
Procrustean Regression Networks: Learning 3D
Structure of Non-Rigid Objects from 2D
Annotations Supplementary Materials

Sungheon Park1, Minsik Lee2, and Nojun Kwak3

1 Samsung Advanced Institute of Technology (SAIT), Korea
sungheonpark@snu.ac.kr

2 Hanyang University, Korea mleepaper@hanyang.ac.kr
3 Seoul National University, Korea nojunk@snu.ac.kr

1 Derivation of ∂X̃
∂X

in the Cost Function of PRN

To make this material self-contained, we include the derivation of the back-
propagation process of the proposed PRN, which is similar to that appeared
in [4]. We start by rewriting the cost function of PRN:

J =

nf∑
i=1

f(Xi) + λg(X̃), (1)

while satisfying the alignment constraint

R = argmin
R

nf∑
i=1

‖RiXiT−
1

nf

nf∑
j=1

RjXjT‖ s.t. RT
i Ri = I3. (2)

To integrate the alignment constraint (2) with the cost function (1), we introduce

an orthogonal matrix Qi that satisfies Ri = QiR̂i and assume Qi = I3 at the
time of gradient evaluation without loss of generality. Then, X̃i = QiR̂iXiT =
QiX

′
i. Integrating the orthogonality constraint QT

i Qi = I3 to (2) by introducing
Lagrange multipliers Λi yields the following equation:

nf∑
i=1

‖QiX
′
i −

1

nf

nf∑
j=1

QjX
′
j‖2 +

1

2

nf∑
i=1

〈
Λi,Q

T
i Qi − I3

〉
. (3)

Differentiating (3) with respect to Qk(1 ≤ k ≤ nf ) yields

(QkX′k −
1

nf

nf∑
j=1

QjX
′
j)(X

′T
k −

1

nf
X′Tk ) +

∑
i 6=k

(QiX
′
i −

1

nf

nf∑
j=1

QjX
′
j)(−

1

nf
X′Tk )

+QkΛk = 0.

(4)



2 S. Park et al.

By rearranging (4) and multiplying QT
k on both sides, we get the following

equation,

Qk(
nf − 1

nf
X′kX

′T
k + Λk)QT

k =
1

nf

∑
i6=k

QiX
′
iX

′T
k QT

k . (5)

On the left hand side, Λk is a symmetric matrix since the orthogonality con-
straint is symmetric (i.e., QT

k Qk = QkQT
k = I3). Hence, the left hand side is

symmetric, and so is the right hand side, i.e.,∑
i 6=k

QiX
′
iX

′T
k QT

k =
∑
i 6=k

QkX′kX
′T
i QT

i . (6)

By vectorizing (6), we get

vec(
∑
i6=k

QkX′kX
′T
i QT

i )− vec(
∑
i 6=k

QiX
′
iX

′T
k QT

k )

=[(
∑
i 6=k

QiX
′
i ⊗ I3)− (I3 ⊗

∑
i6=k

QiX
′
i)E]vec(QkX′k) = 0,

(7)

where E is a permutation matrix that satisfies Evec(H) = vec(HT ). On the
other hand, differentiating QT

i Qi = I3 and evaluating at Qi = I3 gives

∂QT
i Qi + QT

i ∂Qi = ∂QT
i + ∂Qi = 0. (8)

The above equation is a well-known relation about the derivative of an orthogonal
matrix [2]. Here, ∂Qi is interpreted as an infinitesimal generator of rotation,
which is a skew-symmetric matrix. Let us denote ∂Qi as

∂Qi =

 0 ∂qiz −∂qiy
−∂qiz 0 ∂qix
∂qiy −∂qix 0

 , (9)

and if we define ∂qi = [∂qix ∂qiy ∂qiz]T, then vec(∂Qi) = L∂qi.
Now, given an arbitrary 3×np matrix S and its column vectors s1, s2, · · · , snp ,

one can easily verify that (ST ⊗ I3)L =
[
[s1]T× [s2]T× · · · [snp ]T×

]T
where [s]× is

a skew-symmetric matrix that is related to the cross product of the vector. We
can also obtain [(ST ⊗ I3)L]T from (S ⊗ I3) − (I3 ⊗ S)E by selecting 8th, 3rd,
and 4th rows. The rest of the rows are either essentially identical to these rows
or trivial. As a consequence, from (7), we get

