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Mathematical Institute for Data Science, Johns Hopkins University, Baltimore, MD
{emavrou1,bbejar,rvidal}@jhu.edu

Abstract. Events in natural videos typically arise from spatio-temporal
interactions between actors and objects and involve multiple co-occurring
activities and object classes. To capture this rich visual and semantic
context, we propose using two graphs: (1) an attributed spatio-temporal
visual graph whose nodes correspond to actors and objects and whose
edges encode different types of interactions, and (2) a symbolic graph
that models semantic relationships. We further propose a graph neural
network for refining the representations of actors, objects and their
interactions on the resulting hybrid graph. Our framework goes beyond
current approaches that assume nodes and edges of the same type, operate
on a fixed graph structure and do not use a symbolic graph. In particular,
our framework: a) has specialized attention-based aggregation functions
for different node and edge types; b) uses visual edge features; c) integrates
visual evidence with label relationships; and d) performs global reasoning
in the semantic space. Experiments on challenging video understanding
tasks, such as temporal action localization on the Charades dataset, show
that the proposed method leads to state-of-the-art performance.

1 Introduction

The field of video understanding has been moving towards increasing levels of
complexity, from classifying a single action in short trimmed videos to detecting
multiple complex activities performed by multiple actors interacting with objects
in untrimmed videos. Therefore, there is a need to develop algorithms that
can effectively model spatio-temporal visual and semantic context. One way of
capturing such context is to use graph-based modeling, which has a rich history
in computer vision. Traditional graph-based approaches, e.g., using probabilistic
graphical models [26,27,68,58], focused mainly on modeling context at the level of
symbols rather than signals/visual representations. However, recent advances have
enabled representation learning on graph-structured data using deep architectures
called Graph Neural Networks (GNNs), which learn how to iteratively update
node representations by aggregating messages from their neighbors [25].

Videos can be represented as visual spatio-temporal attributed graphs (visual
st-graphs) whose nodes correspond to regions obtained by an object detector
and whose edges capture interactions between such regions. GNNs have recently
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Fig. 1: Cues for video understanding: (1) visual spatio-temporal interactions
between actors and objects and (2) commonsense relationships between labels,
such as co-occurrences. These cues can be encoded in a hybrid spatio-temporal
visual and symbolic attributed graph. In this work, we perform representation
learning on this hybrid graph to obtain context-aware representations of detected
semantic entities, such as actors and objects, that can be used to solve downstream
video understanding tasks, such as multi-label action recognition.

been designed for refining the local node/edge features, typically extracted by a
convolutional neural network, based on the spatio-temporal context captured by
the graph. Although representation learning on visual st-graphs has lead to sig-
nificant advances in video understanding [63,52,14,57,19,62,3], there are four key
limitations of state-of-the-art approaches that prevent them from fully exploiting
the rich structure of these graphs. First, most GNNs assume nodes/edges of the
same type. In practice, the visual st-graph is a heterogeneous graph that has
distinct node types (actor, object) and edge types (such as object-to-actor spatial
and actor-to-actor temporal), with each type being associated with a feature
of potentially different dimensionality and semantics, as shown in the example
of Fig. 1. Because of this limitation, recent attempts at explicitly modeling
actors and objects have resorted to applying separate GNNs for each node/edge
type [63,12]. Second, most methods operate on a graph of fixed structure with
dense connectivity between detected regions. In practice, only a few of the edges
capture meaningful interactions. Third, current approaches do not incorporate
edge features for updating the node representations. Finally, despite modeling
local visual context, existing approaches do not reason at a global video level or
exploit commonsense semantic label relationships, which have been shown to be
beneficial in the image recognition domain [33,5].

In this work, in an effort to address these limitations, we propose a novel
Graph Neural Network (GNN) model, called Visual Symbolic - Spatio Temporal -
Message Passing Neural Network (VS-ST-MPNN), that performs representation
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learning on visual st-graphs to obtain context-aware representations of detected
actors and objects (Fig. 1). Our model employs learnable neighborhood aggregation
mechanisms, specialized for each node and edge type, to iteratively refine the
actor and object representations. We also adapt the graph connectivity with
an attention mechanism specialized for each type of interaction. For example,
an actor node will separately attend to actor nodes at the previous frame and
object nodes at the current frame. Furthermore, we initialize edge features
with geometric relations between regions, refine them and use them to adapt
the graph connectivity. Intuitively, nodes which are close to each other or are
interacting should be strongly connected. Finally, one of our key contributions is
incorporating an attributed symbolic graph whose nodes correspond to semantic
labels, such as actions, described by word embeddings and whose edges capture
label relationships, such as co-occurrence. We fuse the information of the two
graphs with learnable association weights between their nodes and perform global
semantic reasoning on the symbolic graph. Importantly, we do not require ground
truth annotations of objects, tracks or semantic labels for each visual node.

