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Abstract. Curriculum learning can improve neural network training
by guiding the optimization to desirable optima. We propose a novel
curriculum learning approach for image classification that adapts the loss
function by changing the label representation.
The idea is to use a probability distribution over classes as target la-
bel, where the class probabilities reflect the similarity to the true class.
Gradually, this label representation is shifted towards the standard one-
hot-encoding. That is, in the beginning minor mistakes are corrected
less than large mistakes, resembling a teaching process in which broad
concepts are explained first before subtle differences are taught.
The class similarity can be based on prior knowledge. For the special
case of the labels being natural words, we propose a generic way to
automatically compute the similarities. The natural words are embedded
into Euclidean space using a standard word embedding. The probability
of each class is then a function of the cosine similarity between the vector
representations of the class and the true label.
The proposed label-similarity curriculum learning (LCL) approach was
empirically evaluated using several popular deep learning architectures
for image classification tasks applied to five datasets including ImageNet,
CIFAR100, and AWA2. In all scenarios, LCL was able to improve the classi-
fication accuracy on the test data compared to standard training. Code to
reproduce results is available at https://github.com/speedystream/LCL.

Keywords: Curriculum Learning; Deep Learning; Multi-modal Learning,
Classification

1 Introduction

When educating humans, the teaching material is typically presented with in-
creasing difficulty. Curriculum learning adopts this principle for machine learning
to guide an iterative optimization method to a desirable optimum. In curriculum
learning for neural networks as proposed by Bengio et al. [1], the training exam-
ples are weighted. In the beginning of the training, more weight is put on “easier”
examples. The weighting is gradually changed to uniform weights corresponding
to the canonical objective function.

https://github.com/speedystream/LCL
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Inspired by Bengio et al. [1], we propose label-similarity curriculum learning
(LCL) as another way to “learn easier aspects of the task or easier sub-tasks,
and then gradually increase the difficulty level.” If a toddler who is just learning
to speak points at a car and utters “cow”, a parent will typically react with
some teaching signal. However, a young infant is not expected to discriminate
between a cheetah and a leopard, and mixing up the two would only lead to a
very mild correction signal – if at all. With increasing age, smaller errors will
also be communicated.

We transfer this approach to neural network training for classification tasks.
Instead of a one-hot-encoding, the target represents a probability distribution
over all possible classes. The probability of each class depends on the similarity
between the class and the true label. That is, instead of solely belonging to its true
class, each input can also belong to similar classes to a lesser extent. Gradually,
this label representation is shifted towards the standard one-hot-encoding, where
targets representing different classes are orthogonal. In the beginning of training,
the targets of inputs with labels cheetah and leopard should almost be the
same, but always be very different from car. During the training process, the
label representation is gradually morphed into the one-hot encoding, decreasing
the entropy of the distribution encoded by the target over time. That is, in the
beginning small mistakes – in the sense that similar classes are mixed up – are
corrected less than big mistakes, resembling a teaching process in which broad
concepts are explained first before subtle differences are taught.

The question arises how to define a proper similarity between classes. One
can get a label-similarity matrix based on prior knowledge or some known
structure. For the case where the similarity is not explicitly given and the labels
correspond to natural language words, we propose a way to automatically infer
a representation that reflects semantic similarity. We map the labels into a
Euclidean space using a word embedding. Concretely, this is done by applying a
generic document embedding to a document explaining the label (its Wikipedia
entry). Then the cosine similarities between the vector representations of the
label and all possible classes are computed. Based on these values, a distribution
over the possible classes is defined which serves as the learning target.

Our way to define the target representation resembles the idea of hierarchical
loss functions [27,32] (“We define a metric that, inter alia, can penalize failure
to distinguish between a sheepdog and a skyscraper more than failure to distin-
guish between a sheepdog and a poodle.” [32]). However, there are two decisive
differences. First, we propose to gradually shift from a “hierarchical loss” to a
“flat loss”. Second, unlike in [32], our approach does not necessarily presume a
given hierarchy. When dealing with natural language labels, we propose a way
to automatically infer the similarity from a generic word embedding under the
assumption that exploiting semantic similarity can be helpful in guiding the
learning process.

For evaluating label-similarity curriculum learning (LCL), we need data
with some structure in the label space that curriculum learning can exploit.
Furthermore, there should be sufficiently many classes and the task should not
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be easy to learn. To get label similarity based on word embeddings, we need a
dataset with natural language labels. In this study, we focus on three popular
benchmark datasets, ImageNet [4], CIFAR100 [17], and Animals with Attributes
(AwA) [33]. To show the generality of our approach, we consider different deep
learning architectures, and also different preprocessing and learning processes.
The time schedule for increasing the “difficulty” of the learning task is an obvious
hyperparameter, which we carefully study and show to have little importance.

The next section points to related literature and Section 3 introduces the
new label-similarity curriculum learning. Section 4 describes the experiments and
Section 5 the results before we conclude.

2 Related Work

Starting from the work by Bengio et al. [1], a variety of curriculum learning
approaches has been studied. However, they all define a curriculum at the level
of training examples. For instance, self-paced learning by Kumar et al. [18]
introduces latent variables for modelling “easiness” of an examples. Graves et
al. [10] consider example-based improvement measures as reward signals for multi-
armed bandits, which then build stochastic syllabi for neural networks. Florensa
et al. [5] study curriculum learning in the context of reinforcement learning in
robotics. They propose to train a robot by gradually increasing the complexity of
the task at hand (e.g., the robot learns to reach a goal by setting starting points
increasingly far from the goal). In recent work, Weinshall et al. [31] consider
learning tasks with convex linear regression loss and prove that the convergence
rate of a perfect curriculum learning method increases with the difficulty of the
examples. In addition, they propose a method which infers the curriculum using
transfer learning from another network (e.g., ResNet-50 ) pretrained on a different
task. They train a linear classifier using features extracted from the pretrained
model and score each training example using the linear classifier’s confidence
(e.g., the margin of an SVM). Finally, they train a smaller deep neural network
for the transfer learning task following a curriculum based on these scores.

Buciluǎ et al. [2] have proposed compressing a large model into a simple
model which reduces space requirements and increases inference speed at the cost
of a small performance loss. This idea has been revisited in [13] under the name
knowledge distillation (KD) and received a significant amount of attention (e.g.,
[23,25,36,35,22]). KD methods typically require a pretrained model to start with
or train a series of models on the same training data. Standard KD considers a
teacher network and a student network. The powerful teacher network is used
to support the training of the student network which may be less complex or
may have access to less data for training. KD is related to curriculum learning
methods because the teacher network guides the learning of student networks
[13]. A variant of KD, born again neural network, trains a series of models, not
only one [7].

