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Abstract. Pixel-level classification is an essential part of computer vi-
sion. For learning from labeled data, many powerful deep learning models
have been developed recently. In this work, we augment such supervised
segmentation models by allowing them to learn from unlabeled data. Our
semi-supervised approach, termed Error-Correcting Supervision, lever-
ages a collaborative strategy. Apart from the supervised training on the
labeled data, the segmentation network is judged by an additional net-
work. The secondary correction network learns on the labeled data to
optimally spot correct predictions, as well as to amend incorrect ones.
As auxiliary regularization term, the corrector directly influences the su-
pervised training of the segmentation network. On unlabeled data, the
output of the correction network is essential to create a proxy for the un-
known truth. The corrector’s output is combined with the segmentation
network’s prediction to form the new target. We propose a loss function
that incorporates both the pseudo-labels as well as the predictive cer-
tainty of the correction network. Our approach can easily be added to
supervised segmentation models. We show consistent improvements over
a supervised baseline on experiments on both the Pascal VOC 2012 and
the Cityscapes datasets with varying amounts of labeled data.

1 Introduction

One factor that led to the reemergence of neural networks as an active topic of
research is the availability of large datasets to researchers today. Starting with
Krizhevsky et al. [20] significantly improving the classification accuracy on the
ImageNet dataset [6], and the many impressive results in the domains of vision,
natural language processing, and control that followed, neural networks have
proven to be an incredibly effective tool, when enough labeled data is available.
Large amounts of labeled data is already accessible for generic object detection
tasks or can be gathered if enough resources are on-hand to cope with such a
process. However, in some computer vision domains, the availability still poses
a problem.
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In medical imaging, data is commonly sparse, and labeling it is costly. Addi-
tionally, many problems are semantic segmentation problems, a task where each
pixel in the image needs to be classified. Annotating image data for a segmen-
tation task is more time consuming, and in some domains like medical imaging,
has to be done by experts.

In this work, we propose to learn from unlabeled data with Error-Correcting
Supervision (ECS). ECS takes the form of an extension of the supervised seg-
mentation task, where an additional model is used to assess and correct the
agreement between an image and its segmentation. The insights of this second
model are then used as a proxy for the truth on unlabeled data. At first glance
ECS borrows concepts from Generative Adversarial Networks (GANs) [8]. But
contrary to GANs, our framework profits from the primary and secondary mod-
els collaborating, instead of competing. By using both labeled and unlabeled
data, our framework allows for efficient utilization of all data available, which is
especially important in domains where data gathering is nontrivial.

In summary, our contributions are as follows:

– A collaborative approach for semi-supervised segmentation leveraging two
networks without the need for weakly labeled data.

– Stating the secondary model’s task as fine-grained error correction, to fit the
semi-supervised objective.

– An augmented loss function, which utilizes both the secondary model’s pre-
diction and the certainty in it, to adaptively adjust the contributions when
training on unlabeled data.

– An end-to-end approach which can augment the training of existing segmen-
tation networks and is not reliant on post-processing during validation.

2 Related Work

2.1 Supervised Semantic Segmentation

The most widespread approach for designing a deep neural network for seman-
tic segmentation as fully convolutional was proposed by Long et al.[29]. Today
most models build upon this concept and employ either an encoder-decoder [1,
28] structure or some form of spatial pyramid pooling [2, 10, 34]. PSPNets [34]
use several pooling kernels to capture representations at various resolutions. In-
stead of reducing the resolution, the DeepLab Family [2–4] employs an Atrous
Spatial Pyramid Pooling (ASPP) module, with dilated convolutions [33] to cap-
ture multi-scale relationships in the input data. With DeepLabv3+ [4], they have
transitioned from just the ASPP module and extend their design with a decoder.
Their architecture combines low and high-level features to detect sharper object
boundaries.

2.2 Weakly-Supervised Segmentation

Weakly-supervised segmentation models generate dense classification maps de-
spite only image level [32, 35] or bounding box annotations [17] being present.



Semi-Supervised Segmentation based on Error-Correcting Supervision 3

Some methods can use both weak and strong signals [24]. Decoupled Neural
Networks [13] split the network into classification and segmentation models,
resembling the encoder-decoder structure. The segmentation branch then per-
forms binary pixel-wise classification, to separates foreground from background,
for each of the identified classes. Additional bounding box annotations are lever-
aged by [15]. A self-correcting network learns to combine the prediction of two
individual segmentation networks. One trained on densely labeled data and the
other with the bounding box annotations.

