su, H., Jampani, V., Sun, D., Maji, S., Kalogerakis, E., Yang, M.H., Kautz, J.:
SPLATNet: Sparse Lattice Networks for Point Cloud Processing. In: CVPR (2018)
Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., Le, Q.V.:
MnasNet: Platform-Aware Neural Architecture Search for Mobile. In: CVPR, (2019)
Tan, M., Le, Q.V.: EfficientNet: Rethinking Model Scaling for Convolutional Neural
Networks. In: ICML (2019)

Tatarchenko, M., Park, J., Koltun, V., Zhou, Q.Y.: Tangent Convolutions for Dense
Prediction in 3D. In: CVPR (2018)

Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.:
KPConv: Flexible and Deformable Convolution for Point Clouds. In: ICCV (2019)
Wang, H., Wu, Z., Liu, Z., Cai, H., Zhu, L., Gan, C., Han, S.: HAT: Hardware-Aware
Transformers for Efficient Natural Language Processing. In: ACL (2020)

Wang, K., Liu, Z., Lin, Y., Lin, J., Han, S.: HAQ: Hardware-Aware Automated
Quantization with Mixed Precision. In: CVPR (2019)

Wang, K., Liu, Z., Lin, Y., Lin, J., Han, S.: Hardware-Centric AutoML for Mixed-
Precision Quantization. IJCV (2020)

49.

50.

51.

52.

53.

54.

53.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Searching Efficient 3D Architectures with Sparse Point-Voxel Convolution 17

Wang, P.S., Liu, Y., Guo, Y.X., Sun, C.Y., Tong, X.: O-CNN: Octree-based Convo-
lutional Neural Networks for 3D Shape Analysis. In: SIGGRAPH (2017)

Wang, P.S., Liu, Y., Guo, Y.X., Sun, C.Y., Tong, X.: Adaptive O-CNN: A Patch-
based Deep Representation of 3D Shapes. In: SIGGRAPH Asia (2018)

Wang, T., Wang, K., Cai, H., Lin, J., Liu, Z., Wang, H., Lin, Y., Han, S.: APQ:
Joint Search for Network Architecture, Pruning and Quantization Policy. In: CVPR
(2020)

Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic
Graph CNN for Learning on Point Clouds. In: SIGGRAPH (2019)

Wang, Z., Lu, F.: VoxSegNet: Volumetric CNNs for Semantic Part Segmentation of
3D Shapes. TVCG (2019)

Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia, Y.,
Keutzer, K.: Fbnet: Hardware-aware Efficient Convnet Design via Differentiable
Neural Architecture Search. In: CVPR (2019)

Wu, W., Qi, Z., Fuxin, L.: PointConv: Deep Convolutional Networks on 3D Point
Clouds. In: CVPR (2019)

Xu, Y., Fan, T., Xu, M., Zeng, L., Qiao, Y.: SpiderCNN: Deep Learning on Point
Sets with Parameterized Convolutional Filters. In: ECCV (2018)

Yan, Y., Mao, Y., Li, B.: SECOND: Sparsely Embedded Convolutional Detection.
Sensors (2018)

Yang, B., Wang, J., Clark, R., Hu, Q., Wang, S., Markham, A., Trigoni, N.: Learning
Object Bounding Boxes for 3D Instance Segmentation on Point Clouds. In: NeurIPS
(2019)

Yang, Z., Sun, Y., Liu, S., Shen, X., Jia, J.: STD: Sparse-to-Dense 3D Object
Detector for Point Cloud. In: ICCV (2019)

Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: An Extremely Efficient Convolu-
tional Neural Network for Mobile Devices. In: CVPR (2018)

Zhou, Y., Tuzel, O.: VoxelNet: End-to-End Learning for Point Cloud Based 3D
Object Detection. In: CVPR (2018)

Zhu, Z., Liu, C., Yang, D., Yuille, A., Xu, D.: V-NAS: Neural Architecture Search
for Volumetric Medical Image Segmentation. In: 3DV (2019)

Zoph, B.; Le, Q.V.: Neural Architecture Search with Reinforcement Learning. In:
ICLR (2017)

Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning Transferable Architectures
for Scalable Image Recognition. In: CVPR (2018)