Deep mutual learning (DML) is also loosely related to our proposed approach
[13,38]. In DML, two models solve the same classification problem collaboratively
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and are jointly optimised [38]. Each model acts as a teacher for the other model,
and each network is trained with two losses. The first loss is the standard cross-
entropy between the model’s predictions and target labels. The second is a
mimicry loss that aligns both model’s class posteriors with the class probabilities
of the respective other model.

Another related approach is CurriculumNet [11], a clustering based curriculum
strategy for learning from noisy data. CurriculumNet consists of three steps.
First, a deep neural network is trained on the noisy label data. Second, features
are extracted by using the model trained in the first step. Using clustering
algorithms, these features are then grouped into different sets and sorted into
easy and difficult examples. Finally, a new deep neural network is trained using
example-weighted curriculum learning. Sorting of examples from easy to hard
and clustering algorithms add many hyper-parameters (e.g., number of clusters),
and one has to train two neural network models of almost the same size.

Our algorithm can be considered as a multi-modal deep learning method,
where text data is used for estimating the class similarity matrix to improve
image classification. However, it is different from standard multimodal methods
as it does not use text data as an input to the deep neural network. The DeVise
algorithm is a popular multi-modal method which utilizes the text modality in
order to learn a mapping from an image classifier’s feature space to a semantic
space. [6]. DeVise requires a pretrained deep neural network. Furthermore, as
stated in [6], it does not improve the accuracy on the original task but aims at
training a model for zero-shot learning.

There is an obvious relation between LCL and label smoothing (LS) [21],
which we will discuss in Section 4.

The computational requirements of KD, DML, and CurriculumNet are signif-
icantly higher compared to our method, which is rather simple. Furthermore, our
method does not require training more than one model and adds only a single
hyper-parameter.

3 Method

We assume a discrete set of training examples (x1, c1), . . . , (x`, c`) ∈ X × C,
with input space X and finite label space C with cardinality |C| = C. Let
n : C → {1, . . . , C} be a bijective mapping assigning each label to a unique
integer. This allows a straight-forward definition of the one-hot encoding yi ∈ RC
for each training example (xi, ci). The j-th component of yi, which is denoted
by [yi]j , equals 1 if n(ci) = j and 0 otherwise.

3.1 Document embedding for defining label similarity

Our learning curriculum is based on the pairwise similarities between the C
classes, which are defined based on the semantic similarity of the class labels.
Now assume that the labels are natural language words, for example C = {. . . ,
flute, . . . , strawberry, . . . , backpack, . . . }. To quantify semantic similarity, we
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Fig. 1. A deep network (left) trained with three different encodings on a five-class
dataset with labels Lion, Tiger, Aircraft Carrier, Alaskan Wolf and Mushroom. The
SL (standard learning, see Section 4 for details) column shows the label matrix for
one-hot-encoding. When using LS (label smoothing, see Section 4), the loss between
the network output and a smoothed version of the label, which does not change over
time, is minimized. We propose to use a probability distribution over classes as target
label, where the class probabilities reflect the similarity to the true class. This is shown
in the LCL column. Unlike LS the proposed label encoding changes during training
and converges to the original optimization problem solved when using SL.

embed the natural language labels into Euclidean space using a word embedding
[20] such that similar words are nearby in the new representation.

ImageNet labels are given by WordNet identifiers representing synsets, and
we redefine the labels for other datasets in a similar way. First, we convert synsest
to words, for example, n02119789 to “fox”. Then, we find the Wikipedia article
describing each word, for instance, “Orange (fruit)” was selected for orange. Then
we apply doc2vec [19] for mapping the article into Euclidean space. We used a
generic doc2vec embedding trained on the English Wikipedia corpus. This gives
us the encoding fenc : C → Rd, mapping each class label to the corresponding
Wikipedia article and then computing the corresponding vector representation
using doc2vec (with d = 100, see below). Now we can compute the similarity
between two classes ci and cj by the cosine similarity

s(ci, cj) = 〈fenc(ci), fenc(cj)〉
‖fenc(ci)‖‖fenc(cj)‖

, (1)

which in our setting is always non-negative. The resulting label dissimilarity
matrix for the ImageNet labels is visualized in the supplementary material.

3.2 Label encoding

We adopt the formal definition of a curriculum from the seminal paper by Bengio
et al. [1]. In [1], a weighting of the training data is adapted, so that in the



6 Ü. Dogan, A. Deshmukh, M. Machura, C. Igel

beginning a larger weight is put on easy examples. To distinguish this work from
our approach, we refer to it as example-weighting curriculum.

Let t ≥ 0 denote some notion of training time (e.g., a counter of training
epochs). In [1], there is a sequence of weights associated with each example
i = 1, . . . , `, which we denote by w(t)

i ∈ [0, 1]. These weights are normalized so
that

∑`
i=1 w

(t)
i = 1 to describe a proper probability distribution over the training

examples.
For the weight sequence to be a proper (example-weighting) curriculum,

Bengio et al. [1] demand that the entropy of the weights

H(w(t)) = −
∑̀
i=1

w
(t)
i lnw(t)

i (2)

is monotonically increasing with t (the weights should converge to the uniform
distribution).

We define our label-weighting curriculum in a similar axiomatic way. Instead of
a sequence of weights for the training examples varying with t, we have a sequence
of label vectors for each training example. Let v(t)

i denote the C-dimensional label
vector for training pattern i at time t. For the sequence to be a label-weighting
curriculum, the entropy of the label vector components

∀i = 1, . . . , ` : H(v(t)
i ) = −

C∑
c=1

[vi](t)c ln[vi](t)c (3)

should be monotonically decreasing under the constraints that for each label
vector v(t)

i we have [v]j ≥ 0 for all j, ‖v(t)
i ‖1 = 1, and argmaxj [v](t)j = n(ci) for

all t. The conditions imply that vi is always an element of the probability simplex,
the class label given in the training set always gets the highest probability, and
v

(t)
i converges to yi.
We now give an example of how to adapt the label vectors. Similar as in [1],

we define for each training example i the simple update rule:

[vi](t+1)
j =


1

1+ε
∑

k 6=n(ci)
[vi](t)

k

if j = n(ci)

ε[vi](t)
j

1+ε
∑

k 6=n(ci)
[vi](t)

k

otherwise
(4)

