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Abstract. In this work we address the problem of autonomous 3D ex-
ploration of an unknown indoor environment using a depth camera.
We cast the problem as the estimation of the Next Best View (NBV)
that maximises the coverage of the unknown area. We do this by re-
formulating NBV estimation as a classification problem and we propose
a novel learning-based metric that encodes both, the current 3D obser-
vation (a depth frame) and the history of the ongoing reconstruction.
One of the major contributions of this work is about introducing a new
representation for the 3D reconstruction history as an auxiliary util-
ity map which is efficiently coupled with the current depth observation.
With both pieces of information, we train a light-weight CNN, named
ExHistCNN, that estimates the NBV as a set of directions towards which
the depth sensor finds most unexplored areas. We perform extensive eval-
uation on both synthetic and real room scans demonstrating that the
proposed ExHistCNN is able to approach the exploration performance
of an oracle using the complete knowledge of the 3D environment.

Keywords: Next Best View, CNN, 3D exploration, 3D reconstruction

1 Introduction

Being able to perceive the surrounding 3D world is essential for autonomous
systems in order to navigate and operate safely in any environment. Often, areas
where agents move and interact are unknown, i.e. no previous 3D information is
available. There is the need to develop autonomous systems with the ability to
explore and cover entirely an environment without human intervention. Even 3D
reconstruction from RGBD data is a mature technology [3,14,7,27,12], it relies
mainly on a user manually moving the camera to cover completely an area. Less
attention has been posed to the problem of obtaining a full coverage of the 3D
structure of an unknown space without human intervention. This task has strong
relations with the longstanding Next Best View (NBV) problem [4,16,23,20] but
with the additional issue of having no a priori knowledge of the environment
where the autonomous system is located.

https://github.com/IIT-PAVIS/ExHistCNN
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Fig. 1: The overall procedure for autonomous 3D exploration following a Next
Best View (NBV) paradigm. Our contributed modules are highlighted in blue.

In this paper, we address this 3D exploration task using a single depth cam-
era as shown in Fig. 1. At each time step, the system captures a new depth image
which is then passed into a general purpose online 3D reconstruction module [29].
The previously reconstructed 3D scene together with the current depth observa-
tion provide the NBV module with hints which are often represented as a utility
function, whose objective is to select the next view among a set of candidate
views that explores most unseen areas of the environment [18,17,24,15,5]. Often
the set of candidate views ensure not only the physical reachability but also
sufficient overlap with the current view in order to guarantee a feasible 3D re-
construction. How to model the utility is essential in all NBV related literature
either in a hand-crafted [18,17,24,15,5] or learning-based manner [8,25].

In such autonomous 3D exploration framework, we propose a novel learning-
based NBV method to encode both current observation and reconstruction his-
tory with a new CNN model named ExHistCNN. We avoid formulating the
task as a regression problem using a 3D CNN [8], since it requires a large number
of parameters to optimise along with extensive training data. Instead, our key
advantage is that we formulate NBV as a classification problem using a light-
weight 2D CNN architecture which needs less training data and computation.
Our ExHistCNN takes as input the current depth image and the neighbourhood
reconstruction status, and outputs the direction that suggests the largest unex-
plored surface. We exploit ray tracing to produce binary utility maps that encode
the neighbourhood reconstruction status and we further propose various data for-
mats to combine the depth and the utility maps to facilitate the history encoding.
We train and evaluate our proposed CNN using a novel dataset built on top of
the publicly available dataset which are SUNCG [22] for synthetic rooms and
Matterport3D [2] for real rooms. With experiments, we prove that the proposed
CNN and data representation show great potential to encode reconstruction his-
tory during 3D exploration and can approach the exploration performance of
an oracle strategy with the complete 3D knowledge of the tested environments.
The performance is comparable to the state-of-the-art methods [18,25], with a
consistent boost of the scene coverage at the early exploration.

To summarise, our three major contributions are: 1) We study and evaluate
new data embedding to encode history of previously explored areas in the context



ExHistCNN for History-aware Autonomous 3D Exploration 3

of NBV estimation; 2) We propose the light-weight ExHistCNN with a careful
design of input data, supervision and network, and prove its effectiveness for
addressing the 3D exploration problem in unknown environments, and 3) we
build a novel dataset based on SUNCG [22] and Matterport3D [2] to train and
evaluate NBV methods in both synthetic and real environments.

