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Abstract. Scene text detection has been significantly advanced over re-
cent years, especially after the emergence of deep neural network. How-
ever, due to high diversity of scene texts in scale, orientation, shape and
aspect ratio, as well as the inherent limitation of convolutional neural
network for geometric transformations, to achieve accurate scene text
detection is still an open problem. In this paper, we propose a novel se-
quential deformation method to effectively model the line-shape of scene
text. An auxiliary character counting supervision is further introduced
to guide the sequential offset prediction. The whole network can be easily
optimized through an end-to-end multi-task manner. Extensive experi-
ments are conducted on public scene text detection datasets including
ICDAR 2017 MLT, ICDAR 2015, Total-text and SCUT-CTW1500. The
experimental results demonstrate that the proposed method has outper-
formed previous state-of-the-art methods.

Keywords: Scene Text Detection, Deep Neural Network, Sequential
Deformation

1 Introduction

Scene text detection has attracted growing research attention in the computer
vision field due to its wide range of real-world applications including automatic
driving navigation, instant translation and image retrieval. Scene text’s unique-
ness of high diversity in geometric transformations including scale, orientation,
shape and aspect ratio also makes it distinct from generic objects. It is obvious
that scene text detection is a challenging research topic.

Recently, the community has witnessed substantial advancements in scene
text detection [1,18,20,26,37–39,50], especially after the emergence of deep neu-
ral network. For scene text detection, a straightforward approach is to model
text instance (word or text line) as a special kind of object and adopt frame-
works of generic object detection, such as SSD [19] and Faster R-CNN [6]. These
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methods yield great performance on standard benchmarks. However, their per-
formance and generalization ability are undermined by standard convolution’s
fixed receptive field and limited capability for large geometric transformations.

Text instance is composed of similar components (e.g. text segments, charac-
ters and strokes), where component is spatially smaller and has less geometrical
transformations. Consequently, some methods [1, 31] predict text components
rather than the whole text instance. As pixel can be regarded as the finest-
grained component, many methods [15, 39] localize text based on instance seg-
mentation. These methods are more flexible in modeling, and have a lower re-
quirement for the receptive field, achieving remarkable results on localizing texts
with arbitrary shape. Nevertheless, an additional component grouping operation
like pixel clustering or segment connecting is always indispensable, where error
propagation from wrong component prediction and lack of end-to-end optimiza-
tion make barriers for the optimal performance.

Component detecting and grouping are also exploited by human visual sys-
tem [43]. Our eyes first localize one endpoint of a text instance, then sequentially
sweeps through the text center line and gazes only a part of the text at one time.
Finally, we group different parts into text instance along the sweeping path.

Fig. 1. Demonstration of the sampling locations for standard convolution and the
proposed SDM. For clearer visualization, all sampling locations are mapped on input
images. (a)(b) regular sampling locations in standard convolution. The yellow point
indicates the center location of convolution. (c)(d) Sequential sampling procedure of
our SDM. The yellow point indicates the start location, and each blue arrow indicates
the predicted offset of one iteration. Two deformation branches are used in our work.

Inspired by above observations, we propose an end-to-end trainable Sequen-
tial Deformation Module (SDM) for accurate scene text detection, which se-
quentially groups feature-level components to effectively extend the modeling
capability for text’s geometrical configuration and learn informative instance-
level semantic representations along text line. The SDM first samples features
iteratively from a start location. SDM runs densely, regarding each integral lo-
cation on the input feature map as the start location to fit for unique geomet-
ric configurations for different instances. As depicted in Fig. 1, by performing
sampling in a sequential manner, a much larger effective receptive field than
the standard convolutional layer could be achieved. After that, SDM performs
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weighted summation on all sampled features to aggregates features and capture
the adaptive instance-level representations without complicated grouping post-
processing. Besides, we introduce an auxiliary character counting supervision to
guide SDM’s sequential sampling and learn richer representations. The charac-
ter counting task is modeled as a sequence-to-sequence problem [33], and the
counting network receives all the SDM’s sampled features and predict a valid se-
quence, whose length is expected to equal the character number of corresponding
text instance.

