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Abstract. Fully supervised semantic segmentation is highly successful,
but obtaining dense ground truth is expensive. Thus there is an increas-
ing interest in weakly supervised approaches. We propose a new weakly
supervised method for training CNNs to segment an object of a single
class of interest. Instead of ground truth, we guide training with a regu-
larized loss function. Regularized loss models prior knowledge about the
likely object shape properties and thus guides segmentation towards the
more plausible shapes. Training CNNs with regularized loss is difficult.
We develop an annealing strategy that is crucial for successful training.
The advantage of our method is simplicity: we use standard CNN archi-
tectures and intuitive and computationally efficient loss function. Fur-
thermore, we apply the same loss function for any task/dataset, without
any tailoring. We first evaluate our approach for salient object segmenta-
tion and co-segmentation. These tasks naturally involve one object class
of interest. In some cases, our results are only a few points of standard
performance measure behind those obtained training the same CNN with
full supervision, and state-of-the art results in weakly supervised setting.
Then we adapt our approach to weakly supervised multi-class semantic
segmentation and obtain state-of-the-art results.

1 Introduction

Convolutional Neural Networks (CNNs) [22, 20] lead to a breakthrough in se-
mantic segmentation [11, 35, 4, 57, 5]. Each year new architectures push the state
of the art in on fully labeled datasets [6, 49, 39]. However, labeling datasets is
expensive. Thus there is an interest in segmentation without fully labeled data.

We consider a new approach to train CNNs in the absence of pixel precise
ground truth. Our approach is inspired by [40, 41] who demonstrate the utility
of regularized loss1 for semantic segmentation with partially labeled data. Regu-
larized losses are used in computer vision in the context of Conditional Random
Fields (CRFs) [25, 21] for modelling the likely properties of an object, such as
short boundary [2], connectivity [45], shape convexity [13], etc.

1 In the context of CNNs, regularization is a term often used to refer to norm regu-
larization on network weights [12], or other techniques to prevent overfitting. In this
work, regularized loss refers to the loss function on the output of CNN.
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Our main idea is to supervise training with a regularized loss. Instead of
encouraging CNN output to match to ground truth with cross entropy loss, we
encourage CNN output to have desired properties with regularized loss. We use
sparse-CRF loss [2] that encourages shorter object boundaries aligning to inten-
sity edges. We show that sparse-CRF has a high correlation with segmentation
accuracy, and thus is a good candidate to use for training. While it is possible to
design more complex regularized losses, it is interesting to evaluate the utility of
sparse-CRF loss, widely used in classical computer vision, now for CNN training.

Although regularized loss has been used before [40, 41] for settings with par-
tially labeled pixels, our task is significantly more difficult, as we assume no
labeled pixels. Consider that in [41] the difference in performance with and with-
out regularized loss is only about 4%, i.e. most of the learning is done by cross
entropy on partially labeled pixels. To enable learning in absence of pixel labels,
we make an assumption that the training dataset contains a single object class
of interest, making our approach a weakly supervised single class segmentation.

Regularized loss by itself is insufficient, since an empty object would be a
trivial optimal solution. We need additional priors implemented as “helper” loss
functions. Assuming a single object class lets us use the positional loss. Positional
loss encourages the image border to be assigned to the background, and the
image center to the foreground. This prior is reasonable for single class datasets.
We also use volumetric loss [46] to counteract the well known shrinking bias of
sparse-CRF loss. It penalizes segmentations that are either too large or too small
in size. Both volumetric and positional loss have a significant weight only in the
initial training stage, to push CNN training in the right direction. Their weight
is significantly reduced after the initial stage, to allow segmentation of objects
that are not centered and have a diverse range of sizes.

Training CNN with regularized loss is hard. We develop an annealing strat-
egy [17] that is essential for successful training. The goal of our annealing is
different from the traditional one. Our annealing helps CNN to first identify an
easy hypothesis for the appearance of the object, and then to slowly refine it.

Training only on the class of interest can result in a CNN that has a good
response to similar (“confuser”) classes. We can add “confuser” class images to
the training set as negative examples, and add a loss function that encourages
labeling them as background. This is still in the realm of weakly supervised
segmentation since negative examples need only an image-level “negative” tag.