The constant parameter 0 < ε < 1 controls how quickly the label vectors converge
to the one-hot-encoded labels. This update rule leads to a proper label-weighting
curriculum. During learning, the entries for all components except n(ci) drop
with O(εt). Note that [vi](t+1)

n(ci) ≥ [vi](t)n(ci). The vectors are initialized using the
label similarity defined in (1):

[vi](0)
j =

s
(
ci, n

−1(j)
)∑C

k=1 s
(
ci, n−1(k)

) (5)

Recall that n−1(j) denotes the “j-th” natural language class label.
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3.3 Loss function

Let L be a loss function between two probability distributions and fθ(x) be the
predicted distribution for example x for some model parameters θ. At time step t
we optimize J (t)(θ) =

∑n
i=1 L(fθ(xi),v(t)

i )+λr(θ), where λ is a positive constant
and r(θ) is a regularization function. In this paper, the networks are trained using
the standard cross-entropy loss function with normalized targets vi for the inputs
xi, i = 1, . . . , `. Hence, in the beginning, predicting the correct one-hot encoded
label yi causes an error signal. That is, initially it is less penalized if an object is
not correctly classified with maximum confidence. Later in the training process,
vi converges to yi and the classifier is then pushed to build up confidence.

4 Experiments

We evaluated our curriculum learning strategy by running extensive experiments
on ImageNet [4], CIFAR100 [17], and AWA2 [33] plus additional experiments on
CUB-200-2011 [30] and NABirds [29] (see supplementary material). On CUB-200-
2011 and AwA2, we evaluated our approach using both the proposed semantic
similarity of the labels as well as visual similarity. On NABirds, we evaluated our
approach also using similarity based on the given (biological) hierarchy, where
we used simrank [16] for calculating the similarity matrix.

For each dataset we considered at least two different models and two different
baselines. Descriptive statistics of the datasets and a summary of the experimental
setup are given in Table 1 and Table 2. We considered different training set sizes,
where DR ∈ {5%, 10%, 20%, 100%} refers to the fraction of training data used.
The remaining training data was discarded (i.e., not used in the training process
at all); the test data were always the same.

Table 1. `train denotes the number of training images, `test denotes the number of test
images and C the number of classes in a given dataset; DR indicates the data set sizes
(percentage of `train) and ε the cooling parameters. The column Sim. indicates which
similarity measures were used, where l stands for the semantic similarity using the word
embedding of the labels, v for a measure based on the similarity of the images, and h
for similarity based on a given label hierarchy. For each experimental setup, #Rep= 4
repetitions with different initializations/seeds were conducted.

`train `test C DR ε Sim.

AWA2 29865 7457 50 5%, 10%, 20%, 100% 0.9, 0.99, 0.999 l, v
CIFAR100 50000 10000 100 5%, 10%, 20%, 100% 0.9, 0.99, 0.999 l
ImageNet 1281167 50000 1000 5%, 10%, 20%, 100% 0.9, 0.99, 0.999 l
NABirds 23912 24615 555 100% 0.9,0.99,.999 l, h
CUB-200-2011 5994 5794 201 100% 0.9,0.99,.999 l, v

We empirically compared the following algorithms:
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1. Label-similarity curriculum learning (LCL): Proposed method with label
update rule (4). The time step t is the epoch number.

2. Standard Learning (SL): This is a standard setup with fixed one-hot encoding.
3. Label Smoothing (LS): Label smoothing uses soft targets instead of one-hot

encoding. It has been argued that LS prevents the network from becoming
over-confident and improves the empirical performance of the algorithm [21].
For 0 ≤ α ≤ 1 label smoothing uses following label vector

[vi](t)j =
{

(1− α) + α
C if j = n(ci)

α
C otherwise

for all t. (6)

We setα = 0.1 for the evaluations in this study.
4. Deep Mutual Learning (DML): In DML, two models, referred to as DML1and

DML2, solve the same classification problem collaboratively and are optimised
jointly [38]. It uses one hot-encoding along with cross-entropy loss as in
SL but adds additional terms KL(v̂(t)

DML1
‖ v̂(t)

DML2
) + KL(v̂(t)

DML2
‖ v̂(t)

DML1
),

where KL denotes the Kullback–Leibler divergence and v̂(t)
DML1

and v̂(t)
DML2

are the predicted label probability vectors for both models. We report the
classification performance of both DML1 and DML2.

5. Knowledge Distillation (KD): In KD, one model is trained first using one-hot
encoded targets, and then the class probabilities produced by the first model
are used as “soft targets” for training the second model [13].

6. Curriculum Net (CN): In CN, example-weighted curriculum is built by sorting
examples from easy to hard [11].

Table 2. ResNeXt-101 denotes ResNeXt-101 (32×8d) , WRN denotes WRN (28-10-
dropout), and DenseNet-BC denotes DenseNet-BC (k = 40, depth=190) .

Model Dataset Baselines
ResNet-18 [34] CUB-200-2011 LS, DML, SL, KD, CN
ResNet-34 [34] CUB-200-2011, NABirds LS, DML, SL, KD, CN
ResNet-50 [12] ImageNet, NABirds SL, LS, KD, CN
ResNeXt-101 [34] ImageNet SL, LS, KD, CN
SENet-154 [14] ImageNet SL, LS, KD, CN
ResNet-101 [12] AWA2 LS, DML, SL, KD, CN
InceptionResNetV2 [28] AWA2 LS, DML, SL, KD, CN
WRN [37] CIFAR100 LS, DML, SL, KD, CN
DenseNet-BC [15] CIFAR100 LS, DML, SL, KD, CN

For all architectures, we have followed the experimental protocols described
in the original publications [12,37,34,14,28,15]. All experiments were conducted
using the PyTorch deep learning library [24].3 For all experiments, except Ima-
geNet DR = 100%, we used stochastic gradient descent (SGD) for optimization.
3 The code to reproduce our results is available in the supplementary material.
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For ImageNet DR = 100% we used the distributed SGD algorithm [9] with
Horovod4 [26] support because of the computational demands. The distributed
SGD algorithm [9] is one of the state-of-the-art methods for large scale training.
It is expected to lead to a slight loss in performance when a large batch size is
used (see [9] for details).

Our approach introduces the hyperparameter ε, see (4). In order to assess the
stability of the proposed method, we present results for ε ∈ {0.9, 0.99, 0.999}.5
We repeated all experiments four times. We report the top-1 and top-5 classi-
fication accuracy on the test datasets (standard deviations are reported in the
supplementary material).