2 Related work

In this section, we will cover related works on NBV (following the observe-decide-
move cycle at each step) for 3D exploration and mapping with the focus on the
modelling of information utility.

The information modelling greatly depends on how the 3D environment is
represented, which can be categorised as surface-based [1] and volume-based
representations [21]. The volumetric representation is often employed for online
motion planning for its compactness and efficiency in visibility operations [5].
Multiple volumetric information metrics have been proposed for selecting the
NBV, often through ray tracing. A common idea is to provide statistics on the
voxels [18,28,26,24], where one can either count the unknown voxels [18], or
count only the frontier voxels, which are the voxels on the boundary between
the known free space and the unexplored space [28,26]. Occlusion is further taken
into account by counting the occuplane (a contraction for occlusion plane) voxels
that are defined as bordering free and occluded space [24].

In addition to counting-based metrics, there are also metrics based on prob-
abilistic occupancy estimation that accounts for the measurement uncertainty
[9,15,13]. The main method for computing probabilistic information metrics is
based on information entropy [17,11,15,5]. As a ray traverses the map, the infor-
mation gain of each ray is the accumulated gain of all visible voxels in the form
of either a sum [5] or an average [11]. The sum favours views with rays travers-
ing deeper into the map, while the average favours more on the uncertainty
of voxels regardless the ray depth. Moreover, inaccurate prediction of the new
measurement probability during ray tracing can be an issue for computing the
information gain if occlusion is not considered. To address this issue, Potthast
and Sukhatme [17] utilise a Hidden Markov Model to estimate the likelihood of
an unknown voxel being visible at any viewpoints. The work in [5] accounts for
the probability of a voxel being occluded via weighting the information gain by
the product of the emptiness probability of all voxels before reaching that voxel.
Although the computation can be different, the heuristic behind both [17,5] is
similar, i.e. a voxel with a large unobserved volume between its position and the
candidate view position is more likely to be occluded and therefore contributes
less information gain.

Recent works have shifted their focus towards learning-based methods [8,25,10].
Hepp et al. train a 3D CNN with the known 3D models of the scene, and the
utility is defined as the decrease in uncertainty of surface voxels with a new mea-
surement. The learnt metric shows better mapping performance compared to the
hand-crafted information gain metrics. However, the method can be demanding
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Fig. 2: ExHistCNN architecture and the proposed formats of input data with the
aim of encoding local reconstruction status in the context of 3D exploration.

for data preparation and heavy for training. Wang et al. [25] instead propose
a 2D CNN to learn the information gain function directly from a single-shot
depth image and combine the learnt metric with the hand-crafted metric that
encodes the reconstruction history. However due to the fact that a single depth
cannot encode reconstruction status, the heuristic-based combination strategies
struggle to outperform the strategy using the hand-crafted metric. Jayaraman
et al. [10] address a related but different task, visual observation completion in-
stead of 3D exploration and mapping, where they exploit reinforcement learning
trained with RGB images instead of 3D data.

3 Proposed Method

We represent the reconstructed scene using octomap [9], which is an efficient
volumetric representation of 3D environments. The space is quantised into voxels
that are associated with an occupancy probability oi ∈ [0, 1]. A higher oi value
indicates that the voxel is more likely to be occupied, while the lower indicates a
higher likelihood to be empty. Based on the occupancy probability, each voxel is
thus expressed as having one of the three states: Unknown, Free and Occupied.