In summary, the contributions of this work are three-fold. First, we model
contextual cues for video understanding by combining a symbolic graph, capturing
semantic label relationships, with a visual st-graph, encoding interactions between
detected actors and objects. Second, we introduce a novel GNN that can perform
joint representation learning on the hybrid visual-symbolic graph, in order to
obtain visual and semantic context-aware representations of actors, objects and
their interactions in a video, which can then be used to solve downstream
recognition tasks. Finally, to demonstrate the effectiveness and generality of our
method, we evaluate it on tasks such as multi-label temporal activity localization,
object affordance detection and grounded video description on three challenging
datasets and show that it achieves state-of-the-art performance.

2 Related work

Context and its role in vision has been studied for a long time [42]. There are
two major, complementary types of context utilized in video understanding tasks:
(a) coarse-grained visual context is captured by applying convolutional neural
networks to short sequences of whole frames [51,54,56,4,65] followed by temporal
models, such as recurrent neural networks [29,43,65] and (b) fine-grained visual
context is captured by using mid-level representations of semantic parts, such
as body parts [7,39], latent attributes [35], secondary regions [15], human-object
interactions [45,67] and object-object interactions [36,3,65].

Graph neural networks for video understanding. The first approach apply-
ing a deep network on a visual graph for video understanding was the Structured
Inference Machine [11], which introduced actor feature refinement with message
passing, and trainable gating functions for filtering out spurious interactions, but
only captured spatial relationships between actors. Another early approach was
the S-RNN [21], which although related because it introduced the concept of
weight-sharing between nodes or edges of the same type, it did not iteratively
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refine node representations. With the advent of GNNs, many researchers have
explored using them for video understanding, by modeling whole frames [64],
tracklets [63], feature map columns [52,14,41] or object proposals [57,19,62] as
graph nodes and using off-the-shelf GNNs, such as MPNNs [13], GCNs [25]
and Relation Networks [20,52,64,3] to refine the node or edge representations,
obtaining significant performance gains. However, most of these GNNs are unable
to handle edge features, directed edges, distinct node and edge types, and un-
known underlying graph structure. Therefore, applying existing GNNs to visual
st-graphs requires treating every node and edge in the same way [3,14], or focusing
only on one edge type [52,64,36,19,20], or using separate GNNs for each type
of interaction [57,63,12], hence completely ignoring or sub-optimally handling
their rich graph structure. In contrast, our proposed method can be directly
applied to any st-graph and supports message passing in heterogeneous graphs.
The benefit of such fine-grained modeling has already been established in fields
such as computational pharmacology and relational databases [69,16,48], but
remains relatively unexplored in computer vision. Furthermore, similar to [46,14],
our method utilizes an attention mechanism for adapting the visual edge weights
over iterations, but in our case this mechanism is specialized for different edge
types and takes advantage of edge features.

Symbolic graphs. There is a long line of work on exploiting external knowledge
encoded in label relation graphs for visual recognition tasks. Semantic label
hierarchies, such as co-occurrence, have been leveraged for improving object
recognition [38,37,8,10], multi-label zero-shot learning [30] and other image-
based visual tasks [31,47]. Much fewer papers utilize knowledge graphs for video
understanding [1,23,24], possibly due to the limited number of semantic classes in
traditional video datasets. A notable exception is the SINN [24], which performs
graph-based inference in a hierarchical label space for action recognition. However,
most of these methods directly perform inference on the symbolic graph. Rather,
we aim to use the semantics of labels to integrate prior knowledge about the
inter-class relationships as well as linguistic information, and facilitate semantic
space reasoning. In a similar vein, Liang et al. [33] enhance convolutional feature
maps in the coordinate space by using a symbolic graph, while [32,6] use a latent
interaction graph. In contrast, we seek to improve the representation of visual st-
graph nodes rather than enhance features in a grid structure. Fusing information
from multiple graphs using GNNs is an exciting new line of research [2,59,53].
Similar to our approach, Chen et al. [5] combine a visual graph instantiated
on objects with a symbolic graph and perform graph representation learning,
while [22] enforce the scalar edge weights between visual regions to be consistent
with the edges of the symbolic graph. However, both of them operate on simple
spatial graphs and assume access to semantic labels of regions during training.

