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Abstract. We address the problem of bias in automated face recogni-
tion and demographic attribute estimation algorithms, where errors are
lower on certain cohorts belonging to specific demographic groups. We
present a novel de-biasing adversarial network (DebFace) that learns to
extract disentangled feature representations for both unbiased face recog-
nition and demographics estimation. The proposed network consists of
one identity classifier and three demographic classifiers (for gender, age,
and race) that are trained to distinguish identity and demographic at-
tributes, respectively. Adversarial learning is adopted to minimize cor-
relation among feature factors so as to abate bias influence from other
factors. We also design a new scheme to combine demographics with iden-
tity features to strengthen robustness of face representation in different
demographic groups. The experimental results show that our approach is
able to reduce bias in face recognition as well as demographics estimation
while achieving state-of-the-art performance.
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1 Introduction

Automated face recognition has achieved remarkable success with the rapid de-
velopments of deep learning algorithms. Despite the improvement in the accuracy
of face recognition, one topic is of significance. Does a face recognition system
perform equally well in different demographic groups? In fact, it has been ob-
served that many face recognition systems have lower performance in certain
demographic groups than others [23, 29, 42]. Such face recognition systems are
said to be biased in terms of demographics.

In a time when face recognition systems are being deployed in the real world
for societal benefit, this type of bias 1 is not acceptable. Why does the bias
problem exist in face recognition systems? First, state-of-the-art (SOTA) face
recognition methods are based on deep learning which requires a large collection
of face images for training. Inevitably the distribution of training data has a

1 This is different from the notion of machine learning bias, defined as “any basis for
choosing one generalization [hypothesis] over another, other than strict consistency
with the observed training instances” [15].
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great impact on the performance of the resultant deep learning models. It is
well understood that face datasets exhibit imbalanced demographic distributions
where the number of faces in each cohort is unequal. Previous studies have shown
that models trained with imbalanced datasets lead to biased discrimination [5,
49]. Secondly, the goal of deep face recognition is to map the input face image to
a target feature vector with high discriminative power. The bias in the mapping
function will result in feature vectors with lower discriminability for certain
demographic groups. Moreover, Klare et al. [29] show the errors that are inherent
to some demographics by studying non-trainable face recognition algorithms.

To address the bias issue, data re-sampling methods have been exploited
to balance the data distribution by under-sampling the majority [16] or over-
sampling the minority classes [8,39]. Despite its simplicity, valuable information
may be removed by under-sampling, and over-sampling may introduce noisy
samples. Naively training on a balanced dataset can still lead to bias [56]. An-
other common option for imbalanced data training is cost-sensitive learning that
assigns weights to different classes based on (i) their frequency or (ii) the effec-
tive number of samples [6, 12]. To eschew the overfitting of Deep Neural Net-
work (DNN) to minority classes, hinge loss is often used to increase margins
among classification decision boundaries [21, 27]. The aforementioned methods
have also been adopted for face recognition and attribute prediction on imbal-
anced datasets [24,58]. However, such face recognition studies only concern bias
in terms of identity, rather than our focus of demographic bias.

In this paper, we propose a framework to address the influence of bias on
face recognition and demographic attribute estimation. In typical deep learn-
ing based face recognition frameworks, the large capacity of DNN enables the
face representations to embed demographic details, including gender, race, and
age [3, 17]. Thus, the biased demographic information is transmitted from the
training dataset to the output representations. To tackle this issue, we assume
that if the face representation does not carry discriminative information of de-
mographic attributes, it would be unbiased in terms of demographics. Given
this assumption, one common way to remove demographic information from
face representations is to perform feature disentanglement via adversarial learn-
ing (Fig. 1b). That is, the classifier of demographic attributes can be used to
encourage the identity representation to not carry demographic information.
However, one issue of this common approach is that, the demographic classifier
itself could be biased (e.g., the race classifier could be biased on gender), and
hence it will act differently while disentangling faces of different cohorts. This is
clearly undesirable as it leads to demographic biased identity representation.