At each time step k, oik is updated with the new range measurement coming
from the depth image Dk. Let Pk = [tk,Rk] be the camera pose at k with tk for
translation and Rk for rotation. Let Ωk be the set of candidate poses that are
accessible and also satisfy the view overlapping constraints for 3D reconstruction
at k + 1. The proposed ExHistCNN predicts mk, the direction of the NBV
which leads to the largest reconstructed surface voxels (see Fig. 2). With the
CNN-predicted direction mk, the next best pose P∗

k ∈ Ωk is selected as the
furthest position at direction mk among the candidate poses. More specifically,
let emk = Rke

m be the unit vector of the mk at the current pose Pk, where em is



ExHistCNN for History-aware Autonomous 3D Exploration 5

Fig. 3: The generation of the binary utility map through ray tracing with different
FoV settings. A smaller FoV (highlighted in red) may lead to local solutions when
multiple directions expose similar unexplored areas.

the unit vector of selected direction mk in world coordinate. For each Pj ∈ Ωk,
we define ∆tj,k = tj − tk as the vector originating from the position of current
pose tk and the position of candidate pose tj . The projection of emk and ∆tj,k
can be computed as the dot product sj,k = ∆tj,ke

m
k . Finally, the pose with the

largest projection sj,k is selected as the NBV pose P∗
k.

3.1 Representation for 3D reconstruction history

We encode the reconstruction history into a utility map through ray-tracing (see
Fig. 3). Given a camera pose Pk, we trace a set of rays in a discretised manner
within a defined FoV originating from the camera pose towards the 3D space.
Each ray corresponds to a utility value. The utility should encourage the NBV
towards most unexplored area, we therefore set the utility value to be 1 if the
ray does not encounter any Free or Occupied voxels, otherwise 0. The resulting
utility map is in practice a binary image and each pixel corresponds to a ray
with the value of zero for visited areas, and the value of one for unexplored areas.

The FoV of ray tracing defines the extension of the reconstruction area that
can be used for making the NBV decision. As shown in Fig. 3, the camera can see
the area within its one-step neighbourhood (in red box), two-step neighbourhood
(in blue box) or even larger neighbourhoods. We experimentally prove that by
seeing the reconstruction status with two-step neighbourhood can improve the
exploration performance compared to one-step neighbourhood while keeping the
method cost-effective. Note that the utility map in the following sections refers
to the FoV that reflects the reconstruction status in two-step neighbourhood.
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Fig. 4: The partitioned utility maps that correspond to the four directions.

3.2 ExHistCNN

The proposed ExHistCNN makes use of a light-weight CNN architecture with
convolutional layers, max pooling layers and fully connected layers (see Fig. 2)
that functions as a next direction classifier. We consider four main movement
directions, i.e. up, down, left and right, as the output of the classifier, which
is then used to estimate the next camera pose distributed on a sphere surface.
Note that the current movement setting is chosen with simplicity for efficient
and repeatable datatset preparation and method evaluation.

In order to obtain the ground-truth direction label y, we introduce an oracle
classifier with the access to ground-truth depth frames at each possible camera
movement. In this way, the oracle can always decide the best move that max-
imises the coverage to unexplored areas at any given pose. ExHistCNN will then
learn to imitate the oracle classifier without the access to ground truth depth
frames. The network is trained by minimising the cross-entropy loss over the
training set {X1, ...,XN} where N is the number of training samples.

Regarding the input X, we explored extensively its potential formats and its
impact to facilitate the reconstruction history encoding. We firstly investigate the
necessity of combining depth and utility map as input X by training basic models
using only depth, CNNDepth (Fig. 2 (a)), and only utility map, CNNUtility
(Fig. 2 (b)). Secondly, we further investigate the impact of various strategies
in combining the depth image and utility map. As a straightforward option,
we stack the depth image and utility map into a two-channel data. Moreover,
considering the property of convolution that exploits the spatial information in
the data, we train CNN2DScaled (Fig. 2 (c)) using the depth that is scaled (in
this case, shrunk) based on the ratio of its FoV and the FoV for capturing the
utility map with zero padding for the rest of the image, and CNN2D (Fig. 2
(d)) using the depth without the scaling.

Both CNN2D and CNN2DScaled use the utility map that contains the
complete neighbourhood reconstruction history without an explicit indication of
where the network should look at. In order to validate if an explicit division of
the utility map based on the direction can facilitate the network learning, we
also train CNN4D (Fig. 2 (e)) and CNN5D (Fig. 2 (f)). CNN4D only takes 4
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partitioned utility maps with each corresponds to one direction. The partition is
performed by dividing the utility map into four non-overlapping triangular areas
(see Fig. 4). For each partitioned utility map, the image areas that correspond
to other directions will be zero padded in order to not introduce additional infor-
mation. Such partition choice is experimentally determined because of its better
exploration performance compared to another overlapping partition choice. A
detailed experiment session for the design choices is provided in Section 4.3.
Finally, CNN5D stacks the depth with the four direction-specific utility maps.