3 Method

In this section, we describe the overall architecture of our proposed VS-ST-MPNN
model, shown in Fig. 2. Our goal is to refine the features of detected actors,
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Fig. 2: Overview of our VS-ST-MPNN model that performs represen-
tation learning on a hybrid visual-symbolic graph. Given an input video
that is represented as a visual st-graph, with nodes corresponding to detected
actors and objects and edges capturing latent interactions, our framework has
two modules that integrate context in the local representations of its nodes and
edges: (a) a Visual Context Module (Sec. 3.1) that performs L rounds of node
and edge updates on the visual graph, with specialized neighborhood aggregation
functions that depend on the type of an edge and (b) a Semantic Context Module
(Sec. 3.2) that integrates visual evidence with semantic knowledge encoded in an
external symbolic graph and learns global semantic interaction-aware features.

objects and their interactions based on the contextual information captured in
two graphs: a visual st-graph and a symbolic graph. The refinement is performed
with a novel GNN, which a) is designed to exploit the rich structure of the
visual st-graph by utilizing edge features and learning specialized attention-based
neighborhood aggregation functions for different node and edge types, and b)
enables the fusion with the symbolic graph, by incorporating a semantic reason-
ing module that learns semantic relation-aware features and a soft-assignment
module that connects visual and symbolic graph nodes without requiring access
to ground-truth semantic labels of regions during training. The context-aware
features can then be used in downstream video understanding tasks.

3.1 Visual Context Module

Visual st-graph. Our input is a sequence of T frames with detected actor and
object regions. Let Gv = (V v, Ev) be a spatio-temporal attributed directed graph,
called the visual st-graph, where V v is a finite set of vertices and Ev ⊆ V v × V v
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is a set of edges. Nodes correspond to actor and object detections, while edges
model latent interactions. There are M actors and N objects per frame. Fig. 2
illustrates a toy example with M = 1, N = 2 and T = 2.

The graph is both node- and edge-typed with N node types and E edge
types. For example, the node types are actor and object (N = 2) and the edge
types can be: object-to-actor spatial (obj-act-s), actor-to-object spatial (act-obj-
s), actor-to-actor temporal (act-act-t) and object-to-object temporal (obj-obj-t)
(E = 5). Each node and edge is associated with an initial attribute vector, whose
dimensionality may vary depending on the node/edge type. An actor/object

appearance feature can be used as the initial attribute of node i (h
(0)
i ), while the

relative spatial location of regions i and j can be used as the initial attribute of

the edge from j to i (h
(0)
ij ). The allowed spatio-temporal connections between

nodes of the visual st-graph are specified a-priori by a binary adjacency matrix

Lv ∈ {0, 1}|V
v|×|V v|

. For instance, we can constrain temporal edges to connect a
node at frame t with another node of the same type at time t − 1. Lv defines
the neighborhood of each node and, thus, encodes the family of spatio-temporal
interactions captured by the model.

Visual ST-MPNN. Given the input visual st-graph Gv with initial node and

edge attributes/features, {h(0)
i }i∈V v and {h(0)

ij }(i,j)∈Ev , respectively, we introduce
novel GNN propagation rules to perform representation learning on the visual
st-graph with the goal of refining local node and edge attributes using spatio-
temporal contextual cues. In each iteration of node and edge refinement our
model: (1) adapts the connectivity of the visual st-graph by refining scalar edge
weights using attention coefficients; (2) computes a message along each edge that
depends on the edge type, the attention-based scalar edge weight, the attributes
of the connected nodes and the edge attribute; (3) updates the attribute of every
node by aggregating messages from incoming edges; and (4) updates the attribute
of every edge by using the message that was computed alongside it. Next, we
describe each one of these steps in more detail.