To resolve the chicken-and-egg problem, we propose to jointly learn unbiased
representations for both the identity and demographic attributes. Specifically,
starting from a multi-task learning framework that learns disentangled feature
representations of gender, age, race, and identity, respectively, we request the
classifier of each task to act as adversarial supervision for the other tasks (e.g.,
the dash arrows in Fig. 1c). These four classifiers help each other to achieve
better feature disentanglement, resulting in unbiased feature representations for
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Fig. 1: Methods to learn different tasks simultaneously. Solid lines are typical feature
flow in CNN, while dash lines are adversarial losses.

both the identity and demographic attributes. As shown in Fig. 1, our framework
is in sharp contrast to either multi-task learning or adversarial learning.

Moreover, since the features are disentangled into the demographic and iden-
tity, our face representations also contribute to privacy-preserving applications.
It is worth noticing that such identity representations contain little demographic
information, which could undermine the recognition competence since demo-
graphic features are part of identity-related facial appearance. To retain the
recognition accuracy on demographic biased face datasets, we propose another
network that combines the demographic features with the demographic-free iden-
tity features to generate a new identity representation for face recognition.

The key contributions and findings of the paper are:
� A thorough analysis of deep learning based face recognition performance

on three different demographics: (i) gender, (ii) age, and (iii) race.
� A de-biasing face recognition framework, called DebFace, that generates

disentangled representations for both identity and demographics recognition
while jointly removing discriminative information from other counterparts.
� The identity representation from DebFace (DebFace-ID) shows lower bias

on different demographic cohorts and also achieves SOTA face verification results
on demographic-unbiased face recognition.
� The demographic attribute estimations via DebFace are less biased across

other demographic cohorts.
� Combining ID with demographics results in more discriminative features

for face recognition on biased datasets.

2 Related Work

Face Recognition on Imbalanced Training Data Previous efforts on face recog-
nition aim to tackle class imbalance problem on training data. For example,
in prior-DNN era, Zhang et al. [66] propose a cost-sensitive learning frame-
work to reduce misclassification rate of face identification. To correct the skew
of separating hyperplanes of SVM on imbalanced data, Liu et al. [33] propose
Margin-Based Adaptive Fuzzy SVM that obtains a lower generalization error
bound. In the DNN era, face recognition models are trained on large-scale face
datasets with highly-imbalanced class distribution [63,65]. Range Loss [65] learns
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a robust face representation that makes the most use of every training sample.
To mitigate the impact of insufficient class samples, center-based feature transfer
learning [63] and large margin feature augmentation [58] are proposed to aug-
ment features of minority identities and equalize class distribution. Despite their
effectiveness, these studies ignore the influence of demographic imbalance on the
dataset, which may lead to demographic bias. For instance, The FRVT 2019 [42]
shows the demographic bias of over 100 face recognition algorithms. To uncover
deep learning bias, Alexander et al. [4] develop an algorithm to mitigate the hid-
den biases within training data. Wang et al. [57] propose a domain adaptation
network to reduce racial bias in face recognition. They recently extended their
work using reinforcement learning to find optimal margins of additive angular
margin based loss functions for different races [56]. To our knowledge, no studies
have tackled the challenge of de-biasing demographic bias in DNN-based face
recognition and demographic attribute estimation algorithms.

Adversarial Learning and Disentangled Representation Adversarial learning [44]
has been well explored in many computer vision applications. For example, Gen-
erative Adversarial Networks (GANs) [18] employ adversarial learning to train
a generator by competing with a discriminator that distinguishes real images
from synthetic ones. Adversarial learning has also been applied to domain adap-
tation [36, 48, 52, 53]. A problem of current interest is to learn interpretable
representations with semantic meaning [60]. Many studies have been learning
factors of variations in the data by supervised learning [31,32,34,50,51], or semi-
supervised/unsupervised learning [28,35,40,68], referred to as disentangled rep-
resentation. For supervised disentangled feature learning, adversarial networks
are utilized to extract features that only contain discriminative information of
a target task. For face recognition, Liu et al. [34] propose a disentangled rep-
resentation by training an adversarial autoencoder to extract features that can
capture identity discrimination and its complementary knowledge. In contrast,
our proposed DebFace differs from prior works in that each branch of a multi-task
network acts as both a generator and discriminators of other branches (Fig. 1c).