LT (
∑
i6=k

QiX
′
i ⊗ I3)vec(QkX′k) = LT vec(QkX′k

∑
i 6=k

X
′T
i Q

′T
i ) = 0. (10)

Differentiating (10) yields

LT vec(∂QkX′k
∑
i6=k

X
′T
i Q

′T
i + ∂X′k

∑
i 6=k

X
′T
i + X′k

∑
i 6=k

∂X
′T
i

+X′k
∑
i 6=k

X
′T
i ∂Q

′T
i ) = 0.

(11)



Procrustean Regression Networks 3

By rearranging (11) and substituting vec(∂Qi) = L∂qi yields

LT (
∑
i6=k

X′iX
′T
k ⊗ I3)L∂qk + LT

∑
i6=k

(I3 ⊗X′kX
′T
i )EL∂qi

= −LT (
∑
i6=k

X′i ⊗ I3)vec(∂X′k)− LT
∑
i 6=k

(I3 ⊗X′k)Evec(∂X′i).
(12)

Since the index k varies from 1 to nf , nf equations are made from (12). Let ∂q
be a vector ∂q = [∂qT

1 , ∂qT
2 , · · · , ∂qT

nf
]T , and similarly we define vec(∂X′) =

[vec(∂X′1)T , vec(∂X′2)T , · · · , vec(∂X′nf
)T ]T . To formulate ∂q as a function of

vec(∂X′), we enumerate nf equations and build a linear system that has the
form of

B∂q = Cvec(∂X′). (13)

where B and C are the matrices explained in the main text. Then, ∂q is expressed
as

∂q = B−1Cvec(∂X′). (14)

Next, differentiating QiX
′
i = X̃i yields

∂QiX
′
i + Qi∂X′i = ∂X̃i. (15)

By vectorizing (15), we get

(X′i
T ⊗ I)L∂qi = vec(∂X̃i − ∂X′i). (16)

Let vec(∂X̃) = [vec(∂X̃1)T , vec(∂X̃2)T , · · · , vec(∂X̃)Tnf
]T , and similar to (13),

we build a linear system by varying the index i from 1 to nf ,

A∂q = vec(∂X̃)− vec(∂X′), (17)

where A is also explained in the main text.
Substituting (14) to (17) yields

(AB−1C + I3npnf
)vec(∂X′) = vec(∂X̃). (18)

Finally, dividing both sides of (18) by ∂vec(X) gives the derivative we need,

vec(∂X̃)

∂vec(X)
= (AB−1C + I3npnf

)D, (19)

where D is a block-diagonal matrix explained in the main text. Note that D is
based on the following derivative.

vec(∂X′i)

∂vec(Xi)
=

(T⊗ R̂i)vec(∂Xi)

∂vec(Xi)
= T⊗ R̂i. (20)

The derivative of the cost function is calculated as

∂J
∂vec(X)

=
∂f

∂vec(X)
+ λ

〈
∂g

∂vec(X̃)
,

vec(∂X̃)

∂vec(X)

〉
, (21)

where the dimensions of ∂J
∂vec(X) ,

∂f
∂vec(X) , and ∂g

∂vec(X̃)
are 1 × 3npnf , and the

dimension of vec(∂X̃)
∂vec(X) is 3npnf × 3npnf .



4 S. Park et al.

Table 1. MPJPE with missing 2D inputs on Human 3.6M dataset.