2.3 Semi-Supervised Segmentation

Generative Adversarial Networks (GAN) [8] are generative models that try to
capture high dimensional implicit distributions. They consist of a generator
and discriminator network, realizing the idea of an adversarial two-player game,
where each player tries to outperform the other. This adversarial structure has
been applied to semi-supervised learning in various ways. Concerning the clas-
sification setting, generated samples are either grouped as fake or as one of the
classes contained in the dataset. For unlabeled images, the sum of the probabil-
ities of the true classes should surpass the probability of it being fake.

Souly et al. [30] transferred this approach to semi-supervised segmentation,
by keeping a generator that produces artificial samples but choosing a segmen-
tation architecture for the discriminator. With their approach, each pixel is clas-
sified as either generated or as one of the true classes. Qi et al. [26] extend this
approach to include a more advanced architecture, as well as the addition of
Knowledge Graph Embeddings to enforce semantic consistency.

Luc et al. [22] proposed adversarial regularization on the supervised loss.
Their discriminator network predicts if an image and label map pair are real or
fake. These labels are chosen depending on the label map showing the ground-
truth or being the output of the segmentation network. However, this approach
does not learn from unlabeled data.

The approach introduced by Hung et al. [14] is overall similar in execution
to our proposed method, but varies on a conceptional level. Unlike [30], the
segmentation network assumes the role of the generator, and a new discriminator
is added. This Fully Convolutional Discriminator is designed to approximate the
space of possible label distributions without directly including the base image or
any information whether the segmentation is correct on a pixel level. The label
maps used to optimize the discriminator just describe whether the given label
map is real or fake so originating from the ground-truth or the output of the
segmentation network. The discriminator is used for an adversarial loss function,
in the form of a regularizing term during supervised training, similar to Luc et
al. [22]. For unlabeled data, the prediction of the discriminator is compared with
a threshold value. If a region is predicted as real with a probability above a given
threshold, it is accepted as true and used to optimize the segmentation network.

The work of Mittal et al. [23] extends [22] for semi-supervised learning. The
classification result of the discriminator is used to flag unlabeled images and
their segmentation for self-training. If the prediction of an image–segmentation
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pair being real surpasses a chosen threshold, this segmentation is used for su-
pervised training. Additionally, they apply a Mean Teacher model [31] during
validation, deactivating classes which are found to be absent in the image. This
post-processing step only is applied, when the dataset features a background
class.

Zhou et al. [36] explore a collaborative approach to semi-supervised segmen-
tation in the medical domain, with influences from adversarial learning. A model
pretrained for diabetic retinopathy lesion segmentation produces segmentations
for a large set of weakly labeled data of the same domain. One component of
their approach discriminates image and segmentation pairs between data that
has pixel-level and image-level annotations. In addition, a lesion attention model
produces segmentation maps for the weakly labeled data and can be utilized to
further fine-tune the primary model.

But semi-supervised segmentation can not only be modeled with adversarial
approaches. Kalluri et al. [16] extend the segmentation network with an entropy
module. Minimizing the entropy of the similarity of the outputs of the traditional
decoder and entropy model, within and across domains, allows their universal
approach to learning from labeled and unlabeled data, beyond just one domain.

3 Error-Correcting Supervision

Error-Correcting Supervision is, at first glance, inspired by the GAN-Framework.
In addition to a base segmentation network, a secondary model is optimized with
the available labeled data. However, instead of classifying a given segmentation as
either real or fake, the additional network in ECS, termed corrector or correction
network, judges how well the given image–segmentation pair match on a pixel
level, as well as offering corrections for areas where the outputs do not seem
to agree. Then, the corrector’s predictions are used as a proxy for the truth on
unlabeled data and incorporated in the semi-supervised update. The interaction
between correction and segmentation network on unlabeled data is controlled
by a specific loss function, which individually weights the contribution of the
pseudo-labels proportional to the corrector’s certainty.