3 Methodology

3.1 Problem Definition

The ultimate goal of unbiased face recognition is that, given a face recognition
system, no statistically significant difference among the performance in different
categories of face images. Despite the research on pose-invariant face recogni-
tion that aims for equal performance on all poses [51, 62], we believe that it is
inappropriate to define variations like pose, illumination, or resolution, as the
categories. These are instantaneous image-related variations with intrinsic bias.
E.g., large-pose or low-resolution faces are inherently harder to be recognized
than frontal-view high-resolution faces.

Rather, we would like to define subject-related properties such as demographic
attributes as the categories. A face recognition system is biased if it performs
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worse on certain demographic cohorts. For practical applications, it is important
to consider what demographic biases may exist, and whether these are intrinsic
biases across demographic cohorts or algorithmic biases derived from the al-
gorithm itself. This motivates us to analyze the demographic influence on face
recognition performance and strive to reduce algorithmic bias for face recognition
systems. One may achieve this by training on a dataset containing uniform sam-
ples over the cohort space. However, the demographic distribution of a dataset
is often imbalanced and underrepresents demographic minorities while overrep-
resenting majorities. Naively re-sampling a balanced training dataset may still
induce bias since the diversity of latent variables is different across cohorts and
the instances cannot be treated fairly during training. To mitigate demographic
bias, we propose a face de-biasing framework that jointly reduces mutual bias
over all demographics and identities while disentangling face representations into
gender, age, race, and demographic-free identity in the mean time.

3.2 Algorithm Design

The proposed network takes advantage of the relationship between demograph-
ics and face identities. On one hand, demographic characteristics are highly
correlated to face features. On the other hand, demographic attributes are het-
erogeneous in terms of data type and semantics [20]. A male person, for example,
is not necessarily of a certain age or of a certain race. Accordingly, we present
a framework that jointly generates demographic features and identity features
from a single face image by considering both the aforementioned attribute cor-
relation and attribute heterogeneity in a DNN.

While our main goal is to mitigate demographic bias from face representation,
we observe that demographic estimations are biased as well (see Fig. 5). How can
we remove the bias of face recognition when demographic estimations themselves
are biased? Cook et al. [11] investigated this effect and found the performance
of face recognition is affected by multiple demographic covariates. We propose
a de-biasing network, DebFace, that disentangles the representation into gender
(DebFace-G), age (DebFace-A), race (DebFace-R), and identity (DebFace-ID),
to decrease bias of both face recognition and demographic estimations. Using
adversarial learning, the proposed method is capable of jointly learning multiple
discriminative representations while ensuring that each classifier cannot distin-
guish among classes through non-corresponding representations.

Though less biased, DebFace-ID loses demographic cues that are useful for
identification. In particular, race and gender are two critical components that
constitute face patterns. Hence, we desire to incorporate race and gender with
DebFace-ID to obtain a more integrated face representation. We employ a light-
weight fully-connected network to aggregate the representations into a face rep-
resentation (DemoID) with the same dimensionality as DebFace-ID.
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Fig. 2: Overview of the proposed De-biasing face (DebFace) network. DebFace is com-
posed of three major blocks, i.e., a shared feature encoding block, a feature disentan-
gling block, and a feature aggregation block. The solid arrows represent the forward
inference, and the dashed arrows stand for adversarial training. During inference, ei-
ther DebFace-ID (i.e., fID) or DemoID can be used for face matching given the desired
trade-off between biasness and accuracy.