– Adapting graph connectivity: At each iteration l of the MPNN, we first refine
the graph connectivity by computing attention coefficients, aij that capture the
relevance of node j for the update of node i. In particular, in contrast to GAT [55],
our model learns an attention mechanism specialized for each type of interaction
and it utilizes edge features for its computation. The attention coefficients for
the l-th iteration are computed as follows:

a
(l)
ij = exp

(
γ
(l)
ij

)
/

 ∑
k∈Nε(i)

exp
(
γ
(l)
ik

) , (1)

γ
(l)
ij = ρ

(
(vεa)

T
[
W νr
r h

(l−1)
i ;W νs

s h
(l−1)
j ;λeaW

ε
rsh

(l−1)
ij

])
. (2)

Here, ε is the type of the edge from j to i, Nε(i) denotes the set of nodes connected

with i via an incoming edge of type ε, h
(l−1)
ij is the previous state of the edge

from j to i, νr is the node type of the receiver node i, νs is the node type of the
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sender node j, ρ is a non-linearity, such as Leaky-ReLU [18]. The λea is binary
scalar hyperparameter denotes whether edge features will be used for computing
the attention coefficients. W νr

r , W νs
s and W ε

rs are learnable projection weights
and are shared between nodes (edges) of the same type. All projection matrices
linearly transform the current node (edge) attribute to a refined feature of fixed
dimensionality dl. vεa is a learnable attention vector. For improved readability
we have dropped the layer index (l) from the attention and projection weights.

– Message computation: After computing the attention coefficients, we compute a
message along each edge. The message from node j to node i is:

m
(l)
ij = a

(l)
ij

(
λvW

νs
s h

(l−1)
j + λeW

ε
rsh

(l−1)
ij

)
, (3)

where λe is a binary scalar hyperparameter, denoting whether edge features will
used in the messages, λv is a binary scalar hyperparameter, denoting whether
the sending node feature will be used in the message and the learnable weight
matrices are the same as the ones used in the attention computation.

– Node and edge update: Following the message computation, the node attribute is
updated using an aggregation of incoming messages from different edge types and
a residual connection, while the edge attribute is set to be equal to the message:

h
(l)
i = h

(l−1)
i + σ

E−1∑
ε=0

∑
j∈Nε(i)

m
(l)
ij

 ,h
(l)
ij = m

(l)
ij ,

where σ(·) is a non-linearity, such as ReLU. After L layers of the spatio-temporal
MPNN (or equivalently L rounds of node and edge updates), we obtain refined,

visual context-aware node and edge attributes: h
(L)
i ∈ RdL , h

(L)
ij ∈ RdL .

3.2 Semantic Context Module

Symbolic graph. Let Gs = (V s, Es), be the input symbolic graph, where V s

and Es denote the symbol set and edge set, respectively. The nodes of this
graph correspond to semantic labels, such as action labels or object labels. Each
symbolic node c is associated with a semantic attribute, such as the linguistic
embedding of the label (sc ∈ RK). Edges in the symbolic graph are associated
with scalar weights, which encode label relationships, such as co-occurrence. These
edge weights are summarized in the fixed adjacency matrix Ls ∈ R|V s|×|V s|.
– Integration of visual evidence with the symbolic graph: As a first step, we
update the attributes of the symbolic graph using visual evidence, i.e., the visual
context-aware representations of the nodes of the visual st-graph. To achieve this,
without requiring access to the ground-truth semantic labels of regions, we learn
associations between the nodes of the visual and of the symbolic graph. The
association weight φvsc,i represents the confidence of assigning the feature from
visual node i to the symbolic node c:

φvsc,i =
ωc,i exp

(
(wvs

c )
T

h
(L)
i

)
∑
c′∈V s ωc′,i exp

(
(wvs

c′ )
T

h
(L)
i

) , (4)
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where wvs
c ∈ RdL is a trainable weight vector and Ω ∈ {0, 1}|Vs|×|Vv| is an

input binary mask that defines allowed visual-to-symbolic node connections. For
example, when our symbolic nodes correspond to action classes, we can disable
connections between object and symbolic nodes.

After computing the voting weights, each symbolic node is associated with a

weighted sum of projected visual node features: f̃c = σ(
∑
i φ

vs
c,iW

vs
p h

(L)
i ), where

W vs
p ∈ RDs×dL is a learnable projection weight matrix. The new representation

of each symbolic graph node c is computed as the concatenation of the linguistic

embedding, sc, and the visual feature, f̃c, s
(0)
c =

[
sc; f̃c

]
∈ RK+Ds .