A single training iteration with ECS consists of three parts: The error-
correcting, supervised and semi-supervised training steps, which are indicated
by the backdrop color in Figure 1. In each step, the weights of the affected model
are updated. During these stages, the labeled training data and correction maps,
shown in Figure 2, as well as pseudo-labels for unlabeled images are utilized.

In contrast to competing methods, the relationship between the segmentation
network and the corrector is collaborative instead of adversarial. This allows
us to use arbitrarily powerful network architectures for the corrector since the
common case of the generator being overpowered is not possible here.

Notice that ECS does not require any weakly-labeled data such as image-
level or bounding box annotations. The only requirement is that the additional
unlabeled and labeled training data belong to the same domain.
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Fig. 1. Overview of Error-Correcting Supervision. Apart from the supervised training,
the method is comprised of two additional steps (represented by the backdrop color).
The Error-Correcting network C is trained with the image–ground-truth (x,y) and
image–segmentation (x, ŷ) pairs (only the latter is shown). For the semi-supervised
step, the segmentation network learns to minimize the Negated Focal Loss between
the segmentation of an unlabeled image and a pseudo-label yp. This generated label is
a combination of the corrector’s output and the original segmentation.

Notation x represents an image, and y its corresponding discrete label map. In
cases where the label map is used as input for the corrector it is transformed to a
one-hot representation. The continuous output of the segmentation network S(·)
given x is denoted as ŷ. An added subscript i is used to identify an individual
value. x, y ∼ D implies sampling from the labeled training data, Du denotes
the unlabeled data.

3.1 Error-Correcting Network

The correction network C(·, ·) transforms a given image–segmentation pair into
a segmentation map of depth N + 1 , where N is the number of classes in the
dataset. The (N + 1)th class indicates whether the input segmentation matches
the content shown in the input image.

An important distinction to the previous works that apply adversarial learn-
ing for semi-supervised segmentation, is related to how the labels to train the
secondary model are chosen. In Hung et al.[14] all outputs of the segmentation
network are always tagged as fake. Although their discriminator is designed as
fully convolutional and produces pixel-level confidence for a given input, this
information is not incorporated to distinguish whether parts of the output seg-
mentation are correct or not.
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Fig. 2. By calculating the difference between the ground-truth y and segmentation ŷ
and assigning a new label to the matching areas while keeping the ground-truth where
they differ, the corrector not only learns to differentiate between correct and incorrect
predictions but also to rectify the present mistakes. (From left to right: input image,
ground truth, segmentation, difference, and correction map)

Fine-grained Correction Maps The corrector in ECS is trained to minimize
the Cross-Entropy H(·, ·) with two kinds of labeled data. Instead of labeling the
outputs of the segmentation network blanketly as fake, each pixel-level prediction
is compared with the ground-truth to produce a fine-grained correction map ycor.
For all matching pixels the corresponding values in the correction-map are set
to the added class N + 1, whereas all differing pixels adopt the class given by
the ground-truth:

ycor =

{
N + 1 if ŷi = yi
yi otherwise.

(1)

The involved components as well as the resulting ycor are shown in Figure 2. The
second labeled samples are the image–ground-truth pairs with the corresponding
label map yt. As by definition the ground-truth matches the image, yt is filled
exclusively with the added (N + 1)th class. Generating a fine-grained correction
map drives the correction network to spot actual mismatches between image and
segmentation instead of just recognizing indicators that reveal the origin. The
full correction loss is given by:

Lcor := E(x,y)∼D[H(C(x, ŷ),ycor) +H(C(x,y),yt)]. (2)

Setting the corrector’s labels to be identical to the ground-truth and omitting
the correction maps could theoretically lead to the same results with no classes
added. In practice, however, this proved unsuccessful. We suspect that without
the transfer required by identifying matching regions, the corrector would simply
try to copy the input segmentation. This would yield accuracies as high as the
preceding segmentation network with no learned understanding of the data.
Designing the corrector to pick if a given prediction matches the content avoids
this unstable case.

Weighted Cross-Entropy to counter Class Imbalances Assigning the
(N + 1)th class to all accurately detected regions leads to extremely imbalanced
label distributions, as can be seen in Figure 2. This could result in the correction
network not learning anything since always predicting the (N + 1)th class would
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lead to high accuracies on average. An imbalanced class distribution is not an un-
common setting and can be alleviated by individually weighing the contribution
each class has on the overall loss. Instead of recalculating the class frequencies at
runtime to proportionally weight each class, a fixed weighting scheme α ∈ {1, 2}
is adopted. Balancing all regular dataset classes with a weight of α = 2, and the
additional (N + 1)thth class with weight α = 1 penalizes the misclassifications
and forces the correction network to acknowledge these low-frequency regions.