3.3 Network Architecture

Figure 2 gives an overview of the proposed DebFace network. It consists of
four components: the shared image-to-feature encoder EImg, the four attribute
classifiers (including gender CG, age CA, race CR, and identity CID), the dis-
tribution classifier CDistr, and the feature aggregation network EFeat. We as-

sume access to N labeled training samples {(x(i), y
(i)
g , y

(i)
a , y

(i)
r , y

(i)
id )}Ni=1. Our

approach takes an image x(i) as the input of EImg. The encoder projects
x(i) to its feature representation EImg(x(i)). The feature representation is

then decoupled into four D-dimensional feature vectors, gender f
(i)
g , age f

(i)
a ,

race f
(i)
r , and identity f

(i)
ID, respectively. Next, each attribute classifier op-

erates the corresponding feature vector to correctly classify the target at-
tribute by optimizing parameters of both EImg and the respective classi-
fier C∗. For a demographic attribute with K categories, the learning objec-
tive LCDemo

(x, yDemo;EImg, CDemo) is the standard cross entropy loss func-
tion. For the n−identity classification, we adopt AM-Softmax [54] as the ob-
jective function LCID

(x, yid;EImg, CID). To de-bias all of the feature repre-
sentations, adversarial loss LAdv(x, yDemo, yid;EImg, CDemo, CID) is applied to
the above four classifiers such that each of them will not be able to pre-
dict correct labels when operating irrelevant feature vectors. Specifically, given
a classifier, the remaining three attribute feature vectors are imposed on it
and attempt to mislead the classifier by only optimizing the parameters of
EImg. To further improve the disentanglement, we also reduce the mutual
information among the attribute features by introducing a distribution clas-
sifier CDistr. CDistr is trained to identify whether an input representation
is sampled from the joint distribution p(fg, fa, fr, fID) or the multiplication
of margin distributions p(fg)p(fa)p(fr)p(fID) via a binary cross entropy loss
LCDistr

(x, yDistr;EImg, CDistr), where yDistr is the distribution label. Similar to
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adversarial loss, a factorization objective function LFact(x, yDistr;EImg, CDistr)
is utilized to restrain the CDistr from distinguishing the real distribution and
thus minimizes the mutual information of the four attribute representations.
Both adversarial loss and factorization loss are detailed in Sec. 3.4. Altogether,
DebFace endeavors to minimize the joint loss:

L(x, yDemo,yid, yDistr;EImg, CDemo, CID, CDistr) =

LCDemo
(x, yDemo;EImg, CDemo)

+ LCID
(x, yid;EImg, CID)

+ LCDistr
(x, yDistr;EImg, CDistr)

+ λLAdv(x, yDemo, yid;EImg, CDemo, CID)

+ νLFact(x, yDistr;EImg, CDistr),

(1)

where λ and ν are hyper-parameters determining how much the representation
is decomposed and decorrelated in each training iteration.

The discriminative demographic features in DebFace-ID are weakened by
removing demographic information. Fortunately, our de-biasing network pre-
serves all pertinent demographic features in a disentangled way. Basically, we
train another multilayer perceptron (MLP) EFeat to aggregate DebFace-ID and
the demographic embeddings into a unified face representation DemoID. Since
age generally does not pertain to a person’s identity, we only consider gen-
der and race as the identity-informative attributes. The aggregated embedding,
fDemoID = Efeat(fID, fg, fr), is supervised by an identity-based triplet loss:

LEFeat
=

1

M

M∑
i=1

[‖f (i)DemoIDa − f
(i)
DemoIDp‖

2

2 − ‖f
(i)
DemoIDa − f

(i)
DemoIDn‖

2

2 + α]+, (2)

where {f (i)DemoIDa , f
(i)
DemoIDp , f

(i)
DemoIDn} is the ith triplet consisting of an anchor,

a positive, and a negative DemoID representation, M is the number of hard
triplets in a mini-batch. [x]+ = max(0, x), and α is the margin.