The main contributions of this work are three-fold: (1) We propose a novel
end-to-end sequential deformation module for accurate detection of arbitrary-
shaped scene text, which adaptively enhances the modeling capability for text’s
geometric configuration and learns informative instance-level semantic repre-
sentations; (2) We introduce an auxiliary character counting supervision which
facilitates the sequential offset predicting and learning of generic features; (3)
Integrating the sequential deformation module and auxiliary character counting
into Mask R-CNN, the whole network is optimized through an end-to-end multi-
task manner without any complicated grouping post-processing. Experiments on
benchmarks for multi-lingual, oriented, and curved text detection demonstrate
that our method achieves the state-of-the-art performance.

2 Related Work

Scene text detection has been widely studied in the last few years, especially
with the popularity of deep learning. In this section, we review related works
of two different categories of deep learning based methods according to their
modeling granularity, then we look back on relevant works for learning spatial
deformation in the convolutional neural network.

Instance-level detection methods [14,45,50] follow the routine of generic ob-
ject detection, viewing the text instance as a specific kind of object. TextBoxes
[14] modifies SSD [19] by adding default boxes and filters with larger aspect
ratios to handle the text’s significant variation of aspect ratio. EAST [50] and
Deep Regression [9] directly regress the rotated rectangles or quadrangles of text
without the priori of anchors. SPCNET [45] augments Mask R-CNN [7] with the
guidance of semantic information and sharing FPN, suppressing false positive
detections. These methods achieve excellent performances on standard bench-
marks but face problems such as CNN’s limited receptive field and incapability
for geometric transformation.

Component-level methods [5, 15, 26, 31, 34, 39] decompose instance into com-
ponents such as characters, text segments or the finest-grained pixels, addressing
the problems faced by instance-level modeling. SegLink [31] decomposes text into
locally detectable segments and links and combines them into the final oriented
detection. TextDragon [5] describes text’s shape with a series of local quad-
rangles to adaptively spot arbitrary-shaped texts. PAN [40] adopts a learnable
post-processing implemented by semantic segmentation and embedding to pre-
cisely aggregate text pixels. Tian et al. [35] propose to learn shape-aware pixel
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embedding to ease separating adjacent instances and detecting large instances.
For these methods, a grouping post-processing is required, where the error prop-
agation of wrong component prediction and the lack of end-to-end training could
harm the robustness.

Spatial deformation methods [3,12,38] enable the network to adaptively cap-
ture the geometric transformations. STN [12] rectifies the image or feature maps
via global parametric transformations. Deformable ConvNet [3] augments the
spatial sampling locations in convolutional layers with additional predicted off-
sets. ITN [38] also augments convolution but constrains it as affine transforma-
tion to learn the geometry-aware representation for scene text.

Different from existing methods, a sequential deformation module to group
feature components is proposed in our paper, adaptively enhancing the instance-
level Mask R-CNN without complicated grouping post-processing.

3 Methodology

In this section, we first elaborate the sequential deformation module and auxil-
iary character counting task. Then we describe the Mask R-CNN equipped with
sequential deformation module.

3.1 Sequential Deformation Module

For a standard convolution with weight w and the input feature map x, it first
samples features on x using a fixed rectangular sampling grid R = {p1, ...,pN}
(e.g 3×3 grid {(−1,−1), (−1, 0), ..., (0, 1), (1, 1)} with N = 9). Then the weighted
summation of sampled features is calculated using weight w. For every location
p on the output feature map y, we have:

y(p) =

N∑
n=1

w(n) · x(p + pn), (1)

As depicted in Fig. 1, the standard convolution is insufficient in scene text
detection because of the mismatch of shape and size between the fixed recep-
tive field and text instance. On one hand, to capture the whole instance, the
fixed rectangular receptive field is required to completely cover the text’s cir-
cumscribed rectangle rather than only the text region, while much undesired
background information is included. On the other hand, the fixed-sized receptive
field is incapable of well-extracting representations for instances with different
scale and aspect ratio. This results in imprecise classification and regression,
especially for instance-level models that detect text in one or a few stages.