3.2 Supervised Training with an Auxiliary Objective

Following a standard supervised approach, the Cross-Entropy between the out-
put segmentation and the ground-truth labeled data is minimized. Additionally,
the network is constrained to produce segmentations, which the error-correcting
network interprets as correct with high probability:

Lsup := E(x,y)∼D[H(S(x),y) + λcorH(C(x, S(x)),yt)]. (3)

The contribution of the second term on the overall loss is controlled by the pa-
rameter λcor. This auxiliary objective regularizes the segmentation network and
at a first glance resembles the concept of an adversarial loss. However, the rela-
tionship between the correction and the segmentation network is collaborative
in nature. With GANs, an improving generator will increase the discriminator
loss. On the contrary, as the segmentation in ECS improves and Lsup approaches
the minimum, ycor approaches yt. This collapses both terms in Equation 2 and
shows that ultimately the goals of both networks align.

3.3 Semi-Supervised Step

The concept behind ECS involves the corrector judging the agreement between
a given image and its segmentation, and offering a proposal for a correction
if areas do not seem to match. For semi-supervised training, these predicted
corrections receive an additional processing step to form the pseudo-labels yp.
The continuous outputs ŷ = S(xu) and yc = C(xu, ŷ) are both transformed to
their discrete label representations yu and yc. All areas predicted as N +1 in yc

are replaced with the corresponding values of yu while the remaining corrections
are kept:

yp =

{
yui if yci = N + 1

yci otherwise.
(4)

Negated Focal Loss The idea behind the Focal Loss [21] is to reduce the
contribution of an easily classified example. This is achieved by weighting the
Cross-Entropy with the negated probability of the true class. Likewise, our pro-
posed loss for learning from the proxy labels yp takes the form of a weighted
Cross-Entropy but does not use negated probabilities:

NFL(·, ·, j) = max(j)γH(·, ·), (5)
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where j is a probability distributions, whose influence on the loss is smoothed
by the focusing parameter γ. Instead of weighting the loss with the probabilis-
tic output of the segmentation network, j is set to the correction network’s
predictions. This regularization measure ensures that the influence of the loss
calculated with the pseudo-labels is proportional to the certainty of the corrector
in its decision. Thus, high entropy predictions will be down-weighted and have
a reduced effect. The complete semi-supervised objective is given by:

Lecs := Exu∼Du
[NFL(S(xu),yp, C(xu, S(xu)))]. (6)

4 Experiments and Analysis

The following section gives brief insight into both datasets, parameter settings
and evaluation metrics that were used for the analysis of our approach.

4.1 Cityscapes

Cityscapes [5] is a large scale dataset depicting urban scenes and environments
which can be used for pixel-level and instance-level labeling tasks. Of the video
sequences recorded in 50 cities, 5000 images have high quality annotations. 2975
of the 2048×1024 pixel images are contained in the training set, and 500 compose
the validation set. The remaining 1525 images compose the test set, for which
the label maps are not publicly available. The dataset contains 30 classes, of
which 19 are used for training and evaluation purposes. All reported results are
on the Cityscapes validation set.

4.2 Pascal VOC 2012

The second dataset is Pascal VOC 2012 [7], which consists of 1464 training, 1449
validation, and 1456 test images showing objects from 20 foreground classes and
a single background class in varying resolutions. The SBD dataset [9] extends the
original dataset, adding 9118 densely labeled training images, showing the same
object categories. For our experiments, all models are trained on the combined
Pascal VOC 2012 and SBD training sets. As with Cityscapes, all reported results
are on the validation set.