3.4 Adversarial Training and Disentanglement

As discussed in Sec. 3.3, the adversarial loss aims to minimize the task-
independent information semantically, while the factorization loss strives to
dwindle the interfering information statistically. We employ both losses to disen-
tangle the representation extracted by EImg. We introduce the adversarial loss as
a means to learn a representation that is invariant in terms of certain attributes,
where a classifier trained on it cannot correctly classify those attributes using
that representation. We take one of the attributes, e.g., gender, as an example to
illustrate the adversarial objective. First of all, for a demographic representation
fDemo, we learn a gender classifier on fDemo by optimizing the classification loss
LCG

(x, yDemo;EImg, CG). Secondly, for the same gender classifier, we intend to
maximize the chaos of the predicted distribution [26]. It is well known that a
uniform distribution has the highest entropy and presents the most randomness.
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Hence, we train the classifier to predict the probability distribution as close as
possible to a uniform distribution over the category space by minimizing the
cross entropy:

LG
Adv(x, yDemo, yid;EImg, CG) = −

KG∑
k=1

1

KG
· (log

eCG(fDemo)k∑KG

j=1 e
CG(fDemo)j

+ log
eCG(fID)k∑KG

j=1 e
CG(fID)j

), (3)

where KG is the number of categories in gender 2, and the ground-truth label
is no longer an one-hot vector, but a KG-dimensional vector with all elements
being 1

KG
. The above loss function corresponds to the dash lines in Fig. 2. It

strives for gender-invariance by finding a representation that makes the gender
classifier CG perform poorly. We minimize the adversarial loss by only updating
parameters in EImg.

We further decorrelate the representations by reducing the mutual infor-
mation across attributes. By definition, the mutual information is the rela-
tive entropy (KL divergence) between the joint distribution and the prod-
uct distribution. To increase uncorrelation, we add a distribution classi-
fier CDistr that is trained to simply perform a binary classification using
LCDistr

(x, yDistr;EImg, CDistr) on samples fDistr from both the joint distribu-
tion and dot product distribution. Similar to adversarial learning, we factorize
the representations by tricking the classifier via the same samples so that the
predictions are close to random guesses,

LFact(x, yDistr;EImg, CDistr) = −
2∑

i=1

1

2
log

eCDistr(fDistr)i∑2
j=1 e

CDistr(fDistr)j
. (4)

In each mini-batch, we consider EImg(x) as samples of the joint distribution
p(fg, fa, fr, fID). We randomly shuffle feature vectors of each attribute, and re-
concatenate them into 4D-dimension, which are approximated as samples of the
product distribution p(fg)p(fa)p(fr)p(fID). During factorization, we only update
EImg to minimize mutual information between decomposed features.

4 Experiments

4.1 Datasets and Pre-processing

We utilize 15 total face datasets in this work, for learning the demographic
estimation models, the baseline face recognition model, DebFace model as
well as their evaluation. To be specific, CACD [9], IMDB [43], UTKFace [67],
AgeDB [38], AFAD [41], AAF [10], FG-NET [1], RFW [57], IMFDB-CVIT [45],
Asian-DeepGlint [2], and PCSO [13] are the datasets for training and testing de-
mographic estimation models; and MS-Celeb-1M [19], LFW [25], IJB-A [30], and
IJB-C [37] are for learning and evaluating face verification models. All faces are
detected by MTCNN [64]. Each face image is cropped and resized to 112× 112
pixels using a similarity transformation based on the detected landmarks.

2 In our case, KG = 2, i.e., male and female.
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4.2 Implementation Details

DebFace is trained on a cleaned version of MS-Celeb-1M [14], using the Arc-
Face architecture [14] with 50 layers for the encoder EImg. Since there are no
demographic labels in MS-Celeb-1M, we first train three demographic attribute
estimation models for gender, age, and race, respectively. For age estimation,
the model is trained on the combination of CACD, IMDB, UTKFace, AgeDB,
AFAD, and AAF datasets. The gender estimation model is trained on the same
datasets except CACD which contains no gender labels. We combine AFAD,
RFW, IMFDB-CVIT, and PCSO for race estimation training. All three models
use ResNet [22] with 34 layers for age, 18 layers for gender and race.