Detecting text component, which is spatially smaller and less geometrically
transformed, relieves the above-mentioned problems. Inspired by the insight of
detecting text component and spatial deformation learning in CNN, we pro-
pose an end-to-end trainable Sequential Deformation Module (SDM). SDM first
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Fig. 2. Illustration of sequential sampling in SDM. Since the SDM runs densely, the
notations of all 3D tensor are represented by the corresponding 1D vector at location p.
From each integral start location p, SDM samples features along two separate sampling
paths.

performs sampling in a sequential manner, and then, like the standard convolu-
tion, SDM performs weighted summation on all sampled features to aggregates
features and capture the adaptive instance-level representations. The procedure
of sequential sampling is illustrated in Fig. 2. Regarding each integral location
p ∈ {(0, 0), ..., (H − 1,W − 1)} on input feature map x (height H and width W )
as the start location, the relative sampling locations S = {pt| t = 1, ..., T} are
sequentially generated by offsets accumulation:

pt+1 = pt +4pt, t = 0, ..., T − 1 (2)

where p0 = (0, 0), 4pt denotes the current 2D offset and T denotes the pre-
defined iteration number. The relative sampling locations S form a sampling
path.

At each step, we get a new sampling location p+pt from current accumulated
offset pt. The sampled feature x(p+pt) represents a feature-level component of
text observed at current step, and the whole text instance is gradually grouped
naturally through the step-by-step samplings. It’s notable that, from any start
location within the text instance, we should “sweep” along two opposite di-
rections to capture the whole text instance, wherefore adopting two separate
sampling paths Sd = {pd,t| t = 1, ..., T} (d = 1, 2) are more suitable. For two
directions d = 1, 2, Equ. 2 becomes:

pd,t+1 = pd,t +4pd,t, t = 0, ..., T − 1. (3)

In this work, the sequential sampling network is realized through a recurrent
neural network (RNN) followed by a linear layer, and two separate sampling
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paths are generated by two separate sequential sampling networks, so 4pd,t is
conditioned on previous sampled features {x(p + pd,0), ..., x(p + pd,t)}:

hd,t = RNNd(x(p + pd,t), hd,t−1) (4)

4pd,t = Lineard(hd,t). (5)

The RNN stores the historical shape information, and stabilizes the training
process and moderately boosts the performance. Based on previous observations,
the network will adaptively calibrate magnitude and orientation of4pt to ensure
the largest possible covering of whole text instance. Sequential sampling network
for one direction d is shared across all start locations.

After sequential sampling, the SDM calculates the weighted summation of
feature at the start location and all sampled features to generate the output
feature map y:

y(p) = w0 · x(p) +

2∑
d=1

T∑
t=1

w(d, t) · x(p + pd,t). (6)

In practical implementation, Equ. 6 is equivalently implemented as following:

m(p) = Concat({x(p + pd,t) | d = 1, 2, t = 1, ..., T} ∪ {x(p)}), (7)

y(p) = Conv1×1(m(p)), (8)

where the intermediate feature map m is the concatenation of all sequentially
sampled feature maps and the input feature. C is the channel of input feature
map and the intermediate feature map m has a channel of (2T + 1) · C, corre-
sponding to 2T times sampling and the original input. Bilinear interpolation is
used to compute x(p + pd,t) owing to fractional sampling locations. As bilin-
ear interpolation is differentiable, the gradients can be back-propagated to the
sampling locations as well as the predicted offsets, and the training of SDM is
conducted via a weakly-supervised end-to-end optimization.

3.2 Auxiliary Character Counting Supervision

The SDM paves a way to adaptively capture the whole text instance, but its
sequential sampling is inevitably undermined by error accumulation in offsets.
Besides, without any explicit supervision, the model’s training stability is un-
satisfactory.

In many common datasets, the text transcription labels and naturally the
character number labels are provided. Therefore, we further introduce an auxil-
iary character counting supervision to guide the SDM’s precise sequential sam-
pling. This simultaneously enables the model to learn character-level semantic
information. Instead of text recognition, we adopt the language-agnostic charac-
ter counting as the extra supervision, because text recognition task has a large
search space and there is a large gap between the convergence rates of scene
text detection and recognition. On real datasets where samples for recognition is
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Fig. 3. Sequence-to-sequence based character counting.

very insufficient, jointly training recognition and detection is hard to maximize
the performance. By reducing the text recognition to the character counting, the
search space is greatly reduced and the optimization is much easier. As a result,
we can use character counting to boost our detector on real datasets without
additional large synthetic dataset or pre-trained recognition model.

The character counting task is modeled as a sequence-to-sequence (seq2seq)
problem [33]. In essence, provided a selected start location, the feature at start
location and all the sequentially sampled features could form a input feature
sequence, and a seq2seq-based model predicts a valid sequence, whose length
is expected to equal the character number of corresponding text instance. The
detailed counting process is depicted in Fig. 3.