4.3 Model Architecture

The segmentation network used in most experiments is a DeepLabv3+ [4] with
a ResNet50 backbone [11, 12]. Dilated convolutions with a dilation rate of two
are applied to the last three residual blocks, such that the output features of
the ResNet are 16 times smaller than the resolution of the input. The correction
network acts as a secondary segmentation on the data. Thus, instead of utiliz-
ing architectures described in prior literature or producing a unique design, we
decided to use DeepLabv3+ as well. As a result, all recent advances in network
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design for semantic segmentation are present in the corrector. Both correction
and segmentation network employ the Atrous Spatial Pyramid Pooling (ASPP)
intrinsic to DeepLabv3+, they only differ in the depth of the ResNet backbone.
Here the corrector utilizes a smaller ResNet34. Apart from the model depth, the
input dimensions of the first convolutional layer are extended. The first layer
of the corrector takes RGB image data and concatenates it with the one-hot
encoded labels or segmentations. Both networks feature a softmax layer at the
end. Although the main experiments are run with DeepLabv3+, the proposed
method is completely agnostic to the network design, as long as it is suitable for
segmentation.

4.4 Setup

Both models contain a ResNet backbone with the ASPP and decoder as de-
scribed in [4], implemented in Pytorch [25]. For all experiments, the segmenta-
tion network is trained with Stochastic Gradient Descent[18, 27] with a learning
rate of 0.01, momentum 0.9 and 1e− 4 weight decay. The correction network is
optimized with Adam[19], with β1 = 0.9 and β2 = 0.99, and the same weight
decay as with SGD. The initial learning rate is set to 1e−4. For both optimizers
polynomial learning rate decay lr = lrinitial · (1− iter

maxiter )0.9 is applied. For all
experiments λcor is set to 0.1 and γ in to 2. Both ResNets are initialized to the
publicly available pre-trained ImageNet model contained in the PyTorch reposi-
tory. The extended initial layer of the correction network is initialized according
to [11]. Correction and segmentation networks are trained in tandem and the
pseudo-labels are incorporated from the beginning with no warm-up phase.

Every reported result is the mean value of 10 individual trials, initialized with
a random seed ascending from 0. This seed controls the training data distribution
and ensures that the supervised and semi-supervised experiments are run with
the same labeled data. For the experiments, the labeled data is limited to ratios
ranging between 1/8 and 1/2 of the available dataset. The remaining images are
used for semi-supervised training.

The same training data augmentation scheme as in [4] is used. On the
Cityscapes dataset, the images are flipped horizontally at random. For train-
ing square, 768 pixel crops are randomly extracted. The validation images are
kept at full resolution with only normalization being applied. The models are
trained for 15000 iterations with a batch-size of 6. The Pascal VOC 2012 images
are randomly cropped with a size of 512 and zero-padded if necessary. As with
Cityscapes, the images are horizontally flipped and the validation images remain
unaltered. The models are trained for 22000 iterations with a batch-size of 14.

These specific iterations numbers were chosen to result in comparable train-
ing duration to [14]. Differently from [4], no form of multi-resolution or mirroring
steps are employed for validation.

The models were trained on Nvidia Titan RTX and Quadro RTX 6000 GPUs,
and with the given batch sizes and input resolutions consumed 22GB and 24GB
of memory on Cityscapes and Pascal respectively.
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Table 1. Overview of the per-class Intersection over Union on Cityscapes (top) and
Pascal VOC 2012 (bottom). The highlighted results indicate that IoU values with ECS
are larger than the supervised counterpart, in the row above.
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Evaluation Metric The quality of the models is assessed with the commonly
used mean Intersection-over-Union (mIoU).

4.5 Results

In the following sections, we establish a supervised baseline and compare ECS
with competing methods. Methods that operate on weakly labeled data are
not part of our evaluation, as weakly supervised models cover a fundamentally
different use-case.

Baseline To give context to our results, we compare our implementation of
DeepLabv3+ with the results stated in [4]. Especially on the Pascal VOC 2012
dataset, our results of 76.29 are close to the mIoU of 78.85 reported in the original
paper, considering a smaller ResNet50 backbone was used for replication instead
of a larger ResNet101. On Cityscapes the discrepancy is larger, which is likely
due to the very different backbone architectures. Here our baseline of 74.76 can
not as closely match the 78.79 mIoU that was achieved with an Xception style
network backbone. Pushing the state-of-the-art in the Cityscapes or Pascal VOC
2012 benchmark is not the intention of this work, but to develop novel meth-
ods for training on unlabeled data. Therefore, with DeepLabv3+-ResNet50, an
architecture was chosen to provide high quality and competitive segmentations,
while still having moderate hardware demands.