We predict the demographic labels of MS-Celeb-1M with the well-trained
demographic models. Our DebFace is then trained on the re-labeled MS-Celeb-
1M using SGD with a momentum of 0.9, a weight decay of 0.01, and a batch
size of 256. The learning rate starts from 0.1 and drops to 0.0001 following the
schedule at 8, 13, and 15 epochs. The dimensionality of the embedding layer of
EImg is 4 × 512, i.e., each attribute representation (gender, age, race, ID) is a
512-dim vector. We keep the hyper-parameter setting of AM-Softmax as [14]:
s = 64 and m = 0.5. The feature aggregation network EFeat comprises of two
linear residual units with P-ReLU and BatchNorm in between. EFeat is trained
on MS-Celeb-1M by SGD with a learning rate of 0.01. The triplet loss margin α
is 1.0. The disentangled features of gender, race, and identity are concatenated
into a 3 × 512-dim vector, which inputs to EFeat. The network is then trained
to output a 512-dim representation for face recognition on biased datasets. Our
source code is available at https://github.com/gongsixue/DebFace.git.

4.3 De-biasing Face Verification

Baseline: We compare DebFace-ID with a regular face representation model
which has the same architecture as the shared feature encoder of DebFace. Re-
ferred to as BaseFace, this baseline model is also trained on MS-Celeb-1M, with
the representation dimension of 512.

To show the efficacy of DebFace-ID on bias mitigation, we evaluate the verifi-
cation performance of DebFace-ID and BaseFace on faces from each demographic
cohort. There are 48 total cohorts given the combination of demographic at-
tributes including 2 gender (male, female), 4 race 3 (Black, White, East Asian,
Indian), and 6 age group (0− 12, 13− 18, 19− 34, 35− 44, 45− 54, 55− 100).
We combine CACD, AgeDB, CVIT, and a subset of Asian-DeepGlint as the
testing set. Overlapping identities among these datasets are removed. IMDB is
excluded from the testing set due to its massive number of wrong ID labels. For
the dataset without certain demographic labels, we simply use the corresponding
models to predict the labels. We report the Area Under the Curve (AUC) of the
Receiver Operating Characteristics (ROC). We define the degree of bias, termed
biasness, as the standard deviation of performance across cohorts.

3 To clarify, we consider two race groups, Black and White; and two ethnicity groups,
East Asian and Indian. The word race denotes both race and ethnicity in this paper.
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Fig. 3: Face Verification AUC (%) on each demographic cohort. The cohorts are chosen
based on the three attributes, i.e., gender, age, and race. To fit the results into a
2D plot, we show the performance of male and female separately. Due to the limited
number of face images in some cohorts, their results are gray cells.
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Fig. 4: The overall performance of face verification AUC (%) on gender, age, and race.

Figure 3 shows the face verification results of BaseFace and DebFace-ID on
each cohort. That is, for a particular face representation (e.g., DebFace-ID), we
report its AUC on each cohort by putting the number in the corresponding cell.
From these heatmaps, we observe that both DebFace-ID and BaseFace present
bias in face verification, where the performance on some cohorts are significantly
worse, especially the cohorts of Indian female and elderly people. Compared to
BaseFace, DebFace-ID suggests less bias and the difference of AUC is smaller,
where the heatmap exhibits smoother edges. Figure 4 shows the performance
of face verification on 12 demographic cohorts. Both DebFace-ID and BaseFace
present similar relative accuracies across cohorts. For example, both algorithms
perform worse on the younger age cohorts than on adults; and the performance
on the Indian is significantly lower than on the other races. DebFace-ID decreases
the bias by gaining discriminative face features for cohorts with less images in
spite of the reduction in the performance on cohorts with more samples.

4.4 De-biasing Demographic Attribute Estimation

Baseline: We further explore the bias of demographic attribute estimation and
compare demographic attribute classifiers of DebFace with baseline estimation
models. We train three demographic estimation models, namely, gender estima-
tion (BaseGender), age estimation (BaseAge), and race estimation (BaseRace),
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Fig. 5: Classification accuracy (%) of demographic attribute estimations on faces of
different cohorts, by DebFace and the baselines. For simplicity, we use DebFace-G,
DebFace-A, and DebFace-R to represent the gender, age, and race classifier of DebFace.

Table 1: Biasness of Face Recognition and Demographic Attribute Estimation.