Our method results in a simple end-to-end trainable CNN system. We use
standard architectures and just add regularized, volumetric, and positional loss
instead of cross entropy. We do not adapt our loss function for any task. Our
loss function is easy to interpret, intuitive, and efficient.

First, we evaluate our approach on the salient object segmentation [27] and
co-segmentation [32]. These tasks naturally involve a single class of interest.
In many cases, our CNN, trained without ground truth is only a few points
behind the same CNN trained with full ground truth. For some saliency and
cosegmentation datasets we obtain state-of-the art weakly supervised results.
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Next we extend our approach to weakly supervised semantic segmentation
in a naive fashion: we train on datasets containing a single semantic class and
use the other classes as negative examples. The resulting pseudo-ground truth is
then used to train a standard multi-class semantic segmentation CNN. We obtain
state-of-the art results on Pascal VOC 2012 benchmark in weakly supervised
setting. Our code for single class segmentation is publicly available2.

2 Related Work

In this section, we review prior work on CNN segmentation without full super-
vision for salient object, co-segmentation and semantic segmentation.

There is some prior works for CNN based salient object segmentation without
human annotation [55, 56, 28]. All three are based on exploiting multiple saliency
segmentation methods that are not based on machine learning, i.e. “weak meth-
ods”. These approaches are very specific to saliency segmentation, whereas our
method is generic an applies to any single object segmentation task.

There is a prior work on unsupervised co-segmentation in [14]. Their co-
attention loss function is expensive to compute, it relies on all pairs of images in
the training dataset. Again, the advantage of our method is generic architecture
and generic computationally efficient loss function.

The prior work on weakly and partially supervised semantic segmentation
can be divided in two groups, depending on the supervision type. In the first
group are weakly supervised approaches based on image-level tags [30, 29, 18,
1, 23]. Most successful of these methods use CAM (class activation maps) [58,
34] to produce pseudo-ground truth which is then used to train a semantic
segmentation CNN. The drawback of these approaches is their reliance on CAMs,
which can vary in accuracy. Our approach is does not require CAMs.

In the second group are methods based on imprecise labeling (i.e. bounding
boxes) or partial labeling of the data. Approaches in [29, 51, 7, 15] assume a
bounding box is placed around semantic objects. Approaches in [51, 26, 44, 40, 41]
are based on partially labeled data or “scribbles”. The earlier of these approaches
first use scribbles or boxes to generate full pseudo ground truth, which is then
used to train CNNs. The later approaches [40, 41] argue against using pseudo
ground truth and show more accurate results by using cross entropy loss only on
the labeled pixels and regularized loss for the rest of the pixels. The advantage
of our approach is that it does not require any labeling or annotation of the
data. Note that our approach is different from training with bounding boxes. A
bounding box annotation is typically placed relatively tight around the object.
In the datasets we use, objects vary in size significantly. Thus if we regard image
as a “box”, it is anything but tight for the majority of dataset images.

2 https://github.com/morduspordus/SingleClassRL
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3 Our Approach

We now describe our approach. We explain regularized losses in Sec. 3.1, evaluate
correlation between regularized loss and segmentation accuracy in Sec. 3.2, give
our complete loss function in Sec. 3.3, and describe training strategy in Sec. 3.4.

3.1 Regularized Losses

A variety of regularized loss functions are used in CRFs [25, 21]. The main task
in CRF is to assign some label xp, for example, a class label, to each image pixel
p. Here we assume xp ∈ {0, 1}. If xp = 1 then pixel p is assigned the object class,
and if xp = 0 then p is assigned the background. A regularized loss is computed
for x = (xp | p ∈ P), an assignment of labels to all pixels in P, where P is the
set of image pixels. We use color edge sensitive Potts [2] regularized loss:

Lreg(x) =
∑
p,q∈P

wpq · [xp 6= xq], (1)

The pairwise term wpq · [xp 6= xq] in Eq. (1) gives a penalty of wpq whenever
pixels p, q are not assigned to the same label. To align object boundaries to
image edges, we use:

wpq = e−
||Cp−Cq||2

2σ2 , (2)

where σ controls “edge detection”. Decreasing σ leads to an increased number
of weights wpq that are small enough to be considered a color edge.

The sum in Eq. (1) is over all neighboring pixels p, q. We assume a 4-
connected neighborhood. The loss function in Eq. (1) with 4-connected neigh-
borhood is called sparse-CRF. Sparse-CRF regularizes a labeling by encouraging
shorter object boundaries that align to image edges [3].