In SDM, an intermediate feature map m that is the concatenation of all
sampled feature maps and the input feature map is obtained first, as described
in Sec. 3.1. The map m contains instance-level modeling information for different
text instances, and it is capitalized by the consequent character counting.

Then, we select some training samples to optimize the seq2seq-based counting
network. In this work, we integrate our SDM into the anchor-based Mask R-
CNN [7], where SDM is inserted before the region proposal network (RPN).
The effective scheme is adopting the feature vectors around the center area of
positive proposal boxes from RPN as training samples. More specifically, we first
randomly select K proposals from all positive proposals from RPN. Next, for a
selected positive proposal box (x1, y1, x2, y2), we employ centered shrinkage upon
it with shrunk ratio σ. The shrunk box (x′1, y

′
1, x
′
2, y
′
2) (orange area in Fig. 3) lies

in the center field of the proposal box, so the features within the shrunk box have
higher probability to identify the global existence of text instance. We designate
the shrunk box as the distribution region of training sample. We randomly select
a position pc = (xc, yc) from the shrunk box:

xc ∼ U(x′1, x
′
2), yc ∼ U(y′1, y

′
2), (9)

where U denotes the uniform distribution. Given the select position pc, we get
the feature vector m(pc) with channel (2T + 1) ·C and reshape it to a sequence
with length 2T + 1 and channel C, which composes one training sample for
character counting. Bilinear interpolation is also used to compute m(pc).
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Finally, a one-layer transformer [36] is utilized as our seq2seq model to pre-
dict the number of character, and it makes classification for four symbols at each
time step, including start-of-sequence symbol “<SOS>”, end-of-sequence sym-
bol “<EOS>”, padding symbol “<PAD>” and a “Char” symbol. The “Char”
symbol represents the existence of one character. Receiving a “<SOS>” sym-
bol and the feature sequence reshaped from feature vector m(pc), the model is
expected to maximizing the log probability of the target sequence s. The tar-
get sequence s contains consecutive “Char” symbols, whose amount equals the
character number of corresponding text instance, and ends with a “<EOS>”
symbol. Hence the counting loss is:

Lcnt = − log p(s | reshape(m(pc))). (10)

The auxiliary counting task can be simply extended to the scene text recog-
nition task by forcing the network to discriminate different characters at each
step. The comparison between character counting and recognition is described
in Sec. 4.3.

3.3 Mask R-CNN with SDM

Fig. 4. The architecture of Mask R-CNN equipped with the proposed SDM. Cn (n =
2, ..., 5) and Pn (n = 2, ..., 6) respectively denote the feature maps (stride 2n) from
the backbone network and feature pyramid network (FPN). SDM is inserted before
the region proposal network (RPN) and shared between different levels. The seq2seq
counting network is only used in the training phase and is also shared between different
levels.

In this work, modeling scene text detection as an instance segmentation
task, we leverage the powerful Mask R-CNN [7] with feature pyramid network
(FPN) [17] as our baseline detector and equip it with the proposed SDM, as
shown in Fig. 4. We re-implement the Mask R-CNN tailored for scene text
detection in [18]. The main modifications to standard Mask R-CNN in [18]
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include: (1) Flipping, resizing and cropping training augmentations; (2) Fine-
tuned RPN anchor aspect ratios {0.17, 0.44, 1.13, 2.90, 7.46}; (3) convolution
layers with dilation=2 and bilinear upsampling layer in the mask branch; (4)
Online hard example mining (OHEM) [32] in bounding box branch. Moreover,
we carry out additional color and geometrical augmentations to further enhance
the generalization ability. Color augmentations include hue, saturation, bright-
ness and contrast [49] and geometrical augmentation is random rotation in range
[−10◦,+10◦]. All these augmentations are performed with a probability of 0.5
independently. Our implemented baseline detector (ResNet-50) achieves a F1-
score of 77.07% on MLT2017 dataset.