Method
Face Verification Demographic Estimation

All Gender Age Race Gender Age Race

Baseline 6.83 0.50 3.13 5.49 12.38 10.83 14.58
DebFace 5.07 0.15 1.83 3.70 10.22 7.61 10.00

on the same training set as DebFace. For fairness, all three models have the same
architecture as the shared layers of DebFace.

We combine the four datasets mentioned in Sec. 4.3 with IMDB as the global
testing set. As all demographic estimations are treated as classification problems,
the classification accuracy is used as the performance metric. As shown in Fig. 5,
all demographic attribute estimations present significant bias. For gender esti-
mation, both algorithms perform worse on the White and Black cohorts than on
East Asian and Indian. In addition, the performance on young children is sig-
nificantly worse than on adults. In general, the race estimation models perform
better on the male cohort than on female. Compared to gender, race estimation
shows higher bias in terms of age. Both baseline methods and DebFace perform
worse on cohorts in age between 13 to 44 than in other age groups.

Similar to race, age estimation still achieves better performance on male than
on female. Moreover, the white cohort shows dominant advantages over other
races in age estimation. In spite of the existing bias in demographic attribute
estimations, the proposed DebFace is still able to mitigate bias derived from
algorithms. Compared to Fig. 5a, 5e, 5c, cells in Fig. 5b, 5f, 5d present more
uniform colors. We summarize the biasness of DebFace and baseline models
for both face recognition and demographic attribute estimations in Tab. 1. In
general, we observe DebFace substantially reduces biasness for both tasks. For
the task with larger biasness, the reduction of biasness is larger.
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Fig. 6: The distribution of face identity representations of BaseFace and DebFace. Both
collections of feature vectors are extracted from images of the same dataset. Different
colors and shapes represent different demographic attributes. Zoom in for details.
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Fig. 7: Reconstructed Images using Face and Demographic Representations. The first
row is the original face images. From the second row to the bottom, the face images
are reconstructed from 2) BaseFace; 3) DebFace-ID; 4) DebFace-G; 5) DebFace-R; 6)
DebFace-A. Zoom in for details.

4.5 Analysis of Disentanglement

We notice that DebFace still suffers unequal performance in different demo-
graphic groups. It is because there are other latent variables besides the demo-
graphics, such as image quality or capture conditions that could lead to biased
performance. Such variables are difficult to control in pre-collected large face
datasets. In the framework of DebFace, it is also related to the degree of fea-
ture disentanglement. A fully disentangling is supposed to completely remove
the factors of bias from demographic information. To illustrate the feature dis-
entanglement of DebFace, we show the demographic discriminative ability of
face representations by using these features to estimate gender, age, and race.
Specifically, we first extract identity features of images from the testing set in
Sec. 4.1 and split them into training and testing sets. Given demographic la-
bels, the face features are fed into a two-layer fully-connected network, learning
to classify one of the demographic attributes. Tab. 2 reports the demographic
classification accuracy on the testing set. For all three demographic estimations,
DebFace-ID presents much lower accuracies than BaseFace, indicating the de-
cline of demographic information in DebFace-ID. We also plot the distribution
of identity representations in the feature space of BaseFace and DebFace-ID.
From the testing set in Sec. 4.3, we randomly select 50 subjects in each demo-



DebFace 13

Table 2: Demographic Classification
Accuracy (%) by face features.

Method Gender Race Age

BaseFace 95.27 89.82 78.14
DebFace-ID 73.36 61.79 49.91

Table 3: Face Verification Accuracy (%) on
RFW dataset.

Method White Black Asian Indian Biasness

[56] 96.27 94.68 94.82 95.00 0.93
DebFace-ID 95.95 93.67 94.33 94.78 0.83

Table 4: Verification Performance on LFW, IJB-A, and IJB-C.