Error-Correcting Supervision Table 1 shows the per class Intersection over
Union for both datasets with 1/8, 1/4, 1/2 of the labeled data as well as fully
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Table 2. Hyperparameter study for ECS trained with 1/4 the data on both datasets.
The second best result on both datasets is with just semi-supervised learning, without
auxiliary regularization.

λcorr H NFL Pascal Cityscapes

0.0 69.79 67.31

0.0 X 71.97 70.39

0.1 69.93 68.22

0.1 X 68.39 69.27

0.1 X 72.60 70.70

supervised. Here ECS consistently improves over the supervised baseline. In the
case of training with 1/8 of the labeled data, ECS performs as well as a purely
supervised model with 1/4th. Therefore, especially when only small amounts of
labeled data are available ECS provides a significant improvement in mIoU. As
expected, the more labeled data and consequently less unlabeled data is present,
the less pronounced the benefits of ECS become.

4.6 Ablation Study

To highlight the individual contributions to the overall performance, we provide
an ablation study for a set selection of model configurations. Table 2 compares
the effectiveness of the proposed Negated Focal Loss, with directly using the
Cross-Entropy loss H in Lecs (eq. 6). Further, we present the effect decreasing
values for λcor have on the quality of the output, with and without the semi-
supervised objective. Just the auxiliary regularization in Equation 3 without any
semi-supervised learning improves the mIoU but only slightly. This result implies
that the ECS is not simply a regularization scheme on the supervised objective,
but that the main contribution is from the corrector’s pseudo-labels. Setting λcor
to 0, i.e. using just the pseudo-labels leads to the second-best performance, and
reinforces this observation. Admittedly the pseudo-labels alone are not sufficient.
Minimizing the Cross-Entropy instead of the proposed Negated Focal Loss does
not lead to optimal results. In the case of Pascal VOC 2012, it even falls below
the supervised baseline. The pseudo-labels yp would be accepted as fact, and
contribute an equal amount to the gradient update as the supervised objective.
The Negated Focal Loss’s weighting scheme, which incorporates the certainty of
the correction network, is essential and leads to the overall best results.

Corrector Evaluation To evaluate the weighting scheme discussed in Section
3.1, we compared the N+1 class mIoU values the correction network can achieve
on the Cityscapes and Pascal VOC 2012 validation sets. Figure 3 shows that
independently of the loss functions, penalizing the original N classes offers large
improvements in mIoU. While the Negated Focal Loss is essential in the semi-
supervised step, the choice of the standard Focal Loss to train the corrector in
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Fig. 3. Training just the corrector to evaluate the predictions of a pretrained segmen-
tation network. The N+1 class mIoU is plotted for each epoch. Assigning an increased
weighting to the original N classes of the dataset has a substantial positive effect on
the mIoU.

Equation 2 is less conclusive. In the full ECS model, we found no statistically
significant improvements of one loss function over the other. They effectively
perform the same.

4.7 Comparison with Existing Methods

We considered two approaches to compare ECS with competing methods.

DeepLabv3+ The results of training the publicly available code for [14] with
the same segmentation network that was used with ECS can be seen in Table
3. Apart from Cityscapes with 1/8 the labeled data, the method improves over
the supervised baseline, but is consistently outdone by ECS.

But the two approaches still differ in the discriminator’s architecture. Using a
DeepLabv3+ discriminator with [14]’s method does not lead to further improve-
ments. Experiments clearly showed signs of the discriminator overpowering the
segmentation network. The discriminator loss approaches zero after 10% of the
trained iterations, whereas with their architecture the loss hovers consistently
above zero. Similarily less than 1% of the predictions on the unlabeled data are
classified above the set acceptance threshold by the DeepLabv3+ discriminator.
This effectively leads to most unlabeled data being ignored. Additionally, such
experiments stay behind the supervised baseline with mIoU values 65.83 and
65.79 on Pascal VOC 2012 and Cityscapes with 1/4 the labeled data.

DeepLabv2 Here, ECS is trained with DeepLabv2 [2] used in [14, 23] and a
DeepLabv3+ corrector. Comparing with the published results in Table 4, we
achieve an improved supervised baseline on Pascal VOC 2012 but a very similar
result for Cityscapes. Again, ECS consistently outperforms the competition.
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Table 3. Training the publicly available code from [14] with the same segmentation net-
work and data distribution as our model. Although the method provides a statistically
significant improvement over the supervised baseline in most cases, ECS outperforms
it.