For estimating the label similarity matrix, we used pretrained doc2vec emebed-
dings with dimensions d ∈ {100, 300, 500} with ResNet-50 and ResNet-101 . We
did not observe any significant differences in the classification accuracies. The
maximum difference between compatible settings were less than 0.06 %. Hence,
we only report results for the d = 100 dimensional doc2vec embeddings.

For each experiment, we used workstations having 4 Tesla P100 GPUs (with
16GB GPU RAM) each. For network communication we used InfiniBand, which
is a computer-networking communications standard designed for high throughput
and low-latency scenarios.

We tuned the hyperparameters for the baseline method (SL) only. For 100%
data, we took the hyperparameters from the original publications. For all other
settings, we optimized learning rate, batch size and weight-decay for the standard
baseline (SL). Then we use the very same parameters for our approach (we
just varied the new parameter epsilon). Thus, hyperparameter tuning would
rather increase the gain from using our method. Thus, one might argue that the
new algorithm is using sub-optimal hyperparameters compared to the baselines.
However, our goal was to show that the proposed algorithm can improve any
model on different datasets without tuning hyperparameters.

5 Results and Discussion

We will focus on the results for ImageNet, CIFAR100, and AWA2 and the
similarity measure introduced in Section 3, result tables for the other data sets
and other similarity measures can be found in the supplementary material. Before
we present the learning results, we will discuss the structure of the label similarity
matrices for the data sets ImageNet, CIFAR100, and AWA2.

Label Similarities. For a better understanding of the label similarity matrices,
we visualized their eigenspectra in Figure 2. Consider two extreme scenarios: If
4 Horovod is a method which uses large batches over multiple GPU nodes and some
accuracy loss is expected for the baseline method and this is well established. For
more details please see Table 1 and Table 2.c in [24].

5 We have tried ε ∈ {0.8, 0.9, 0.91, . . . , 0.98, 0.99, 0.992, . . . , 0.998, 0.999} for ResNet-50
and ResNet-101 . The results showed that the search space for ε can be less granular
and we have limited the search space accordingly.
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Fig. 2. Eigenvalue distributions of the class similarity matrices for ImageNet, CIFAR100,
and AwA2.

a label similarity matrix has rank 1, all classes are exactly the same and there
cannot be any discriminatory learning. In contrast, the full rank case with equal
eigenvalues is the standard learning case where all classes are orthogonal to each
other (one-hot-encoding). Figure 2 shows exponential eigenvalues decays, which
means there are clusters of similar classes. Distinguishing between these clusters
of classes is an easier task than distinguishing between classes within one cluster.

Table 3. ImageNet. Top-1 results, averaged over four trials.

ε

SL LS KD CN 0.9 0.99 0.999

DR = 5%

ResNet-50 38.21 38.43 39.81 36.12 41.24 41.6 42.21
ResNeXt-101 45.46 45.71 46.21 44.14 46.1 46.92 47.12
SENet-154 48.29 48.57 48.44 46.21 49.8 50.04 50.19

DR = 10%

ResNet-50 51.95 52.25 53.64 52.17 55.39 55.62 55.64
ResNeXt-101 58.63 58.92 58.94 57.64 59.78 60.07 59.92
SENet-154 60.61 60.74 60.82 60.14 60.99 61.18 62.28

DR = 20%

ResNet-50 61.87 62.11 63.17 62.41 64.41 64.42 64.44
ResNeXt-101 67.96 68.13 68.29 68.14 68.48 68.47 68.57
SENet-154 67.77 67.71 67.64 67.43 68.14 68.4 68.33

DR = 100%

ResNet-50 76.25 76.4 76.38 76.1 76.71 76.75 76.89
ResNeXt-101 78.05 78.17 78.21 77.94 78.31 78.5 78.64
SENet-154 79.33 79.65 79.44 79.44 80.11 80.03 80.21
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Table 4. ImageNet. Top-5 results, averaged over four trials.

ε

SL LS KD CN 0.9 0.99 0.999

DR = 5%

ResNet-50 64.04 64.35 67.22 65.12 64.41 67.59 67.94
ResNeXt-101 70.52 70.76 71.84 70.92 70.67 72.05 72.18
SENet-154 73.35 73.52 74.54 73.92 73.56 74.65 74.92

DR = 10%

ResNet-50 76.86 77.04 79.73 78.14 77.1 79.8 79.69
ResNeXt-101 81.52 81.87 82.56 81.92 81.67 82.66 82.74
SENet-154 82.53 83.71 83.38 82.76 82.94 83.6 83.5

DR = 20%

ResNet-50 84.41 84.57 86.1 85.36 84.91 86.15 86.14
ResNeXt-101 87.96 88.11 88.2 88.04 87.84 88.36 88.36
SENet-154 88.16 88.23 88.17 88.17 88.11 88.37 88.31

DR = 100%

ResNet-50 92.87 92.91 92.94 92.41 92.84 92.95 92.93
ResNeXt-101 93.95 93.92 93.96 93.85 93.87 94.07 96.15
SENet-154 94.33 94.44 94.84 94.02 94.35 94.93 94.79

Classification Performance. We measured the top-1 and top-5 classification
accuracy after the last epoch. The results are summarized in Table 3 and Table
4 for ImageNet, in Table 5 and Table 6 for CIFAR100, and in Table 7 and
Table 8 for AWA2 (for standard deviations see the supplementary material). All
results are averaged over four trials. It is important to note that we compare
against baseline results achieved with architectures and hyperparameters tuned
for excellent performance. Furthermore, we compare to baseline results from our
own experiments, not to results taken from the literature. We ran each experiment
4 times with same seeds for all algorithms. This allows for a fair comparison. Our
averaged results also provide a more reliable estimate of the performance of the
systems compared to single trials reported in the original works.

The results show that for all datasets and in all experimental cases using LCL
outperformed all baselines, with SeNet with DR = 10% and top-5 metric being
the only exception. The improvement was more pronounced when DR < 100%.
It is quite intuitive that a curriculum is much more important when the training
data is limited (i.e., the learning problem is more difficult). Loosely speaking,
the importance of a teacher decreases when a student has access to unlimited
information without any computational and/or time budget. For example, for
ResNet-50 on ImageNet LCL improved the top-1 accuracy on average by 4
percentage points (p.p.) over the baseline when DR = 5%, and 2 p.p. in top-5
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Table 5. CIFAR100. Top-1 results, averaged over four trials.