The SDMs are inserted before RPNs for different feature levels, and, following
the practice in FPN, the SDMs are shared between different levels. With respect
to the auxiliary character counting, a proposal box at level i generates a counting
training sample from the corresponding i-th intermediate feature map mi, and
the seq2seq character counting network is also shared across different feature
levels. Meanwhile, the RoIAlign layer extracts region features from the output
feature map of SDM (i.e. y in Equ. 6). The network is trained in an end-to-end
manner using the following objective:

L = Lcls + Lbox + Lmask + γLcnt, (11)

where Lcls, Lbox and Lmask respectively represent the classification, bounding
box regression and mask loss in Mask R-CNN, and Lcnt denotes the character
counting loss described in Sec. 3.2. The loss weight γ is set to 1.0 empirically.

4 Experiments

We evaluate our method on ICDAR 2017 MLT, ICDAR 2015, Total-Text and
CTW1500. Extensive experiments demonstrate that, integrated into the power-
ful Mask R-CNN framework, our proposed SDM obtains consistent and remark-
able performance boost and outperforms state-of-the-art methods.

4.1 Datasets

ICDAR 2017 MLT [30] is a multi-oriented, multi-scripting, and multi-lingual
scene text dataset. It consists of 7200 training images, 1800 validation images,
and 9000 test images, respectively. The text regions are annotated as quadrangles
in word-level or line-level for different languages.

ICDAR 2015 [13] is an incidental multi-oriented text detection dataset for
English. It consists of 1000 training images, 500 validation images, and 500 test
images, respectively. The text regions are labeled as word-level quadrangles.

Total-Text [2] is a dataset not only contains horizontal and multi-oriented
text but also specially features curved-oriented text for English. The dataset is
split into training and testing sets with 1255 and 300 images, respectively, and
all the text regions are labeled as a polygon in word-level.
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CTW1500 [21] is a dataset mainly consisting of curved text with both En-
glish and Chinese instances. Each image has at least one curved text when hor-
izontal and multi-oriented texts are also contained in this dataset. The dataset
contains 1000 training images and 500 test images. Each text is labeled as a
polygon in line-level with 14 vertexes.

4.2 Implementation Details

The main configurations for the re-implementation of Mask R-CNN baseline
are described in Sec. 3.3. In the SDM, the iteration number T is set to 5, and
the hidden size of RNN in the sequential sampling network is 64. For auxiliary
character counting, the proposal box’s shrunk ratio σ is empirically set to 0.1 and
0.3 for ResNet-18 and ResNet-50, respectively. The one-layer transformer has one
attention head and a model dimension of 256. An additional polygon NMS with
threshold 0.2 is applied to suppress redundant polygons. We adopt the SGD
optimizer with batch size 32, momentum 0.9 and weight decay 1× 10−4. During
training stage, on all datasets except ICDAR 2015, image’s two sides are resized
independently in ranges of [640, 2560], [640, 1600] and [512, 1024], respectively.
And for ICDAR 2015, image’s long side is resized in range [640, 2560], preserving
its aspect ration, and then the height is rescaled from 0.8 to 1.2 while the width
keeps unchanged. Horizontal flipping with a probability of 0.5 is applied, and
a 640 × 640 patch is cropped for training. For single scale testing, image’s long
side is resized to 1600, 1920, 1024 and 768 on four datasets, respectively. For
multi-scale testing, the long side is resized to {960, 1600, 2560}, {1280, 1920,
2560}, {640, 1024, 1600} and {512, 768, 1024} on four datasets, respectively.

4.3 Ablation Study

To demonstrate the effectiveness of our approach, extensive ablation studies are
conducted on ICDAR 2017 MLT dataset considering its high variety in text and
multi-lingual challenge. We evaluate two essential components in our model: Se-
quential Deformation Module (SDM) and Auxiliary Character Counting (ACC).
Results are shown in Table 1.

Baseline The baseline model is built on Mask R-CNN, which is described
in Sec. 3.3. It achieves an F-measure of 77.07%.

Sequential Deformation Module The experimental results show that the
Sequential Deformation Module brings a gain of 0.68% and 0.55% for ResNet-
18 and ResNet-50 backbones. This shows the effectiveness of SDM to handle
multi-oriented and multi-lingual text.

Auxiliary Character Counting To verify the effectiveness of auxiliary
character counting, we introduce character counting and recognition upon SDM.
For recognition, we extended the character counting to recognition by simply re-
placing the “Char” symbol with symbols of full characters. The counting super-
vision achieves an improvement of 0.5% on F-measure, while recognition brings
no gains. Besides, counting network converges as the training of detector, but the
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Table 1. Effectiveness of Sequential Deformation Module (SDM) and Auxiliary Char-
acter Counting (ACC) on ICDAR 2017 MLT dataset.“P”, “R”, and “F” refer to pre-
cision, recall and F-measure, respectively.