– Semantic Graph Reasoning: We learn semantic relation-aware features by ap-
plying a vanilla GCN [25] on the nodes of the symbolic graph. The GCN yields
evolved symbolic node features S(R) ∈ R|V s|×Ds , by iteratively applying the
propagation rule: S(r+1) = GCN(S(r), Ls), where S(r) denotes the matrix of
symbolic node embeddings at the r-th iteration.

– Update of visual st-graph: The evolved symbolic node representations obtained
after R iterations of graph convolutions on the symbolic graph can be mapped
back to the visual st-graph, so that the representation of the visual nodes can
be enriched by global semantic context. To achieve this we compute mapping
weights (attention coefficients) from symbolic nodes to visual nodes:

φsvi,c =
ωc,i exp

(
esvi,c
)

∑
c′∈V s ωc′,i exp

(
esvi,c′

) , (5)

where esvi,c = (vsva )
T
[
s
(R)
c ; h

(L)
i

]
and vsva ∈ RdL+Ds is a learnable attention

vector. The final visual node feature representation is then obtained using a

residual connection: hi = h
(L)
i + σ

(∑
c′∈V s φ

sv
i,c′W

sv
p s

(R)
c′

)
. These context-aware

representations can be used for downstream video understanding tasks.

4 Experiments

To demonstrate the effectiveness and generality of our method, we conduct
experiments on three challenging video understanding tasks that require reasoning
about interactions between semantic entities and relationships between classes: a)
sub-activity and object affordance classification (Sec. 4.1), b) multi-label temporal
action localization (Sec. 4.2) and c) grounded video description (Sec. 4.3).

CAD-120. This dataset provides 120 RGB-D video sequences, with each video
showing a daily activity comprised of a sequence of sub-activities (e.g., moving,
drinking) and object affordances (e.g., reachable, drinkable) [27]. Given tempo-
ral segments, the task is to classify each actor in each segment into one of 10
sub-activity classes and each object into one of 12 affordance classes. Evaluation
is performed with 4-fold, leave-one-subject-out, cross-validation using F1-scores
averaged over all classes as an evaluation metric. With a visual st-graph provided
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Table 1: Results on CAD-120 [27] for sub-activity and object affordance
detection, measured via F1-score. Our results are averaged across 5 runs.

Method Detection F1-score (%)

Sub-activity Object affordance

ATCRF [27] 80.4 81.5
S-RNN [21] 83.2 88.7

S-RNN [21] (multitask) 82.4 91.1
GPNN [46] 88.9 88.8

STGCN [12] 88.5 -

VS-ST-MPNN (ours) 90.4 (±0.8) 89.2 (±0.3)
only visual graph (ours) 89.6 (±1.1) 88.6 (±0.6)

by the dataset (including hand-crafted features of actors and objects and geomet-
ric relations), it is a particularly good test-bed for comparing different GNNs.
Charades. Charades [50] is a large dataset with 9848 RGB videos and annota-
tions for 157 action classes, many of which involve human-object interactions.
Each video contains an average of 6.8 activity instances, many of which are
co-occurring. Following [50], multi-label action temporal localization performance
is measured in terms of mean Average Precision (mAP), evaluating per-frame
predictions for 25 equidistant frames in each one of the 1.8k validation videos.
ActivityNet Entities. The task in the recently released ActivityNet Entities [65]
dataset, containing 15k videos and more than 158k annotated bounding boxes,
is to generate a sentence describing the event in a ground-truth video segment,
and to spatially localize all the generated nouns that belong to a vocabulary of
432 object classes. Following Zhou et al. [65], the quality of generated captions
is measured using standard metrics, such as Bleu (B@1, B@4), METEOR (M),
CIDEr (C), and SPICE (S), whereas the quality of object localization is evaluated
on generated sentences using the F1all, F1loc metrics. Object localization results
on the test set were obtained using the evaluation server 1.