3.3 NBV for 3D exploration

In this section, we describe in detail the complete NBV pipeline for 3D explo-
ration of one time step as shown in Fig. 1. The system starts with sensor captur-
ing at the time step k, where an incoming depth Dk (or color-depth pair) frame is
then passed into a general purpose online 3D reconstruction module [29] to form
a volumetric representation of the scene [9]. Note that we are not bounded to any
specific 3D reconstruction algorithm and implementation details are described in
Section 4.3. With the availability of camera poses, which can be obtained by any
SLAM algorithm [27], each depth (or color-depth pair) is registered and inte-
grated to the reconstructed scene volume. We can then obtain the binary utility
map by tracing rays into the scene volume with an enlarged FoV in order to have
the exploration status for a two-step neighbourhood. We then pass through our
proposed ExHistCNN the combined binary utility map and depth frame to pre-
dict the best movement direction mk for the next view. Given mk predicted by
ExHistCNN, the system moves to the selected NBV pose P∗

k at the time step
k+ 1 and repeats the pipeline, until certain termination criteria are met. In this
work we terminate the system once a fixed number of steps is reached to allow
most baseline methods to saturate their exploration performance.

4 Experiments

Section 4.1 first describes the dataset generation procedure for the training of
ExHistCNN. Then, in Section 4.2 we perform the ablation study on the proposed
ExHistCNN with various input data formats and network architectures. We fi-
nally report the 3D exploration performance using both synthetic rooms and real
rooms in Section 4.3 with a detailed description on the evaluation dataset and
the comparison between our proposed learnt strategies and baseline methods.

4.1 Dataset generation

We produce a new dataset for training/testing the proposed ExHistCNN using
in total 33 rooms from the synthetic SUNCG dataset [22]. Our dataset covers
various room types including kitchens, living rooms, bedrooms, corridors and
toilets. For each room, we rendered a set of viewpoints that are uniformly and
isometrically distributed on a sphere with a radius of 20 cm at the height of
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1.5m to simulate potential settings of any robotic platforms (e.g. a table-up
robotic arm). The camera view is looking out from the sphere centre towards
the environment. In particular, we consider a total of 642 viewpoints as the set
used for selecting the viewpoints for the tested NBV strategies.

For each viewpoint, we compute a sub-set of neighbouring viewpoints which
are within its circular neighbourhood of a radius r. In our experimental setup
we set r to 5 cm because the overlapping view constraint is necessary for 3D
reconstruction algorithms to work. In order to represent the neighbourhood re-
construction status of each view point in a tractable manner, we discretise status
into six levels, i.e. 0%, 20%, 40%, 60%, 80% and 100% of the neighbourhood
reconstruction. Each reconstruction level is approximated by selecting the corre-
sponding percentage of neighbouring viewpoints. With the selected view points,
we then reconstruct the scene using their corresponding depth frames. For in-
stance, if viewpoint A has 10 neighbouring viewpoints, then 20% reconstruction
status will be achieved by selecting 2 neighbouring viewpoints out of the over-
all 10 viewpoints for the reconstruction. Since the combinations of the selected
viewpoints can be large due to many neighbouring viewpoints, thus to limit the
amount of data produced, we constrain only up to 10 combinations for each
reconstruction status.

For each viewpoint, we first perform the reconstruction using the neighbour-
ing viewpoints under each neighbouring reconstruction status. We then generate
the binary utility map that reflects a two-step neighbourhood reconstruction
status through ray tracing. The ground-truth motion label is finally produced
by integrating the depth frame that corresponds to the 4 directions in two steps,
and selecting the direction that results in most surface voxels. This generation
procedure produces 17,960 samples per room, where each sample is composed
of a depth image for the current observation, a binary utility map for the neigh-
bourhood reconstruction status and the direction label. We further organise the
dataset in a balanced manner with 100K samples per direction class and the
train-validation-test follows a 75-15-15 split.

