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A Appendix

This Appendix provides additional implementation details, ablations and quali-
tative results.

– In Section A.1, we provide more details for our experiments on the CAD-120
dataset.

– In Section A.2, we provide more details for our experiments on the Charades
dataset.

– In Section A.3, we describe the implementation details for our experiments
on the ActivityNet Entities dataset.

– In Section A.4, we provide additional ablations on the CAD-120 and Cha-
rades datasets, as well as additional qualitative results on the Charades and
ActivityNet Entities datasets.

A.1 CAD-120: Implementation Details

In Sec. 4.1 of our main paper, we describe the implementation details of our
model used for sub-activity and object affordance detection on the CAD-120
datasets. Here we provide more details about the visual and symbolic graphs.

Visual st-graph. We instantiate a visual st-graph on the actor and objects of
each temporal segment of an input sequence. Actor node features correspond to
human skeleton joint positions, body pose and hand position features. Object
node features correspond to the location of the object and its trajectory in the
temporal segment. Edge features describe the geometric relationship between
nodes i and j, such as difference in centroids and distance between them. (For
an analytic description of the available hand-crafted features see [4]). There are 5
edge types: edges connecting objects in the same temporal segment (obj-obj-sp),
edges connecting objects with the actor within a temporal segment (obj-act-sp),
edges connecting the actor with objects within a temporal segment (act-obj-sp),
edges connecting actors between two consecutive temporal segments (act-act-t)
and edges connecting objects between two consecutive temporal segments (obj-
obj-t).
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Symbolic Graph. We construct a symbolic graph that has 22 nodes corresponding
to the 10 sub-activity and 12 affordance classes, with edge weights capturing
per-frame class co-occurrences in training data (Fig. 7). The attribute of each
symbolic node is obtained by using off-the-shelf word2vec [6] embeddings of size
K = 300 to represent the semantic class. Actor/object visual nodes are connected
to sub-activity/affordance symbolic nodes, respectively.

A.2 Charades: Implementation Details

In Sec. 4.2 of our main paper, we describe the two models whose predictions
were fused for temporal action localization on the Charades dataset: a) a global
(coarse-grained) model based on whole frame convolutional features and a long-
term temporal model and b) a local (fine-grained) model based on our Visual
Symbolic - Spatio Temporal - Message Passing Neural Network (VS-ST-MPNN).
We briefly described the instantiation of the visual st-graph and symbolic graph,
the architecture hyper-parameters and the choice of loss for the task of tempo-
ral action localization on the Charades dataset. Here we discuss in more detail
the construction of the visual and symbolic graphs, as well as the training and
hyperparameters of the global model.

Global model. The global model is an I3D RGB model [1] fine-tuned on Charades
by the authors of [7], combined with a two-layer bidirectional Gated Recurrent
Unit (biGRU) of hidden size 256. In particular, we extract per frame features
from the Mixed 5c layer of the I3D, which are then fed as an input to the biGRU.

Visual st-graph. The nodes of the visual st-graph correspond to bounding boxes
of people (actors) and objects. A Faster-RCNN [3] architecture pretrained on
the MSCOCO [5] dataset is used for obtaining these bounding boxes. We detect
objects from the 80 categories of the COCO dataset, retaining all object detec-
tions with a confidence score above 0.15 and from those we keep the two highest
scoring human detections and 10 object detections per frame. Bounding boxes
are enlarged by a relative margin of 30% at each side. Note that we do not use
the predicted classes of the detected objects in our model. Rather than using the
object detector features for describing the actors and objects, we exploit the rich
spatio-temporal feature maps of the I3D action recognition model, by pooling
features from the Mixed 4f feature map of the I3D, which has a spatial output
stride of 16 pixels, a temporal output stride of 4 frames and 832 channels. In
particular, we first temporally downsample the spatio-temporal feature map to
obtain an effective temporal downsampling by a factor of 16 frames (1.5FPS,
maximum 109 frames per video) and then we apply RoIAlign [3] to pool fea-
tures from each detected object at each downsampled frame. This leads to a
feature map of 832×7×7 per region per frame. To obtain a single feature vector
for each actor and object node, we perform max-pooling over space. The edge
features are obtained by embedding the relative position of the bounding boxes
corresponding to the nodes connected by the edge.
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Fig. 1: Ablation on CAD-120 [4] sub-activity and object affordance detection perfor-
mance by incrementally adding edge types, starting from using only object-to-object
spatial edges.