We also test dense-CRF regularized loss from [19], which has the same form
as in Eq. (1) but the summation is over all (thus dense) pixel pairs and wpq is
a Gaussian weight that depends both on the color difference and the distance
between pixels p, q. Unlike sparse-CRF, the regularization properties of dense-
CRF are not well understood, although there is some work [43] that analyzes
the properties of an approximation to a dense-CRF.

In the context of CNNs, the output label xp is no longer discrete but in
continuous range (0, 1), assuming last layer is softmax. We use the absolute
value relaxation of Eq. (1):

Labsreg(x) =
∑
p,q∈P

wpq · |xp − xq|. (3)

3.2 Loss and Segmentation Accuracy Correlation

If regularized loss is a good criterion for single class segmentation, then the ac-
curacy of segmentation should be negatively correlated with the value of the
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loss. While this may not be a sufficient condition, it is a necessary one. We mea-
sure correlation experimentally, using four single-object datasets: OxfordPet [42],
MSRA-B [27], ECSSD [52], and DUT-OMRON [53]. The first dataset has ground
truth segmentation for two object classes: cat and dog . We merge them into a
single class pet . The last three datasets are for salient object segmentation and
contain one class. We use F-measure as the accuracy metric.
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Fig. 1. Scatter plots of regularized loss vs. F-measure on four datasets (different colors):
sparse-CRF (left), dense-CRF (right). See text for details.

OxfordPet MSRA ECSSD DUT-O
sparse-CRF −0.862 −0.895 −0.956 −0.957
dense-CRF −0.830 −0.758 −0.772 −0.896

Table 1. Correlation coefficients between F-measure and regularized loss for sparse-
CRF and dense-CRF.

To measure correlation between regularized loss and F-measure, for each
dataset, we need several segmentation sets of varying accuracy. We are inter-
ested in segmentations that can be learned with a CNN, not just any random
segmentations, since we assume a dataset has a concept that can be learned
with a CNN. Therefore we train a CNN with ground truth and obtain several
early/intermediate segmentation results in addition to the final one. We use 20
time steps to obtain 20 different accuracy segmentation sets for each dataset.

We average sparse-CRF losses and F-measures over segmentations of each
dataset, separately for each time step. We do the same for the dense-CRF. The
scatter plots of regularized loss vs. F-measure are in Fig. 1. Each dataset is in
different color. We linearly normalize (no effect on correlation) the loss into range
(0, 1) for visualization. The correlation coefficients for sparse-CRF and dense-
CRF are in Table 1. Both losses show significant negative correlation, however
sparse-CRF correlation is better for all datasets. Given high negative correlation,
the task of performing CNN training with regularized loss is promising.
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We also measure regularized loss of ground truth, shown with asterisks in Fig. 1.
For dense-CRF only one asterisk is visible because the loss value is almost the
same for all datasets. Except OxfordPet, for all datasets the ground truth has
the lowest value of the regularized loss. For the OxfordPet, the ground truth has
a slightly higher value than the best solution obtained through training CNN.

3.3 Complete Loss Function

Sparse-CRF has a shrinking bias [46], it favors segments with a shorter boundary.
To counteract, we add volumetric loss, also frequently used in MRFs [46]. Let x
be an output of the network, and let x̄ = 1

|P|
∑
p∈P xp, i.e. normalized object size.

Our volumetric loss is defined for a batch of m images with outputs x1, . . . ,xm:

Lv(x1, . . . ,xm) =
( 1

m

∑
i

x̄i − 0.5
)2

+ λs
∑
i

[
x̄i < 0.15

]
·
(
x̄i − 0.15

)2
, (4)

The first sum in Eq. (4) encourages the average size of the object in a batch to
be 0.5, i.e. roughly half of the image size. We average object size over a batch to
allow for a large range of object sizes in a batch: some objects in can be small,
some can be large, but the average size is expected to be 0.5. We could encourage
any object/background size ratio by replacing 0.5 appropriately. However, we
found no need for more precise modeling as volumetric loss is essential only in
the first, annealing stage of training, see Sec. 3.4. Batch size is set to m = 16.