ε

SL LS DML1 DML2 KD CN 0.9 0.99 0.999

DR = 5%

WRN 40.2 40.31 40.16 40.47 40.94 38.14 41.36 41.86 41.92
DenseNet-BC 43.34 43.5 43.89 44.14 43.76 43.42 44.66 45.37 44.53

DR = 10%

WRN 60.2 60.1 60.38 60.34 60.45 60.14 60.49 60.86 61.19
DenseNet-BC 60.85 61.1 61.22 61.34 60.81 59.83 61.5 61.4 61.65

DR = 20%

WRN 71.05 71.25 71.61 71.65 71.53 71.37 71.64 71.67 71.83
DenseNet-BC 72.38 72.39 71.5 71.34 72.24 71.54 72.71 72.65 72.87

DR = 100%

WRN 79.52 79.84 80.32 80.20 80.14 78.64 81.17 81.15 81.25
DenseNet-BC 82.85 83.01 82.91 82.57 82.67 81.14 82.96 83.11 83.2

Table 6. CIFAR100. Top-5 results, averaged over four trials.

ε

SL LS DML1 DML2 KD CN 0.9 0.99 0.999

DR = 5%

WRN 68.82 68.95 68.74 68.89 68.94 69.12 69.47 69.39 69.63
DenseNet-BC 70.61 70.85 70.7 70.92 71.14 71.27 72.1 71.13 72.52

DR = 10%

WRN 83.64 83.82 84.05 84.11 83.94 83.77 83.99 84.15 84.3
DenseNet-BC 84.07 84.21 84.27 84.45 84.07 84.31 84.34 84.63 84.52

DR = 20%

WRN 90.52 90.38 90.3 90.27 90.71 90.45 91.02 91.19 90.95
DenseNet-BC 91.24 91.37 91.33 91.30 91.39 91.38 91.4 91.31 91.47

DR = 100%

WRN 94.04 94.23 94.44 94.42 94.52 94.52 95.29 95.17 95.49
DenseNet-BC 95.22 95.28 95.34 95.27 95.37 95.63 95.72 95.74 95.88

accuracy were gained with DR = 100% on ImageNet for the ResNeXt architecture.
The biggest improvements were achieved on the AWA2 dataset. For ResNet-101
and DR = 5%, average improvements of more than 22 p.p. and 23 p.p. could be
achieved in the top-1 and top-5 accuracy, respectively. As could be expected, the
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Table 7. AWA2. Top-1 results, averaged over four trials.

ε

SL LS DML1 DML2 KD CN 0.9 0.99 0.999

DR = 5%

ResNet-101 23.09 27.82 39.22 37.19 41.58 24.1 45.51 45.55 45.78
InceptionResNetV2 57.42 57.95 58.69 58.14 59.3 56.9 60.85 61.07 60.71

DR = 10%

ResNet-101 41.86 44.98 48.92 50.5 44.02 43.12 47.21 51.67 53.39
InceptionResNetV2 71.47 71.86 71.82 72.37 71.49 72.01 72.61 72.97 73.01

DR = 20%

ResNet-101 77.11 78.23 78.34 78.32 78.28 77.64 80.03 80.07 79.86
InceptionResNetV2 83.64 83.92 83.87 83.76 83.83 84.12 84.27 84.05 84.27

DR = 100%

ResNet-101 88.73 89.25 89.01 89.11 89.17 88.92 89.44 89.64 89.63
InceptionResNetV2 89.69 89.94 90.05 90.22 89.94 89.29 90.49 90.34 90.47

Table 8. AWA2. Top-5 results, averaged over four trials.

ε

SL LS DML1 DML2 KD CN 0.9 0.99 0.999

DR = 5%

ResNet-101 53.31 54.19 65.14 63.12 56.19 54.17 76.02 76.14 76.47
InceptionResNetV2 83.06 83.14 84.07 84.18 84.12 83.77 84.94 85.24 84.84

DR = 10%

ResNet-101 72.59 72.43 75.07 76.14 76.61 76.34 77.04 80.46 80.11
InceptionResNetV2 91.37 91.42 91.35 91.43 91.48 91.35 91.9 91.89 91.71

DR = 20%

ResNet-101 94.21 94.56 94.79 95.01 94.61 94.45 95.2 95.07 95.12
InceptionResNetV2 96.03 96.23 96.28 96.13 96.21 95.19 96.18 96.49 96.57

DR = 100%

ResNet-101 97.85 97.92 98.1 97.95 97.43 97.32 98.11 98.14 98.1
InceptionResNetV2 98.01 98.07 98.25 98.17 97.67 97.56 98.25 98.41 98.2

performance gains in the top-5 setting were typically smaller than for top-1. Still,
nothing changed with respect to the ranking of the network architectures.

Larger values of ε mean slower convergence to the one-hot-encoding and
therefore more emphasis on the curriculum learning. In most experiments, ε =
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0.999 performed best. The observation that larger ε values gave better results
than small ones provides additional evidence that the curriculum really supports
the learning process (and that we are not discussing random artifacts).

Under the assumption that the experimental scenarios are statistically inde-
pendent, we performed a statistical comparisons of the classifiers over multiple
data sets for all pairwise comparisons following [3,8]. Using the Iman and Daveport
test, all but one result were statistically significant. If we consider all ImageNet
top-1 accuracy results, our method with ε = 0.999 ranked best, followed by
ε = 0.99, ε = 0.9, LS and then SL. This ranking was highly significant (Iman
and Daveport test, p < 0.001). Similarly, our method with ε = 0.999 was best for
both CIFAR-100 and AWA2 (p < 0.001).

6 Conclusions

We proposed a novel curriculum learning approach referred to as label-similarity
curriculum learning. In contrast to previous methods, which change the weighting
of training examples, it is based on adapting the label representation during
training. This adaptation considers the semantic similarity of labels. It implements
the basic idea that at an early stage of learning it is less important to distinguish
between similar classes compared to separating very different classes. The class
similarity can be based on arbitrary a priori knowledge, in particular on additional
information not directly encoded in the training data. For the case where the
class labels are natural language words, we proposed a way to automatically
define class similarity via a word embedding. We also considered other similarity
measures for datasets where these similarity measures were available.