Method Backbone P(%) R(%) F(%)

Baseline ResNet-18 80.36 70.04 74.84
Baseline + SDM (w/o ACC) ResNet-18 81.80 70.31 75.62
Baseline + SDM (w/ ACC) ResNet-18 82.14 70.72 76.00

Baseline ResNet-50 82.10 72.62 77.07
Baseline + SDM (w/o ACC) ResNet-50 83.34 72.64 77.62
Baseline + SDM (w/ ACC) ResNet-50 84.16 72.82 78.08

Baseline + SDM (w/ recognition) ResNet-50 82.98 72.95 77.64

recognition network hardly converges. Fig. 5 indicates the guidance of auxiliary
character counting for sequential sampling.

Fig. 5. Top: Sequential sampling without and with auxiliary character counting. Bot-
tom: Ablations for iteration number T in sequential sampling on MLT 2017.

Iteration Number for Sequential Sampling As mentioned in Sec. 3.1,
the sequential sampling’s iteration number T is pre-set and is critical for ex-
panding SDM’s sampling range and associated receptive field. We adopt the
ResNet-18 backbone and Fig. 5 shows the performances as T changes. The F-
measure firstly increases and then saturates for T ≥ 5. Thus, we use 5 in the
remaining experiments. Meanwhile, irrespective of T , all the sampling paths are
able to adaptively cover the text regions and avoid going out of the instance. Sur-
prisingly, even when T = 0, i.e. using just one feature vector rather sequence to
predict character number, a promising improvement of 0.4% is observed, suggest-
ing that the auxiliary character counting is essentially beneficial for detection.

4.4 Comparative Results on Public Benchmarks

Detecting Multi-lingual Text On ICDAR 2017 MLT, we train the network on
9000 training and validation images for 140 epochs with the weight pre-trained on
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ImageNet [4]. The learning rate is initialized as 4×10−2 and reduced by a factor
of 10 at epoch 80 and 125. For single-scale testing, our models with ResNet-
18 and ResNet-50 achieve F-measures of 76.00% and 78.08%. For multi-scale
testing, the model with ResNet-50 achieves 80.61% F-measure, outperforming
all the state-of-the-art methods. Even though a weak backbone (ResNet-18) is
adopted, our model is also very competitive compared with the best PMTD [18]
(79.13% vs 80.13%). The results are listed in Table 2. Some qualitative results
are shown in Fig. 6(a), showcasing the SDM’s great robustness for multi-lingual
text, long text and complicated background.

Table 2. Comparative Results on ICDAR 2017 MLT and ICDAR 2015 datasets. ∗

denotes the results based on multi-scale testing. “P”, “R”, and “F” refer to precision,
recall and F-measure, respectively.

Datasets ICDAR 2017 MLT ICDAR 2015

Method P(%) R(%) F(%) P(%) R(%) F(%)

EAST [50] - - - 83.27 78.33 80.72
TextSnake [26] - - - 84.90 80.40 82.60

RRD∗ [16] - - - 88.00 80.00 83.80
Lyu et al.∗ [28] 74.30 70.60 72.40 89.50 79.70 84.30

LOMO∗ [48] 79.10 60.20 68.40 87.80 87.60 87.70
PSENet [39] 77.01 68.40 72.45 89.30 85.22 87.21

SPCNET∗ [45] 80.60 68.60 74.10 - - -
FOTS∗ [20] 81.86 62.30 70.75 91.85 87.92 89.84
PMTD [18] 85.15 72.77 78.48 91.30 87.43 89.33
PMTD∗ [18] 84.42 76.25 80.13 - - -

Ours (ResNet-18) 82.14 70.72 76.00 91.14 84.69 87.80
Ours∗ (ResNet-18) 85.44 73.68 79.13 90.15 88.16 89.14

Ours (ResNet-50) 84.16 72.82 78.08 88.70 88.44 88.57
Ours∗ (ResNet-50) 86.79 75.26 80.61 91.96 89.22 90.57

Detecting Oriented English Text On ICDAR2015, the weights trained on
ICDAR 2017 MLT are used to initialize the models. We fine-tune the network
for 80 epochs with learning rate 4 × 10−3 in the first 40 epoch and 4 × 10−4

in the remaining 40 epoch. As shown in Table 2, our model with ResNet-50
even surpasses FOTS [20], which is trained with both detection and recognition
supervision. The visualization in Fig. 6(b) shows our SDM can effectively tackle
challenging situations including skewed viewpoint and low resolution. Notably,
our model could accurately locate different text instances under the crowded
scene.