4.2 ExHistCNN ablation study

We train ExHistCNN with various input data as described in Section 3.2, namely,
CNNDepth, CNNUtility, CNN2DScaled, CNN2D, CNN4D, and CNN5D. As
comparison, we also train a set of classifiers using ResNet101 [6] pretrained
on ImageNet, that serves as a feature extractor. Each channel of the input (see
Fig. 2) is repeated to 3 channels and fed to ResNet101. The extracted feature
vectors are then concatenated and used as input to train a four-layered Multi-
ple Layer Perceptron (MLP) classifier. According to the data input formats, we
therefor train four MLP-based classifiers: MLP2DScaled, MLP2D, MLP4D
and MLP5D. For all networks, we resize the input to 64× 64. We apply tech-
niques including batch norm and drop out during training and the batch size
is set to maximise the usage of GPU. Stochastic gradient descent is used with
learning rate 1e−3, 200 epochs and momentum 0.9. For testing, we use the model
at the epoch where each network starts to saturate.
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Table 1: Direction classification result of multiple classifiers at test
Recall Avg

Precision
Avg

Recall
Avg
F1up down left right

CNNDepth 0.469 0.58 0.32 0.41 0.446 0.445 0.445

CNNUtility 0.719 0.830 0.450 0.528 0.651 0.632 0.624

CNN4D 0.668 0.826 0.458 0.608 0.663 0.64 0.635

CNN2DScaled 0.765 0.851 0.379 0.446 0.649 0.61 0.595

CNN2D 0.707 0.861 0.536 0.449 0.666 0.638 0.632

CNN5D 0.617 0.871 0.511 0.576 0.677 0.644 0.642

MLP4D 0.664 0.709 0.58 0.554 0.626 0.627 0.625

MLP2DScaled 0.639 0.691 0.575 0.553 0.616 0.614 0.614

MLP2D 0.622 0.707 0.558 0.553 0.614 0.61 0.610

MLP5D 0.683 0.723 0.618 0.595 0.655 0.654 0.654

Table. 1 shows the testing classification performance of multiple ExHistCNN
models and MLP-based models. Regarding the average classification perfor-
mance, CNNDepth performs the worst among all. In general, models that com-
bine both depth and utility maps (CNN2D and CNN5D) are better than the
models using only utility maps (CNNUtility and CNN4D). Moreover, we notice
that partitioning the utility map into four directions, CNN4D is able to perform
better than CNNUtility which uses only a single-channel utility map. Similarly,
CNN5D with depth and partitioned utility maps is also marginally better than
CNN2D. Interestingly, we observe that CNN2DScaled is not performing better
than CNN2D. The reason might be that the depth after rescaling and resizing
to 64×64, becomes a rather small patch which could be not very informative for
the network to learn from. Moreover, we do notice that all the models perform
better in particular directions, i.e. up and down is better than left and right.
This can be due to the standard camera setting with wider horizontal FoV than
the vertical FoV. Finally, the MLP-based models have a similar pattern as our
CNN models, however are achieving a worse classification performances apart
from MLP5D. One possible reason can be that the pretrained network extracts
feature vectors with semantics bias from other datasets, while our CNN models is
trained from scratch without the impact of external bias. In the following section
we will use CNN2D and CNN5D as our ExHistCNN models for their best per-
formance, to evaluate the 3D exploration performance. Other models including
CNNUtility, CNN4D, MLP4D, MLP2D and MLP5D are also evaluated.

4.3 Autonomous 3D exploration performance

We apply different NBV strategies to indoor dataset for 3D exploration and
report the surface coverage ratio, i.e. the number of the surface voxels generated
using autonomous methods against the number of surface voxels of a complete
reconstructed room. For a fair comparison, we evaluate all methods until a fixed
number of steps (150 steps throughout the experiments). The step number is set
to allow most strategies to saturate in their exploration performance, i.e. when
the camera starts looping within a small area. The metric that achieves a larger
coverage ratio within the fixed number of steps is considered better.
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(a) SUNCG synthetic scenes (b) Matterport3D real scene scans

Fig. 5: Rooms used for the exploration experiment. (a) six synthetic rooms from
SUNCG dataset rendered with SUNCG Toolbox. (b) six real room scans from
Matterport3D dataset rendered with HabitatSim.