Symbolic graph. Our symbolic graph has nodes corresponding to the 157 action
classes and edge weights corresponing to per-frame label co-occurrences in train-
ing data, with a temporal downsampling of one every 100 frames. Fig. 8 shows
the adjacency matrix for a subset of action classes of the Charades dataset. To
obtain the linguistic embedding of each action class, we first map the action class
name to a verb and object pair, then use off-the-shelf word2vec [6] embeddings
of size K = 300 to represent the verb and the object and finally we average
them.

Hyperparameter selection Given the input visual and symbolic graphs, the pro-
posed VS-ST-MPNN has 4 hyperparameters: the message sizes (dL, Ds) and
the number of layers (L,R). L and dL were chosen via cross-validation, while
the rest of the hyperparameters (including those of backbone and recognition
networks) were either set to default values or chosen visually (e.g. the object
detector threshold).

A.3 ActivityNet Entities: Implementation Details

As explained in the main paper, for the grounded video description experiments
on the ActivityNet Entities dataset we augment the model of Zhou et al. [9]
(GVD) with our visual and/or symbolic graph message passing modules. The
GVD model uses a hierarchical LSTM decoder that generates a descriptive sen-
tence based on global video features along with local region features of 100 region
proposals extracted in 10 equidistant frames of the video segment and it utilizes
the attention coefficients to ground the nouns in the image. One of the com-
ponents of the GVD model is a multi-head self-attention mechanism used to
refine local region features, akin to our visual graph message passing module. In
our main paper, we explored ways of replacing (or augmenting) that component
with our VS-ST-MPNN (or symbolic graph module), respectively. The rest of
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Fig. 2: Effect of varying message size on CAD-120 [4] sub-activity and object affordance
detection.

the GVD architecture is the same as in [9], including the training procedure and
losses.

Model hyperparameters. The hyperparameters of our model used in this dataset
are: L = 2, dL = 1024, R = 2, Ds = 256, λv = 1, λe = 0 and λea = 0 (no
edge features because of memory limitations). We used obj-obj-sp and act-obj-sp
edges. Our batch size is 80 video clips, the learning rate is set to 0.0003 and we
train for 30 epochs.

Visual st-graph. The actor nodes for each frame of the clip correspond to the
top 10 object detections that belong to one of the 42 manually defined actor
classes: adult, baby, biker, bride, boy, catcher, chef, child, couple, cyclist, driver,
fire extinguisher, girl, guy, groom, kid, lady, little girl, male, man, men, mother,
motorcyclist, officer, passenger, pedestrian, person, player, pitcher, police officer,
policeman, racer, referee, rider, she, skateboarder, skater, skier, tennis player,
umpire, woman, worker, young man. The object nodes correspond to the rest 90
object detections per frame, including background detections.

Symbolic graph. Our symbolic graph has nodes corresponding to the 431 object
classes and edge weights corresponing to per-sentence object label co-occurrences
in training data. The adjacency matrix is binarized by thresholding co-occurence
frequency values with a threshold of 0.2, removing spurious edges between ob-
ject classes with very few co-occurrences. Fig. 9 shows a part of the adjacency
matrix. To obtain the linguistic embedding of each object, we use off-the-shelf
word2vec [6] embeddings of size K = 300. These input symbolic node embed-
dings are visualized in Fig. 10. In the main paper, we discussed two variants
of the semantic context module: a) learn visual-to-symbolic node assignment
weights and vice-versa from scratch (SCM ) and b) use fixed visual-to-symbolic
node assignment weights and vice versa (SCM-VG). To obtain the latter we
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Fig. 3: Extending Fig. 6 of the main paper, we visualize the classes with the highest
positive and negative performance difference after adding object-to-actor spatial mes-
sages. Incorporating spatial structure benefits actions that involve interactions with ob-
jects far away from the actor, such as watching television or cooking. (bottom) Adding
actor-to-actor temporal messages helps with long actions, such as running, and actions
involving objects that are hard to detect (Holding a broom). (c) Adding symbolic graph
benefits actions that have a few training examples, such as Holding a vacuum or have
strong co-occurrences, such as Holding a book.