Missing Points Ratio (%) 0 5 10 15 20

PRN-FCN 66.7 69.8 70.8 72.1 73.8

2 Training Details

For the Human 3.6M dataset, PRN-FCN with 2D ground truth inputs receives
17 keypoints for each frame while that with stacked hourglass network detection
inputs receive 16 keypoints. Both networks produce 17 keypoints as an output
which is trained with ground truth 2D joint positions. Iterations for PRN-FCN
and PRN-CNN are 70,000 and 120,000, respectively. For CNN architectures, 3D
shapes of human bodies are directly estimated from RGB images. Image frames
in the dataset are cropped using ground truth bounding box information so that
a person is centered in the cropped image, which are then resized to 256× 256.

For the 300-VW dataset, both 2D inputs and 3D outputs have 68 keypoints.
Since the dataset is smaller than Human 3.6M, iterations for FCN and CNN are
set to 14,000 and 100,000, respectively. The RGB images are also cropped so
that the mean position of the 2D landmarks becomes the center of the image.

We used Adam optimizer [3] with the start learning rate of 10−4. The learning
rate is decayed by 0.8 for every 5,000 iterations. Number of hidden nodes in fully-
connected ResBlock is set to 1,024 for Human 3.6M and 300-VW datasets and
to 4,096 for SURREAL dataset respectively.

3 Additional Experimental Results

3.1 Robustness to missing points on Human 3.6M dataset

We measured the robustness of PRN-FCN when there exist missing points in
both training and test datasets. We increased the ratio of missing points from
0% to 20% with 5% intervals and trained PRN for each case on Human 3.6M
dataset. The missing points are randomly selected and 2D inputs of missing
points are set to 0. The MPJPE of PRN-FCN for all cases are shown in Table 1.
It is verified that PRN is robust to missing points since the error only slightly
increases as the ratio of missing point gets larger.

3.2 Qualitative results of PRN-CNN on Human 3.6M dataset

Qualitative results of PRN-CNN are provided in Figure 1 with input images
and ground truths. PRN-CNN is able to estimate accurate 3D poses for var-
ious images including the case when a part of body joints are self-occluded.
The last column of Figure 1 shows a common failure case. PRN outputs poor
estimation results when the input images are side-views of human bodies and
the ground truth 3D poses have large depth variations. For those cases, a large
depth change may only lead to small changes in RGB images, so PRN suffers
from distinguishing those subtle changes.



Procrustean Regression Networks 5

Image
inputs

PRN-CNN

GT

Fig. 1. Qualitative results of PRN-CNN with RGB image inputs on Human 3.6M
dataset. The last row shows a failure case.

Table 2. Normalized error with RGB inputs on the 300-VW dataset.

Method Normalized Error

CSF2 [1] + CNN 0.4331
PR [4] + CNN 0.4224

PRN-CNN 0.3092

3.3 Performance on 300-VW dataset with RGB inputs

We also provided the quantitative results on 300-VW dataset trained with RGB
image inputs. As illustrated in Table 2, PRN-CNN performs better than the
compared CNN models which are trained using NRSfM results.

We have also shown a few reconstruction results of PRN-CNN on various
test images in Figure 2. The results from PRN are illustrated in views from
the XY-plane and the YZ-plane. From the XY-plane viewpoints, it is verified
that the 2D poses of faces are successfully learned in PRN, although it is hard to
capture subtle variations of eyes or mouth. We can also verify from the YZ-plane
viewpoints that the depth information is correctly estimated.

References

1. Gotardo, P.F., Martinez, A.M.: Non-rigid structure from motion with complemen-
tary rank-3 spaces. In: Computer Vision and Pattern Recognition (CVPR), 2011
IEEE Conference on. pp. 3065–3072. IEEE (2011)

2. Hall, B.: Lie groups, Lie algebras, and representations: an elementary introduction,
vol. 222. Springer (2015)

3. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)



6 S. Park et al.

Image inputs

PRN-CNN
(XY view)

PRN-CNN
(YZ view)

Fig. 2. Qualitative results of PRN-CNN for 3D face shape estimation.

4. Park, S., Lee, M., Kwak, N.: Procrustean regression: A flexible alignment-based
framework for nonrigid structure estimation. IEEE Transactions on Image Process-
ing 27(1), 249–264 (2018)