We extensively evaluated the approach on five datasets. For each dataset, two
to three deep learning architectures proposed in the literature were considered.
We looked at simple label smoothing and, for the two smaller datasets, also at
deep mutual learning (DML) as additional baselines. In each case, we considered
four different training data set sizes. Each experiment was repeated four times.
The empirical results strongly support our approach. Label-similarity curriculum
learning was able to improve the average classification accuracy on the test data
compared to standard training in all scenarios. The improvements achieved by our
method were more pronounced for smaller training data sets. When considering
only 10% of the AWA2 training data, label-similarity curriculum learning increased
the Resnet101 top-1 test accuracy by more than 22 percentage points on average
compared to the standard baseline. Our curriculum learning also outperformed
simple label smoothing and DML in all but a single case. Our method turned out
to be robust with respect to the choice of the single hyperparameter controlling
how quickly the learning process converges to minimizing the standard cross-
entropy loss. In contrast to related approaches such as knowledge distillation and
DML, the additional computational and memory requirements can be neglected.

The proposed label-similarity curriculum learning is a general approach, which
also works for settings where the class similarity is not based on the semantic
similarity of natural language words (see supplementary material).
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A Label Dissimilarity Matrix for ImageNet

Fig. A.3. Label dissimilarity matrix visualizing 1 − s(ci, cj), 1 ≤ i, j ≤ 1000, for
ImageNet.
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B Standard Deviations for Results

Table B.9. ImageNet. Top-1 results, standard deviations over four trials.

ε

SL LS KD CN 0.9 0.99 0.999

DR = 5%

ResNet-50 0.6 0.47 0.08 0.17 0.89 0.62 0.78
ResNeXt-101 0.46 0.53 0.2 0.2 0.15 0.07 0.11
SENet-154 0.34 0.41 0.15 0.11 0.21 0.09 0.25

DR = 10%

ResNet-50 1.31 0.64 0.21 0.42 0.16 0.27 0.14
ResNeXt-101 0.39 0.27 0.13 0.28 0.24 0.08 0.16
SENet-154 0.02 0.3 0.23 0.28 0.15 0.21 0.23

DR = 20%

ResNet-50 0.1 0.34 0.34 0.3 0.08 0.18 0.1
ResNeXt-101 0.23 0.37 0.06 0.3 0.12 0.07 0.14
SENet-154 0.15 0.23 0.19 0.28 0.13 0.14 0.02

DR = 100%

ResNet-50 0.14 0.17 0.22 0.25 0.12 0.14 0.11
ResNeXt-101 0.05 0.23 0.42 0.25 0.04 0.06 0.08
SENet-154 0.12 0.24 0.19 0.31 0.14 0.11 0.14
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Table B.10. ImageNet. Top-5 results, averaged over four trials.

ε

SL LS KD CN 0.9 0.99 0.999

DR = 5%

ResNet-50 0.81 0.92 0.49 0.31 1.06 0.66 0.73
ResNeXt-101 0.4 0.72 0.41 0.29 0.18 0.1 0.18
SENet-154 0.56 0.41 0.29 0.31 0.13 0.22 0.26

DR = 10%

ResNet-50 1.02 0.86 0.62 0.34 0.16 0.17 0.07
ResNeXt-101 0.2 0.21 0.55 0.79 0.05 0.14 0.11
SENet-154 0.1 0.37 0.81 0.48 0.39 0.2 0.32

DR = 20%

ResNet-50 0.04 0.42 0.58 0.31 0.08 0.08 0.06
ResNeXt-101 0.16 0.22 0.5 0.78 0.13 0.1 0.08
SENet-154 0.05 0.17 0.32 0.42 0.15 0.1 0.11

DR = 100%

ResNet-50 0.09 0.1 0.18 0.39 0.07 0.09 0.06
ResNeXt-101 0.04 0.1 0.57 0.37 0.05 0.03 0.04
SENet-154 0.27 0.28 0.29 0.19 0.15 0.18 0.22

Table B.11. CIFAR100. Top-1 results, standard deviations over four trials.

ε

SL LS DML1 DML2 KD CN 0.9 0.99 0.999

DR = 5%

WRN 0.67 0.78 0.9 0.63 0.58 0.24 0.41 0.81 0.6
DenseNet-BC 0.42 0.61 0.45 0.35 0.19 0.13 0.57 0.51 0.59

DR = 10%

WRN 0.1 0.6 0.29 0.36 0.24 0.28 0.17 0.13 0.31
DenseNet-BC 0.44 0.53 0.18 0.21 0.28 0.36 0.28 0.29 0.17

DR = 20%

WRN 0.67 0.21 0.4 0.26 0.14 0.35 0.3 0.2 0.23
DenseNet-BC 0.23 0.41 0.15 0.21 0.41 0.21 0.18 0.18 0.17

DR = 100%

WRN 0.21 0.23 0.14 0.28 0.51 0.19 0.12 0.08 0.11
DenseNet-BC 0.27 0.65 0.21 0.32 0.37 0.34 0.17 0.11 0.07
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Table B.12. CIFAR100. Top-5 results, standard deviations over four trials.

ε

SL LS DML1 DML2 KD CN 0.9 0.99 0.999

DR = 5%

WRN 0.88 0.57 0.63 0.41 0.56 0.14 0.3 0.29 0.32
DenseNet-BC 0.64 0.54 0.27 0.33 0.41 0.14 1.02 0.57 0.44

DR = 10%

WRN 0.32 0.45 0.23 0.24 0.21 0.24 0.18 0.15 0.11
DenseNet-BC 0.29 0.32 0.25 0.37 0.25 0.39 0.18 0.11 0.17

DR = 20%

WRN 0.31 0.71 0.21 0.27 0.24 0.42 0.25 0.25 0.2
DenseNet-BC 0.12 0.54 0.11 0.17 0.32 0.27 0.19 0.36 0.14

DR = 100%

WRN 0.18 0.55 0.24 0.24 0.39 0.24 0.1 0.14 0.06
DenseNet-BC 0.22 0.38 0.14 0.24 0.36 0.29 0.08 0.1 0.04

Table B.13. AWA2. Top-1 results, standard deviations over four trials.

ε

SL LS DML1 DML2 KD CN 0.9 0.99 0.999

DR = 5%

ResNet-101 9.15 6.72 4.94 5.42 0.1 0.25 1.74 1.99 1.14
InceptionResNetV2 1.17 1.43 1.21 0.94 0.21 0.079 0.71 0.93 0.6

DR = 10%

ResNet-101 8.21 5.27 3.5 2.85 0.16 0.1 4.78 2.85 2.91
InceptionResNetV2 0.8 0.95 0.45 0.63 0.11 0.11 0.34 0.58 0.25

DR = 20%

ResNet-101 1.44 1.45 0.4 0.83 0.23 0.27 0.88 1.02 0.73
InceptionResNetV2 0.19 0.34 0.21 0.24 0.26 0.41 0.18 0.16 0.22

DR = 100%

ResNet-101 0.68 0.54 0.42 0.45 0.32 0.12 0.37 0.38 0.24
InceptionResNetV2 0.32 0.21 0.16 0.09 0.32 0.46 0.11 0.15 0.11
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Table B.14. AWA2. Top-5 results, standard deviations over four trials.