transfer detection knowledge from an object detector that is pre-trained on Vi-
sual Genome (VG), inspired by [9]. We find the nearest neighbor from the VG
object classes for each of the 431 object classes according to their distances in
the embedding space and then we assign visual nodes to symbolic nodes (object
classes) by using the corresponding classifier, i.e., the weights and biases, from
the last linear layer of the detector.

A.4 Additional Ablation Studies and Qualitative Results

CAD-120. In Figure 1 we show the contribution of each edge type on
the final sub-activity and object affordance detection performance on CAD-
120. Note how adding the object-to-actor-spatial message leads to a significant
improvement in the sub-activity detection, due to the usage of improved, context-
aware actor features. Object affordance detection is also improved as we keep
refining the actor features, since the refinement of object and actor features is
performed jointly by taking into account the different edge types. In Fig. 2, we
show the effect of the visual message size on CAD-120, where we see that
our model is not very sensitive with respect to that hyperparameter.
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Charades. In Fig. 5 we study the contribution of each component of the
visual context module to the final performance, in order to validate their
necessity. We start with a baseline model that classifies actions per frame based
on the local actor features (actor node attributes). Adding a single round of
obj-act-sp and act-act-t messages yields a first significant improvement in the
performance (more than 1%). Per frame mAP keeps improving as we perform
more rounds of node and edge updates. Adding an edge-type specific attention
mechanism for adapting the graph connectivity also benefits our model. Impor-
tantly, using the edge features in messages and the attention computation leads
to further improvements. Also, comparing our Visual ST-MPNN with the vanilla
GNN of Hamilton et al. [2], we get an improvement of 2% (12.1% → 13.7%).
The result clearly demonstrates the benefit of using attention, edge features,
and edge-type specific propagation weights. Evaluating our model with shared
weights across edge types for Charades (while still separately normalizing atten-
tion over edges of different types) yields an mAP of 13.3%. As we can see, even
with shared weights our model outperforms the vanilla GNN, but learning sepa-
rate weights for the attention mechanism and feature projection leads to further
mAP improvement. Finally, the performance is further improved to 15.3% by
adding the semantic context module, leading to an absolute improvement of 3%
over the vanilla GNN on the challenging Charades dataset.

Ablation results regarding symbolic graph connectivity and node in-
formation are summarized in Table 1. We find that adding the semantic context
module, even with a fully-connected symbolic graph, improves performance com-
pared to only using the visual context module (13.7% → 14.9%). Training with
more informative edges connecting the symbolic nodes, such as edges based on
class co-occurrence or linguistic similarity, slightly improves performance. From
this we can conclude that our semantic graph reasoning model can adapt to
different types of input symbolic graphs. We further investigate the contribution
of the input symbolic graph connectivity and node embeddings. To achieve this,
we train our model using as input a co-occurrence symbolic graph with node
attributes initialized with word embeddings and then test it using a) the same
graph; b) a graph with the same node embeddings but random adjacency matrix
(each edge is a Bernoulli trial, with edge probability 0.1) and c) a graph with ran-
dom node embeddings and random binary adjacency matrix (300-dimensional
node embeddings drawn from a N (0, I) normal distribution). As shown in Ta-
ble 1, our model’s performance significantly degrades when using random edges
and/or random node embeddings (15.3%→ 13.55%), and therefore it has learned
to utilize both symbolic graph connectivity and node information.