Method LFW (%) Method
IJB-A (%) IJB-C @ FAR (%)
0.1% FAR 0.001% 0.01% 0.1%

DeepFace+ [47] 97.35 Yin et al. [61] 73.9± 4.2 - - 69.3
CosFace [55] 99.73 Cao et al. [7] 90.4± 1.4 74.7 84.0 91.0
ArcFace [14] 99.83 Multicolumn [59] 92.0± 1.3 77.1 86.2 92.7
PFE [46] 99.82 PFE [46] 95.3± 0.9 89.6 93.3 95.5

BaseFace 99.38 BaseFace 90.2± 1.1 80.2 88.0 92.9
DebFace-ID 98.97 DebFace-ID 87.6± 0.9 82.0 88.1 89.5
DemoID 99.50 DemoID 92.2± 0.8 83.2 89.4 92.9

graphic group and one image of each subject. BaseFace and DebFace-ID are
extracted from the selected image set and are then projected from 512-dim to 2-
dim by T-SNE. Fig. 6 shows their T-SNE feature distributions. We observe that
BaseFace presents clear demographic clusters, while the demographic clusters of
DebFace-ID, as a result of disentanglement, mostly overlap with each other.

To visualize the disentangled feature representations of DebFace, we train a
decoder that reconstructs face images from the representations. Four face de-
coders are trained separately for each disentangled component, i.e., gender, age,
race, and ID. In addition, we train another decoder to reconstruct faces from
BaseFace for comparison. As shown in Fig. 7, both BaseFace and DebFace-ID
maintain the identify features of the original faces, while DebFace-ID presents
less demographic characteristics. No race or age, but gender features can be ob-
served on faces reconstructed from DebFace-G. Meanwhile, we can still recognize
race and age attributes on faces generated from DebFace-R and DebFace-A.

4.6 Face Verification on Public Testing Datasets

We report the performance of three different settings, using 1) BaseFace, the
same baseline in Sec. 4.3, 2) DebFace-ID, and 3) the fused representation
DemoID. Table 4 reports face verification results on on three public benchmarks:
LFW, IJB-A, and IJB-C. On LFW, DemoID outperforms BaseFace while main-
taining similar accuracy compared to SOTA algorithms. On IJB-A/C, DemoID
outperforms all prior works except PFE [46]. Although DebFace-ID shows lower
discrimination, TAR at lower FAR on IJB-C is higher than that of BaseFace.
To evaluate DebFace on a racially balanced testing dataset RFW [57] and com-
pare with the work [56], we train a DebFace model on BUPT-Balancedface [56]
dataset. The new model is trained to reduce racial bias by disentangling ID and
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Fig. 8: The percentage of false accepted cross race or age pairs at 1% FAR.

race. Tab. 3 reports the verification results on RFW. While DebFace-ID gives a
slightly lower face verification accuracy, it improves the biasness over [56].

We observe that DebFace-ID is less discriminative than BaseFace, or
DemoID, since demographics are essential components of face features. To un-
derstand the deterioration of DebFace, we analyse the effect of demographic
heterogeneity on face verification by showing the tendency for one demographic
group to experience a false accept error relative to another group. For any two
demographic cohorts, we check the number of falsely accepted pairs that are
from different groups at 1% FAR. Fig. 8 shows the percentage of such falsely
accepted demographic-heterogeneous pairs. Compared to BaseFace, DebFace
exhibits more cross-demographic pairs that are falsely accepted, resulting in
the performance decline on demographically biased datasets. Due to the demo-
graphic information reduction, DebFace-ID is more susceptible to errors between
demographic groups. In the sense of de-biasing, it is preferable to decouple de-
mographic information from identity features. However, if we prefer to maintain
the overall performance across all demographics, we can still aggregate all the
relevant information. It is an application-dependent trade-off between accuracy
and de-biasing. DebFace balances the accuracy vs. bias trade-off by generating
both debiased identity and debiased demographic representations, which may be
aggregated into DemoID if bias is less of a concern.

5 Conclusion

We present a de-biasing face recognition network (DebFace) to mitigate demo-
graphic bias in face recognition. DebFace adversarially learns the disentangled
representation for gender, race, and age estimation, and face recognition simul-
taneously. We empirically demonstrate that DebFace can not only reduce bias
in face recognition but in demographic attribute estimation as well. Our future
work will explore an aggregation scheme to combine race, gender, and identity
without introducing algorithmic and dataset bias.
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