ε

SL LS DML1 DML2 KD CN 0.9 0.99 0.999

DR = 5%

ResNet-101 11.73 9.82 4.79 4.12 0.29 0.34 1.77 1.97 0.79
InceptionResNetV2 0.64 0.65 0.54 0.13 0.37 0.16 0.61 0.81 0.21

DR = 10%

ResNet-101 7.84 0.45 3.02 2.19 0.34 0.3 4.72 2.01 2.94
InceptionResNetV2 0.22 0.23 0.38 0.44 0.25 0.31 0.23 0.27 0.3

DR = 20%

ResNet-101 0.37 0.32 0.51 0.32 0.14 0.22 0.28 0.74 0.23
InceptionResNetV2 0.07 0.27 0.07 0.23 0.23 0.33 0.14 0.22 0.16

DR = 100%

ResNet-101 0.08 0.23 0.23 0.34 0.35 0.25 0.02 0.18 0.05
InceptionResNetV2 0.12 0.29 0.11 0.2 0.24 0.3 0.06 0.37 0.17
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C Similarity Measures

Details on the semantic similarity are given in subsection 3.1. For computing
visual similarity, we used attribute vectors provided with the images. For example,
an image of an animal in the AWA2 dataset may have a d-dimensional attribute
vector describing its color, if it has stripes, if it is a water animal, and if it
eats fish. Visual similarity is then defined as the cosine similarity between two
attribute vectors. Hierarchical similarity for the NABirds data was calculated
using simrank [16].
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D Extra AWA-2 Results

Table D.15. AWA2. Top-1 results, averaged over four trials. We used our method both
with the proposed semantic similarity of natural language labels as well as with a visual
similarity measure.

ε ε visual similarity

SL LS DML1 DML2 KD CN 0.9 0.99 0.999 0.9 0.99 0.999

DR = 5%

ResNet-101 23.09 27.82 39.22 37.19 41.58 24.1 45.51 45.55 45.78 45.74 45.85 46.13
InceptionResNetV2 57.42 57.95 58.69 58.14 59.3 56.9 60.85 61.07 60.71 61.14 61.39 60.71

DR = 10%

ResNet-101 41.86 44.98 48.92 50.5 44.02 43.12 47.21 51.67 53.39 47.34 51.85 53.67
InceptionResNetV2 71.47 71.86 71.82 72.37 71.49 72.01 72.61 72.97 73.01 72.82 73.2 73.34

DR = 20%

ResNet-101 77.11 78.23 78.34 78.32 78.28 77.64 80.03 80.07 79.86 80.09 80.8 79.94
InceptionResNetV2 83.64 83.92 83.87 83.76 83.83 84.12 84.27 84.05 84.27 85.02 84.47 84.65

DR = 100%

ResNet-101 88.73 89.25 89.01 89.11 89.17 88.92 89.44 89.64 89.63 90.15 90.11 90.19
InceptionResNetV2 89.69 89.94 90.05 90.22 89.94 89.29 90.49 90.34 90.47 90.27 90.33 90.46



Label-similarity Curriculum Learning 25

Table D.16. AWA2. Top-5 results, averaged over four trials. We used our method both
with the proposed semantic similarity of natural language labels as well as with a visual
similarity measure.

ε ε visual similarity

SL LS DML1 DML2 KD CN 0.9 0.99 0.999 0.9 0.99 0.999

DR = 5%

ResNet-101 53.31 54.19 65.14 63.12 56.19 54.17 76.02 76.14 76.47 76.17 76.23 76.41
InceptionResNetV2 83.06 83.14 84.07 84.18 84.12 83.77 84.94 85.24 84.84 85.02 85.17 84.78

DR = 10%

ResNet-101 72.59 72.43 75.07 76.14 76.61 76.34 77.04 80.46 80.11 79.54 80.78 80.56
InceptionResNetV2 91.37 91.42 91.35 91.43 91.48 91.35 91.9 91.89 91.71 91.65 91.92 91.53

DR = 20%

ResNet-101 94.21 94.56 94.79 95.01 94.61 94.45 95.2 95.07 95.12 95.23 95.02 95.08
InceptionResNetV2 96.03 96.23 96.28 96.13 96.21 95.19 96.18 96.49 96.57 96.31 96.67 96.43

DR = 100%

ResNet-101 97.85 97.92 98.1 97.95 97.43 97.32 98.11 98.14 98.1 98.43 98.51 98.17
InceptionResNetV2 98.01 98.07 98.25 98.17 97.67 97.56 98.25 98.41 98.2 98.64 98.44 98.52

Table D.17. AWA2. Top-1 results, standard deviations over four trials. We used our
method both with the proposed semantic similarity of natural language labels as well
as with a visual similarity measure.

ε ε visual similarity

SL LS DML1 DML2 KD CN 0.9 0.99 0.999 0.9 0.99 0.999

DR = 5%

ResNet-101 9.15 6.72 4.94 5.42 0.1 0.25 1.74 1.99 1.14 0.22 0.18 0.11
InceptionResNetV2 1.17 1.43 1.21 0.94 0.21 0.079 0.71 0.93 0.6 0.24 0.12 0.17

DR = 10%

ResNet-101 8.21 5.27 3.5 2.85 0.16 0.1 4.78 2.85 2.91 0.23 0.17 0.22
InceptionResNetV2 0.8 0.95 0.45 0.63 0.11 0.11 0.34 0.58 0.25 0.19 0.15 0.21

DR = 20%

ResNet-101 1.44 1.45 0.4 0.83 0.23 0.27 0.88 1.02 0.73 0.12 0.18 0.19
InceptionResNetV2 0.19 0.34 0.21 0.24 0.26 0.41 0.18 0.16 0.22 0.15 0.23 0.17

DR = 100%

ResNet-101 0.68 0.54 0.42 0.45 0.32 0.12 0.37 0.38 0.24 0.18 0.19 0.16
InceptionResNetV2 0.32 0.21 0.16 0.09 0.32 0.46 0.11 0.15 0.11 0.19 0.15 0.11



26 Ü. Dogan, A. Deshmukh, M. Machura, C. Igel

Table D.18. AWA2. Top-5 results, standard deviations over four trials. We used our
method both with the proposed semantic similarity of natural language labels as well
as with a visual similarity measure.