In Fig. 4 we visualize the attention computed along the object-to-actor
spatial edges, by showing the two object detections that have the highest at-
tention coefficients. As it can be seen, attention focuses on regions that contain
relevant context, such as the television, chairs, tables, pots etc. In the second
row, we can also see how attention shifts from the kitchen stove to the table, as
the person moves. However, not all attended regions are relevant to the action
performed by the actor. Furthermore, our model has the tendency to attend
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Table 1: Symbolic graph ablation analysis on the Charades [8] dataset. (left) Compar-
ison of three symbolic graph types: 1) co-occurrence: Co-occurrence adjacency matrix
(default), 2) linguistic similarity : adjacency matrix based on the cosine similarity of
linguistic embeddings, 3) dense: fully-connected (complete) symbolic graph. (right)
Contribution of symbolic graph connectivity and node embeddings. After training our
model with an symbolic graph, whose edges encode co-occurrence and whose node at-
tributes are word embeddings, we test with a) the same graph; b) a graph with the
same node attributes but random adjacency matrix and c) a graph with random node
attributes and random connectivity.

Symbolic graph type mAP (%)

co-occurrence 15.3
linguistic similarity 15.1

dense 14.9

Symbolic Graph Adjacency/Nodes mAP (%)

co-occurrence/GloVe embeddings 15.3
random/GloVe embeddings 14.29

random/random 13.55

to large regions, since they provide more context. Since our approach depends
on actor/object detections, it might miss relevant small regions, such as the
cupboard door, leading to failure cases in activities such as opening cupboard,
grasping a doorknob, turning off a light. To address this we combine our method
with global scene features.

Furthermore, in Fig. 6 we provide some sample action predictions (scores)
for 9 frames of 3 videos from the Charades dataset. These predictions are ob-
tained by using only our VS-ST-MPNN, without biGRU and global scene fea-
tures/temporal dynamics. The proposed model is able to detect fine-grained
actions that involve human-object interaction, such as Drinking from a cup,
Opening a door, Looking outside, Walking through a doorway etc.

ActivityNet Entities. In Fig. 11 and Fig. 12, we show how the initial symbolic
node embeddings (Fig. 10), which are shared among all videos, get refined by
our Semantic Context Module (sb-vg model) for various video segments. Inter-
estingly, symbolic nodes end up with refined symbolic node features, which
have only a few non-zero feature entries. These entries are similar for video seg-
ments of the same scene/event (Fig. 11), but different for video segments of
different events (Fig. 12). These symbolic node features, although not directly
interpretable, indicate that our semantic context module seems to be performing
global semantic reasoning that results in symbolic node features that can help
discriminate between different scenes/events.

Fig. 13 illustrates video captioning results on sample video segments from
the ActivityNet Entities validation set. Adding the semantic context module to
the GVD [9] seems to lead to richer captions, capturing more details about the
objects in the image.
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Fig. 4: Visualization of attention over objects for updating the feature of an actor on
sample frames from Charades dataset. Each pair of images shows: the original frame
with the actor detection in green and object detections in blue (left) and the actor and
the two objects with largest attention coefficients (right).
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Fig. 5: Performance ablation on Charades when incrementally adding components of
our full model, starting with early stage RGB I3D features pooled from actor regions.
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Fig. 6: Temporal action predictions of our model (ID: 3) for three videos from the
Charades validation set. Action scores for 9 equidistant frames shown for each video.
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Fig. 7: Symbolic graph adjacency matrix for CAD-120 dataset.
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Fig. 8: Illustration of per-frame co-occurrences of a subset of action classes from the
training annotations of the Charades dataset.
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Fig. 9: Illustration of per-sentence co-occurrences of a subset of object classes from the
training set of the ActivityNet Entities dataset.
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Fig. 10: Visualization of initial symbolic graph node embeddings (word embeddings).
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Fig. 11: Visualization of refined symbolic graph node embeddings for two sample Activ-
ityNet Entities video segments that contain similar events (5 frames shown from each
segment).
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Fig. 12: Visualization of refined symbolic graph node embeddings for two sample Ac-
tivityNet Entities video segments that contain different events (5 frames shown from
each segment).
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Fig. 13: Video captioning results on sample video segments from the ActivityNet Enti-
ties validation set. Adding the symbolic graph reasoning module to the GVD [9] seems
to yield richer captions, capturing more details about the objects in the image. GT :
Ground Truth. GVD : Grounded Video Description model. GVD w/ symb (ours): GVD
with symbolic graph (5 frames shown from each segment.)