Detecting Curved Text We evaluate our method on the Total-Text and
CTW1500 to validate SDM’s ability to detect curved text. For Total-Text, the
network is also initialized with weights pre-trained on ICDAR 2017 MLT. Con-
sidering there’s no text transcription in CTW1500, we initialize the network
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Table 3. Comparative Results on Total-Text and CTW1500 datasets. ∗ denotes the
results based on multi-scale testing. “P”, “R”, and “F” refer to precision, recall and
F-measure, respectively.

Datasets Total-Text CTW1500

Method P(%) R(%) F(%) P(%) R(%) F(%)

CTD + TLOC [21] 74.30 69.80 73.40 - - -
TextSnake [26] 82.70 74.50 78.40 85.30 67.90 75.60

Mask TextSpotter [27] 69.00 55.00 61.30 - - -
PSENet [39] 84.02 77.96 80.87 84.84 79.73 82.20
CRAFT [1] 87.60 79.90 83.60 86.00 81.10 83.50

DB-ResNet-50 [15] 87.10 82.50 84.70 86.90 80.20 83.4
PAN [40] 89.30 81.00 85.00 86.40 81.20 83.70

PAN Mask R-CNN [11] - - - 86.80 83.20 85.00
CharNet∗ [46] 88.00 85.00 86.50 - - -

Baseline (ResNet-50) 87.44 84.93 86.16 84.16 81.99 83.06
Ours (ResNet-50) 89.24 84.70 86.91 85.82 82.27 84.01
Ours∗ (ResNet-50) 90.85 86.03 88.37 88.40 84.42 86.36

with weights trained on Total-Text and disable the character counting task. All
models are fine-tuned for 140 epochs with learning rate 4× 10−3 in the first 80
epochs and 4× 10−4 in the remaining epochs.

As visualized in Fig. 7, our SDM is capable of capturing various shapes,
which leverages the model’s weakness on geometric transformation. The quan-
titative results for the curved datasets are shown in Table 3. Our model re-
spectively brings an absolute improvement of 0.75% and 0.95% on Total-Text
and CTW1500 Datasets, and also surpasses all previous methods. Especially,
our model outperforms the state-of-the-art on Total-Text by a large margin of
1.87%. This verifies the SDM’s generalization ability on arbitrary-shaped scene
text detection.

(a) MLT2017 (b) ICDAR 2015 (c) Total-Text (d) CTW1500

Fig. 6. Qualitative results of the proposed method on four public datasets.
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4.5 Discussion for SDM’s Adaptability

(a) (b) (c) (d)

Fig. 7. Examples of sequential sampling locations (red points) for different start loca-
tions (yellow points). Sampling locations for (a) different instances, (b) different start
locations within the same instance, (c) different curved text instances at multi-level
feature maps (larger point indicates higher feature map) and (d) start locations in-
side and outside the text region are visualized. In (d), the sequential relations are also
visualized through blue arrows to distinguish different sampling paths.

Owing to the iteration number T in SDM is pre-set, we expect the SDM
has sufficient adaptability for geometrical variance and start location. From the
visualization in Fig. 7, it shows that: 1) The sampling range will automatically
expand and shrink to fit for different instances and different start locations
within the same instance, and avoid going out of the instance; 2) For the more
challenging curved texts, the SDM still performs competently to capture the
curved shape; 3) For a start location outside the text, the SDM will try to
follow the text center line. These imply that the SDM has high adaptability
and dynamically calibrates itself to capture the text instance as far as possible,
enriching CNN’s capability to model geometrical transformations.

5 Conclusion

In this paper, we propose a novel end-to-end sequential deformation module for
accurate scene text detection, which adaptively enhances the modeling capability
for text’s geometric configuration without any post-processing. We also introduce
an auxiliary character counting supervision to facilitate the sequential sampling
and features learning. The effectiveness of our method has been demonstrated
on several public benchmarks for multi-lingual, multi-oriented and curved text.
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