Evaluation dataset. We perform experiments using dataset rendered from
synthetic rooms in SUNCG dataset [22] (Fig. 5 (a)) and real room scans (Fig. 5
(b)) from Matterport3D [2] using HabitatSim [19]. The set of synthetic rooms for
evaluating the exploration performance is different than the set of rooms used
for training our ExHistCNN models. Moreover, to validate the generalisation of
the model from synthetic to more realistic data, we use a publicly available tool,
HabitatSim, to render depth (and color) data with real room scans from Mat-
terposrt3D, following the same dome-shaped path as described in Section 4.1.
In the experiments, scenes are reconstructed using a truncated signed distance
function (TSDF) volume integration method with implementation tools provided
in Open3D [29]. In particular, we consider that the dome-shaped path explores
the complete room, i.e. the coverage ratio is 100%.

Justification of design choices. We first performed a set of experiments to
justify two choices in the method and dataset design: 1) the FoV selection during
ray-tracing to produce the utility map that reflects multiple-step neighbourhood
reconstruction status and 2) the partitioning of the utility map to enforce the
directions in the input data. To justify the FoV selection, we perform 3D ex-
ploration using the oracle NBV strategies by integrating the depth frames in
different time steps. OracleDepth integrates the depth frame corresponding to
each candidate direction for the next step into the current volume, and the NBV
is selected with the largest resulted surface voxels. Similarly, OracleDepth2
(OracleDepth3) integrates the depth frames corresponding to each candidate
direction for the next two (three) steps into the current volume. To justify the
partitioning of the utility map, we perform 3D exploration using the NBV se-
lected based on the sum of each partitioned utility map. BaseGain divides the
utility map into four non-overlapping triangular areas that correspond to the
four candidate directions (see Fig. 4), while BaseGainRec divides the utility
map by half for each direction, resulting in rectangular overlapping areas.
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Fig. 6: The coverage ratio with time achieved with strategies that are used for
justifying design choices.

Fig. 6 shows the coverage ratio with time using the above motioned strate-
gies. Results are averaged by five independent runs on the six synthetic rooms.
We observe that OracleDepth2 and OracleDepth3 outperform OracleDepth be-
cause being aware only one-step ahead the reconstruction status can be prone to
early saturation due to local solutions. OracleDepth2 achieves almost the same
exploration speed and coverage performance as OracleDepth3, but with reduced
computational/storage cost for both offline dataset preparation and NBV es-
timation at runtime. We therefore perform ray-tracing to produce the utility
map that reflects the two-step neighbourhood reconstruction status. Moreover,
BaseGain achieves a higher coverage ratio compared to BaseGainRec, which
makes the non-overlapping triangular partition a better choice.

Methods and baselines comparison. We performed the exploration experi-
ments using our ExHistCNN models with various input: CNNdepth, CNNU-
tility, CNN4D, CNN2D and CNN5D, as well as the MLP-based models:
MLP4D, MLP2D and MLP5D as described in Section 4.2. We compared the
above mentioned learning-based strategies against: Random strategy that ran-
domly selects the NBV, BaseGain that selects the view based on the sum of the
partitioned utility maps, Count [18] that selects the NBV by counting unknown
voxels for each candidate pose, and CombGain [25] that selects the NBV us-
ing both the output of CNNDepth for direction and the entropy-based utility
maps computed using view-dependent descriptors for each candidate pose3. Fi-
nally, OracleDepth2 serves as a reference for the best reachable result for our
learning-based strategies.

3 We are not able to compare with [8] as their dataset and code are not available.
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(a) synthetic SUNCG rooms (b) Matterport3D real room scans

(c) synthetic SUNCG rooms (d) Matterport3D real room scans

Fig. 7: The coverage ratio with time (upper row) and the averaged final coverage
ratio and its standard deviation (lower row).