Dataset #Data [14] Ours

Pascal 1/8 66.22 (±1.27) 70.22 (±0.75)
1/4 70.48 (±0.56) 72.60 (±0.44)

Cityscapes 1/8 63.21 (±0.81) 67.38 (±0.96)
1/4 68.43 (±0.52) 70.70 (±0.68)

Table 4. Comparison between [14], [23] and our method trained with a DeepLabv2.
For each method, the first row presents the mIoU of the supervised baseline and the
second row the results when the respective approach is applied. The results for [23] on
Pascal VOC 2012 include the Mean Teacher model.

Dataset #Data [14] [23] Ours

Pascal 1/8 sup 66.0 65.2 67.36 (±1.16)
semi 69.5 71.4 72.95 (±0.72)

1/4 sup 68.1 - 71.61 (±0.48)
semi 72.1 - 74.68 (±0.37)

Cityscapes 1/8 sup 55.5 56.2 55.96 (±0.86)
semi 58.8 59.3 60.26 (±0.84)

1/4 sup 59.9 60.2 60.54 (±0.85)
semi 62.3 61.9 63.77 (±0.65)

4.8 Relation between Correction and Truth

The comparison between [14] and [23] in combination with the ablation study
implies that the correction network is potent in providing quality approxima-
tions for the truth. This hypothesis is reinforced when the correlation between
prediction and truth is studied on the unlabeled data. Figure 4 depicts the Spear-
man’s rank correlation coefficient between the squared probability of the correc-
tion network accepting the output as correct and the negative Cross-Entropy
loss between the segmentation and ground-truth labels. The Cross-Entropy loss,
in this case, is used as a measure of proximity between truth and segmenta-
tion. The correlation is computed for results on both the labeled and unlabeled
data, for each dataset ratio on both Pascal VOC 2012 and Cityscapes. Espe-
cially for Cityscapes, there is an evident correlation. As expected, it is stronger
on the training set, as the corrector is optimized with this data. The fact that
there still is a positive correlation on the unlabeled dataset, illustrates why this
semi-supervised learning approach is effective. On Pascal VOC 2012, while still
positive, the correlation is decreased for both labeled and unlabeled data.

Comparing the correlation with the individual IoU values for each class in
Table 1 gives additional insight. There is a negative correlation in the unlabeled
data for the Chair class in the Pascal VOC 2012 dataset. For 1/2 the labeled data
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Fig. 4. Spearman’s rank correlation coefficient describing the monotonic relationship
between the squared prediction of correction network whether the segmentation is cor-
rect and the negative cross entropy loss between segmentation and truth. The positive
correlation especially on the unlabeled data explains the effectiveness of our approach.

this leads to a decrease in IoU with ECS compared to the supervised baseline.
Again with half the data, there is a small positive correlation for Pottedplant
on the unlabeled images, compared to the training set. The IoU for this class is
only improved by 0.53 when ECS is applied. However, analyzing this correlation
coefficient does not fully explain the benefits of our model. In some cases, the
performance decreases with ECS, although a positive correlation on labeled and
unlabeled images is present.

5 Conclusion

Error-Correcting Supervision offers a novel approach for semi-supervised seg-
mentation, and can easily be added to existing supervised models if additional
unlabeled data is present. Being model agnostic and reusing the segmentation
architecture for the correction network, eliminates architecture search time. The
utilization of the same architecture for both tasks ensures that the corrector is
expressive enough for the underlying problem.

We have shown that our approach consistently outperforms a supervised
baseline, as well as competing methods. It is the most effective when the ratio
between labeled and unlabeled data is heavily in favor of the latter. Cityscapes
and Pascal VOC 2012 are very different datasets. Pascal VOC 2012 mainly
features foreground objects, most of the image being labeled as background.
Cityscapes, on the other hand, is densely labeled, and only some regions of the
image are ignored. ECS is effective on both tasks which indicates the generality
of the approach. Framing the interaction between the two involved networks as
collaboration instead of competition, allows us to profit from complex corrector
architectures without the danger of the segmentation network being overpowered
and degenerating the results.
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