4.1 Experiments on CAD-120

Implementation details. We use the visual st-graph provided with the dataset,
which is instantiated on the actor and objects of each temporal segment of the
input video and contains 5 edge types: obj-obj-s, obj-act-s, act-obj-s, act-act-t
and obj-obj-t. We construct a symbolic graph that has nodes corresponding
to the 10 sub-activity and 12 affordance classes, with edge weights capturing
per-frame class co-occurrences in training data. The attribute of each symbolic
node is obtained by using off-the-shelf word2vec [40] class embeddings of size
K = 300. Actor (object) nodes are connected to sub-activity (affordance) symbolic
nodes (see suppl. for details). The following hyperparameters are used in the
VS-ST-MPNN model: L = 4 graph update rounds, R = 1 GCN layer and

1 https://competitions.codalab.org/competitions/20537

https://competitions.codalab.org/competitions/20537
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Fig. 3: Effect of adaptive graph connectivity and node update type on
CAD-120 detection performance. Using an attention mechanism to adapt the
graph connectivity outperforms using a fixed visual adjacency matrix. Updating
nodes based on both neighboring node and incoming edge attributes (full) is
superior to updating them using just the nodes (nnode) or edges (relational).

messages of size 256. Attention and nodes are updated based on node and edge
attributes (λv = 1, λe = 1, λea = 1). We train our model using the sum of
cross-entropy losses computed at each node of the st-graph for 100 epochs, with
a batch size of 5 sequences. We use the Adam learning rate scheduler with an
initial learning rate of 0.001. Dropout is applied with a rate of 0.5 on all fully
connected layers.

Comparison with the state of the art. Table 1 compares the subactivity
and affordance detection performance of our method with prior work. Our
method obtains state-of-the-art results for sub-activity detection, with an average
performance of 90.4% and a best of 91.3%, and the second best result on
affordance detection (89.2%) - being only second to the S-RNN (multi-task) [21].
The S-RNN was trained on the joint task of detection and anticipation and we
outperform it by 8% in the subactivity classification task. Even without using the
symbolic graph, our method improves upon recent GNNs, which were applied on
the same attributed visual st-graph, validating our novel layer propagation rules.
Ablation analysis. In Fig. 3, we show the effect of attention, edge features and
number of visual node updates on the recognition performance. First, we compare
the performance of a model trained with a fixed binary adjacency matrix with
a model trained using attention. Clearly, adaptive graph connectivity benefits
performance in both tasks. Second, we conclude that using the attributes of both
the neighboring nodes and adjacent edges is better than using only those of the
neighboring nodes, validating the usefulness of edge features. We also observe
that increasing the number of ST-MPNN layers improves performance, which
saturates after 4-5 layers.

4.2 Experiments on Charades

Implementation details. To tackle the challenging problem of multi-label
temporal action localization, we perform a late fusion of a global model, operating
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Table 2: Multi-label temporal action localization results on Cha-
rades [50]. Performance is measured via per-frame mAP. R: RGB, F: optical
flow. Our method yields a relative improvement of 6% over the state-of-the-art
method by using only raw RGB frames.

Method Feat Input mAP (%)

Predictive-corrective [9] VGG R 8.9
Two-stream [49] VGG R+F 8.94

Two-stream + LSTM [49] VGG R+F 9.6
R-C3D [60] VGG R+F 12.7
ATF [49] VGG R+F 12.8

RGB I3D [43] I3D R 15.63
I3D [43] I3D R+F 17.22

I3D + LSTM [43] I3D R+F 18.12
RGB I3D + super-events [43] I3D R 18.64

I3D + super-events [43] I3D R+F 19.41
STGCN [12] I3D R+F 19.09

I3D + 3TGMs + super-events [44] I3D R+F 22.3

I3D + biGRU + VS-ST-MPNN (Ours) I3D R 23.7(±0.2)