Fig. 7(a) shows the average coverage ratio over time for synthetic rooms.
NBV with CNNDepth achieves the worst coverage because the camera moves
without any knowledge of the reconstructions status, leading to repeated back
and forth movement at a very early stage. We observe that CNNUtility with
only the binary utility map as its input is worse than CNN4D which uses the
partitioned utility maps. This result indicates that the partition of input data
can facilitate the network learning of the NBV directions and boost the explo-
ration performance. Moreover, our variants CNN2D and CNN5D leverage the
depth information to explore faster compared to CNN4D at the earlier stage, and
saturate at a similar coverage ratio which approaches to the performance of Ora-
cleDepth2. In the early phase, CNN2D explores faster than CNN5D at a similar
exploration speed as OracleDepth2. MLP-based strategies in general are worse
than the ExHistCNN-based strategies. Even the best performed MLP2D model is
almost 30% less than CNN2D. BaseGain, Count and CombGain use hand-crafted
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Random CNNDepth CNNUtility OracleDepth2

BaseGain CombGain CNN2D CNN5D

Fig. 8: Selected poses on the dome surface and their corresponding 3D recon-
struction for a real room in Matterport3D (best viewed in color).

utility, and are slower in the beginning, however Count and CombGain are able
to achieve a slightly better coverage ratio. When testing the strategies on real
room scans, from Fig. 7(b), we can see that our variants CNN2D and CNN5D
are still the fastest in the early phase compared to other strategies, although
at saturation they are surpassed by BaseGain, Count and CombGain. This sug-
gests that our learning-based strategies may require further domain adaptation
when transferring from purely synthetically trained models to real-world scenar-
ios. Fig. 7(c,d) show the averaged coverage ratio at saturation and its standard
deviation under synthetic and real scenes, respectively. The variance occurs due
to different viewpoint initialisation. Fig. 8 showcases the resulted paths on the
dome-surface and their corresponding 3D reconstruction of one real room using
various NBV strategies (more results can be found in the supplementary mate-
rial). In this particular run, we can see that CNN2D is able perform a rather
complete exploration of the room.
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Table 2: Processing time for different NBV strategies averaged over all steps
tested with the two datasets from SUNCG and Matterport3D (Unit is in second).

Random BaseGain Count CombGain CNNdepth CNNUtility CNN2D CNN5D MLP2D MLP5D

SUNCG 0 0.028 0.016 0.040 0.007 0.018 0.023 0.024 0.058 0.098

Matterport3D 0 0.022 0.016 0.047 0.007 0.026 0.030 0.031 0.064 0.105

Average 0 0.025 0.016 0.044 0.007 0.022 0.027 0.028 0.061 0.102

Computational analysis. We performed experiments using a Dell Alienware
Aurora with core i7. Table 2 shows the computational time for different NBV
methods, where the processing time includes the time for utility map generation
through ray-tracing and the time for NBV estimation. Random uses 0 seconds as
the strategy is a random number generator. CNNDepth is fastest (0.007s) among
all learning-based strategies as it does not require the production of utility map.
CNNUtility requires utility map generation therefore is slower than CNNDepth,
however is the second fastest as it does not require the preparation of stacking
depth and utility map. CNN2D and CNN5D requires almost the same time for
the utility map generation and data preparation for passing through the network.
CNN2D and CNN5D are slower than Count, comparable to BaseGain and faster
than CombGain. CombGain is slow as it performs extra processing on the view-
dependent descriptor update for each voxel before generating the utility maps.
MLP-based strategies are the slowest as each channel of the input is processed
through the pretrained network.

5 Conclusion

In this paper we proposed ExHistCNN, a light-weight learning-based solution to
address autonomous 3D exploration of any unknown environment. With exper-
iments using dataset from both synthetic and real rooms, we showed that our
ExHistCNN, both CNN2D and CNN5D, are able to effectively encode depth ob-
servation and reconstruction history for the exploration task. ExHistCNN-based
NBV strategies are computationally efficient and able to explore the space faster
in the early phase while approaching the oracle NBV performance in the syn-
thetic dataset. When testing with real room scans, our ExHistCNN even if purely
trained using synthetic data maintains its property of fast exploration at the
early stage, while achieving less final coverage compared to the soa method. As
future work, we will further investigate domain adaptation techniques to boost
the exploration performance in real-world scenarios.
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