ε ε visual similarity

SL LS DML1 DML2 KD CN 0.9 0.99 0.999 0.9 0.99 0.999

DR = 5%

ResNet-101 11.73 9.82 4.79 4.12 0.29 0.34 1.77 1.97 0.79 0.15 0.29 0.19
InceptionResNetV2 0.64 0.65 0.54 0.13 0.37 0.16 0.61 0.81 0.21 0.28 0.52 0.11

DR = 10%

ResNet-101 7.84 0.45 3.02 2.19 0.34 0.3 4.72 2.01 2.94 0.29 0.16 0.12
InceptionResNetV2 0.22 0.23 0.38 0.44 0.25 0.31 0.23 0.27 0.3 0.25 0.23 0.2

DR = 20%

ResNet-101 0.37 0.32 0.51 0.32 0.14 0.22 0.28 0.74 0.23 0.37 0.12 0.17
InceptionResNetV2 0.07 0.27 0.07 0.23 0.23 0.33 0.14 0.22 0.16 0.24 0.23 0.38

DR = 100%

ResNet-101 0.08 0.23 0.23 0.34 0.35 0.25 0.02 0.18 0.05 0.24 0.27 0.28
InceptionResNetV2 0.12 0.29 0.11 0.2 0.24 0.3 0.06 0.37 0.17 0.12 0.18 0.17
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E NABirds Results

Table E.19. NABirds. Top-1 results, averaged over four trials. The NABirds data set
contains images of North American birds. We used our method both with the proposed
semantic similarity of natural language labels as well as with a similarity measure based
on the biological hierarchy of the depicted animals.

ε ε biological hierarchy

SL LS DML1 DML2 KD CN 0.9 0.99 0.999 0.9 0.99 0.999

DR = 100%

ResNet-34 52.61 52.72 52.84 53.14 53.19 52.78 55.05 55.83 55.53 54.11 55.83 55.16
ResNet-50 58.81 59.19 59.17 58.76 59.64 59.04 61.46 60.16 61.17 62.68 62.19 63.29

Table E.20. NABirds. Top-5 results, averaged over four trials. We used our method
both with the proposed semantic similarity of natural language labels as well as with a
similarity measure based on the biological hierarchy of the depicted animals.

ε ε biological hierarchy

SL LS DML1 DML2 KD CN 0.9 0.99 0.999 0.9 0.99 0.999

DR = 100%

ResNet-34 76.42 77.14 76.98 77.42 77.84 77.19 78.64 79.12 79.45 79.11 79.21 79.14
ResNet-50 82.78 83.01 83.41 83.38 83.67 82.65 83.25 83.79 84.29 83.67 83.31 83.75

Table E.21. NABirds. Top-1 results, standard deviations over four trials. We used our
method both with the proposed semantic similarity of natural language labels as well
as with a similarity measure based on the biological hierarchy of the depicted animals.

ε ε biological hierarchy

SL LS DML1 DML2 KD CN 0.9 0.99 0.999 0.9 0.99 0.999

DR = 100%

ResNet-34 0.14 0.61 0.21 0.72 0.25 0.29 0.19 0.22 0.19 0.1 0.12 0.06
ResNet-50 0.32 0.23 0.19 0.45 0.33 0.23 0.24 0.21 0.17 0.11 0.09 0.08



28 Ü. Dogan, A. Deshmukh, M. Machura, C. Igel

Table E.22. NABirds. Top-5 results, standard deviations over four trials. We used our
method both with the proposed semantic similarity of natural language labels as well
as with a similarity measure based on the biological hierarchy of the depicted animals.

ε ε biological hierarchy

SL LS DML1 DML2 KD CN 0.9 0.99 0.999 0.9 0.99 0.999

DR = 100%

ResNet-34 0.45 0.37 0.71 0.56 0.61 0.76 0.28 0.52 0.22 0.17 0.34 0.16
ResNet-50 0.39 0.42 0.23 0.73 0.43 0.39 0.28 0.31 0.27 0.32 0.23 0.22
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F CUB-200-2011 Results

Table F.23. CUB-200-2011. Top-1 results, averaged over four trials. We used our
method both with the proposed semantic similarity of natural language labels as well
as with a visual similarity measure.

ε ε visual similarity

SL LS DML1 DML2 KD CN 0.9 0.99 0.999 0.9 0.99 0.999

DR = 100%

ResNet-18 45.96 46.03 45.19 46.21 46.17 45.92 46.39 46.78 47.3 46.27 47.75 46.84
ResNet-34 46.39 46.74 46.45 46.94 46.77 46.58 47.35 47.96 47.2 48.15 48.08 48.17

Table F.24. CUB-200-2011. Top-5 results, averaged over four trials. We used our
method both with the proposed semantic similarity of natural language labels as well
as with a visual similarity measure.

ε ε visual similarity

SL LS DML1 DML2 KD CN 0.9 0.99 0.999 0.9 0.99 0.999

DR = 100%

ResNet-18 72.85 73.17 72.66 72.78 73.67 72.92 73.78 73.29 73.19 75.14 73.45 73.11
ResNet-34 74.47 74.86 74.55 74.88 74.83 74.55 76.52 75.71 75.64 75.76 75.97 75.3

Table F.25. CUB-200-2011. Top-1 results, standard deviations over four trials. We
used our method both with the proposed semantic similarity of natural language labels
as well as with a visual similarity measure.

ε ε visual similarity

SL LS DML1 DML2 KD CN 0.9 0.99 0.999 0.9 0.99 0.999

DR = 100%

ResNet-18 0.18 0.21 0.23 0.35 0.21 0.29 0.24 0.19 0.19 0.16 0.16 0.09
ResNet-34 0.14 0.43 0.19 0.18 0.43 0.32 0.18 0.18 0.16 0.12 0.17 0.06
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Table F.26. CUB-200-2011. Top-5 results, standard deviations over four trials. We
used our method both with the proposed semantic similarity of natural language labels
as well as with a visual similarity measure.

ε ε visual similarity

SL LS DML1 DML2 KD CN 0.9 0.99 0.999 0.9 0.99 0.999

DR = 100%

ResNet-18 0.27 0.42 0.43 0.28 0.22 0.61 0.21 0.23 0.19 0.15 0.29 0.23
ResNet-34 0.41 0.19 0.15 0.27 0.27 0.54 0.19 0.31 0.18 0.24 0.37 0.15