on whole frames, and a local model, operating on actors and objects. The global
model is an I3D RGB model [4] fine-tuned on Charades [43], combined with
a two-layer biGRU of size 256, similar to existing baselines on this dataset.
The proposed VS-ST-MPNN is used as the local model. To build the visual
st-graph we detect actors and objects using a Faster-RCNN [17] trained on the
MS-COCO [34] dataset. We rank detections based on their score and we keep the
top-2 human detections and top-10 object detections per frame. Zero-padding is
applied to handle frames with fewer actors and objects. We pool features from the
Mixed 4f 3D feature map of the I3D for each detected region using RoIAlign [17]
and max-pooling in space. This yields an attribute of size 832 for the actor/object
regions for the frames of the original video sampled at 1.5 FPS. We use 3 types of
edges: obj-act-s, act-obj-s and act-act-t and describe each edge with the relative
position of the connected regions. Our symbolic graph has nodes corresponding
to the 157 action classes and edge weights corresponding to per-frame label
co-occurrences in training data. Obtaining a linguistic attribute for each symbolic
node in Charades is not trivial, since action names often contain multiple words.
To circumvent that, each action class is separated into a verb and an object and
the average of these two word embeddings is used as the initial node attribute.
The hyperparameters are: L = 3, dL = 512, R = 1, Ds = 256, λv = 1, λe = 1 and
λea = 1. For performing per-frame multi-label action classification, we average
the learned actor representations at each frame, we input them to a two-layer
biGRU of size 256, and we feed the resulting hidden states to binary action
classifiers. We train for 40 epochs with a binary cross-entropy loss applied per
frame, using a batch size of 16 sequences. We also apply dropout with a rate
of 0.5 on all fully connected layers and use the Adam scheduler, with an initial
learning rate of 1e−4.
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Table 3: Ablation analysis on the Charades [50] dataset. Visual : Visual
Context Module. Semantic: Semantic Context Module. Long Term: long-term
temporal modeling (biGRU).

ID Visual Semantic Long Term mAP (%) mAP (%)

+ Global model

1 X X X 18.6 23.4
2 - - X 15.2 22.2
3 X X - 15.3 22.0
4 X - - 13.7 21.8
5 - X - 11.7 21.8
6 - - - 10.7 20.9

Comparison with prior work. As shown in Table 2, our framework outper-
forms all other methods on temporal action localization, with a mAP of 23.7%,
using only raw RGB frames. It yields a relative improvement of 24% over the
alternative graph-based approach [12], which is using both RGB and optical flow
inputs, as well as additional actor embeddings trained at the ImSitu dataset [61].
Impact of each graph. In Table 3, we report the baseline result (10.7%) ob-
tained by classifying activities based on local actor features (ID: 6). Refining
these features by using our Visual Context Module improves performance by
3%. As shown quantitatively in the supplementary material, both our specialized
attention mechanism and the usage of edge features improve the performance,
outperforming a vanilla GNN. Representation learning on the hybrid graph yields
a significant absolute improvement of 5% over the baseline. Additionally,
modeling long-term temporal context and global context leads to the final state-
of-the-art performance, indicating that the representations learned by our model
are complementary to holistic scene cues and temporal dynamics.
Per-class improvement analysis. To gain a better understanding of the ben-
efits of representation learning on the visual graph, we highlight in Fig. 4 the
activity classes with the highest positive and negative difference in performance
when adding obj-to-act-s messages. By harnessing visual human-object interaction
cues, our model is able to better recognize actions such as Watching television.
Impact of semantic graph reasoning. Comparing the models with IDs 3
and 4 in Table 3, we observe that adding the semantic context module improves
mAP by 2%. Notably, updating the visual nodes by attending over the initial
symbolic node features (linguistic) instead of the evolved features did not im-
prove performance in our experiments, showing the importance of semantic graph
reasoning. The semantic module seems to particularly help with rare classes,
such as Holding a vacuum, which has only 213 training examples (3% of available
annotated segments), and classes with strong co-occurrences (Fig. 5). The t-SNE
visualization shows that, although the visual context-aware actor embeddings are
already capturing meaningful label relationships (e.g., open and hold book), the
integration of semantic relationships via the symbolic graph results in more tightly
clustered embeddings and well-defined groups, facilitating action recognition.
Model complexity. Since our visual st-graph is designed to capture only local
spatio-temporal interactions, we can compute messages in parallel and process
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0 10
mAP Difference

Washing their hands
Opening a refrigerator

Someone is cooking something
Watching television

Working/Playing on a laptop
Watching a laptop or something on a laptop

Talking on a phone/camera
Playing with a phone/camera
Working on paper/notebook

Holding a phone/camera
Closing a refrigerator
Someone is laughing

Tidying something on the floor
Someone is running somewhere

Watching/Looking outside of a window
Sitting on the floor

Fig. 4: Qualitative results on Charades. (left) The classes with the highest
positive and negative performance difference after adding object-to-actor spatial
messages. Incorporating spatial structure benefits actions that involve interactions
with distant objects, such as watching television or cooking. (right) Action
predictions of our model (ID: 3) for 9 frames of a sample Charades video.

0 10
mAP Difference

Holding a vacuum
Washing a window

Closing a window
Wash a dish/dishes

Tidying something on the floor
Holding a book

Washing their hands
Holding a laptop

Tidying some clothes
Holding a broom
Washing a table

Grasping onto a doorknob
Closing a refrigerator

Washing a cup/glass/bottle
Someone is running somewhere

Fig. 5: Qualitative evaluation of the Semantic Context Module. (left)
Classes with the highest positive and negative performance difference when adding
the semantic module. (right) t-SNE visualization of actor node embeddings from
Charades validation set obtained before and after adding the SCM. We show
1121 random samples per class for 5 selected action classes. (Best viewed zoomed
in and in color.)

the entire Charades validation set (around 2K videos at 1.5FPS) in 2 minutes on
a single Titan XP GPU, given initial features pooled from actor/object regions.
For additional implementation details, ablations, qualitative results, failure cases
and limitations we refer the reader to the the supplementary material.

4.3 Experiments on ActivityNet Entities

The current state-of-the-art grounded video description model (GVD) [65] uses a
hierarchical LSTM decoder that generates a sentence describing a video segment,
given global video features as well as local region features of 100 region proposals
from 10 equidistant frames. The region features are refined using a multi-head
self-attention (MHA) mechanism. To validate the effectiveness of our model,
we experiment with three variants of the GVD: (a) replace the MHA with our
VS-ST-MPNN; (b) use the MHA along with our Semantic Context Module; (c)
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Table 4: Grounded video description results on ActivityNet Enti-
ties [65]. MHA: multi-head self-attention. SCM-VG: our semantic context module
with visual-to-symbolic node correspondences pre-trained on Visual Genome.

B@1 B@4 M C S F1all F1loc

Validation set

GVD (MHA) [65] 23.9 2.59 11.2 47.5 15.1 7.11 24.1

GVD (VCM + SCM) (ours) 23.4 2.41 11.1 47.3 14.8 7.28 25.2
GVD (MHA + SCM) (ours) 23.8 2.67 11.3 48.6 15.2 7.35 25.3
GVD (MHA + SCM-VG) (ours) 23.9 2.78 11.3 49.1 15.1 7.15 24.0

Test set

Masked Transformer [66] 22.9 2.41 10.6 46.1 13.7 - -
Bi-LSTM+TempoAttn [66] 22.8 2.17 10.2 42.2 11.8 - -
GVD (MHA) [65] 23.6 2.35 11.0 45.5 14.9 7.59 25.0

GVD (VCM + SCM) (ours) 23.1 2.34 10.9 46.1 14.5 - -
GVD (MHA + SCM) (ours) 23.6 2.54 11.2 47.7 15.0 7.30 24.4
GVD (MHA + SCM-VG) (ours) 24.1 2.63 11.4 49.0 15.1 7.81 27.1

the same as before but with visual-to-symbolic node assignment weights initialized
based on knowledge transfer from the Visual Genome dataset [28] (more details
can be found in the supplementary material). We use a symbolic graph whose
nodes correspond to object classes. As shown in Table 4, replacing MHA with our
visual module does not improve captioning, but it improves localization accuracy
with a relative improvement of 4% (24.1 → 25.2). Adding our Semantic Context
Module to GVD leads to an improvement across all captioning and localization
metrics, which is even more pronounced in the test set (improving CIDEr from
45.5 to 47.7). Note that the initial region features already captured semantic
information by including object class probabilities. Therefore, the improvement
in captioning cannot be attributed solely to the inclusion of semantic context,
but rather to our semantic reasoning framework. Finally, from the superior
captioning performance of our third variant, we conclude that prior knowledge
about correspondences between visual and symbolic nodes, if available, can
possibly facilitate representation learning on the hybrid graph.

5 Conclusions

In this paper, we proposed a novel deep learning framework for video understand-
ing that performs joint representation learning on a hybrid graph, composed of a
symbolic graph and a visual st-graph, for obtaining context-aware visual node
and edge features. We obtained state-of-the-art performance on three challenging
datasets, demonstrating the effectiveness and generality of our framework.
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55. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
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