The second sum in Eq. (4) encourages each object inside the batch to have
normalized size of at least 0.15. This is a conservative measure of the minimum
object size to prevent collapse to an empty object. Here

[
·
]

is 1 if the argument
is true and 0 otherwise. The weight λs balancing these two sums is set to 5 in all
experiments. In practice, this term is important only during the second training
stage, when regularization loss has a much higher weight than volumetric loss.

In the beginning of the training, it is important to guide the network in the
right direction. For a dataset that contains only one object class of interest, for
many images the border pixels do not contain the object, and the center of the
image contains the object. We incorporate this prior through positional loss. Let
B be the set of pixels on the image border of width w, and C be the set of image
pixels in the center box of side size c. We formulate positional loss Lp(x) as:

Lp(x) =
( 1

|B|
∑
p∈B

xp

)2
+
( 1

|C|
∑
p∈C

xp − 1
)2
. (5)

For all experiments, we set w = c = 3, so the number of effected pixels
is small. However, positional loss is enough to push the network in the right
direction in the beginning of training, seeking object segments that are preferably
in the image center and do not overlap the border. Just as with volumetric loss,
positional loss is important only in the annealing stage. In the normal stage, the
weight of positional loss is low, thus allowing segmenting objects that overlap
with the border and do not contain the central four pixels of the image.
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Our complete loss function for training is a weighted sum of regularized,
volumetric, and positional losses, and is applied to x, the output of CNN3:

L(x) = λregLreg(x) + λvLv(x) + λpLp(x). (6)

All parts of the loss in Eq. (6) are important. Training fails if any part is
omitted. When we say we train with “regularized loss”, we mean training with
the complete loss in Eq. (6). Saying “train with regularized loss” emphasizes the
largest important component of our complete loss function.

Sometimes we have images containing a class similar to the class of interest
but not the class we want to segment. It helps to include these images as negative
examples. Negative images are assumed not to contain the object of interest,
and thus no ground truth is required for training. Therefore, including negative
images is, again, a form of a weak supervision. If negative images are available,
we apply the following negative loss to x, the output of CNN on negative images:

Lneg(x) = λneg
( 1

|P|
∑
p∈P

xp − 1
)2

(7)

3.4 Training

Training CNN with the loss function in Eq. (6) is difficult. Out-of-the-box train-
ing produces results with either all pixels assigned to the foreground or back-
ground. We found that annealing [17] (i.e. slowly increasing) parameter σ in
Eq. (2) is essential for obtaining good results. Thus there are two training stages
in our approach: the annealing stage and the normal stage.

The annealing stage has n = 15 iterations during which parameter σ changes
according to the following schedule, where i is the iteration number:

σ(i) = 0.05 +
i

n
∗ 0.1, 1 ≤ i ≤ 15 (8)

The other parameters are not changed and are set to: λreg = λv = λp = 1.
Traditionally, annealing is used to increase parameter λreg, increasing the

difficulty of loss function optimization. The larger is λreg, the more difficult the
loss function tends to be. We anneal parameter σ that controls edge sensitivity,
and its annealing seems to serve a different purpose. Intuitively, annealing σ
helps CNN to find an easy object hypothesis first, and then refine it.

Consider Fig. 2. The input image is shown on the left. In the middle, for
several annealing iterations, we show the segmentation result together with wpq
weights (below the result). The lower weights wpq are illustrated with darker
intensities. The last column in the figure is the final result after the normal
training stage, and the ground truth is below it. Consider the result at iteration
one. The value of σ is low, and, therefore, there are many areas in the image with

3 Note that our volumetric prior is actually defined on batches of images. However for
the simplicity of notation, we write Lv(x) in this equation.
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input

iter = 1 iter = 4 final resultiter = 15iter = 11iter = 7

annealing

ground truth

Fig. 2. Illustration of annealing. Left: input image. Middle: segmentation results for
several iterations of annealing together with wpq weights at these iterations, shown
below each segmentation result; darker intensities correspond to lower wpq. Right, top:
the final segmentation after the normal training stage. Right, bottom: the ground truth,
with “void” class in orange.

small wpq. At this first iteration, CNN learns to classify most of the areas with low
wpq as the object. This happens because placing object/background boundaries
around pixels with lower wpq is cheap. It also happens to be a reasonable start
as objects usually have edges on their boundary, and often they have texture
edges in the interior. Of course, many of the pixels included in the object mask
in the first iteration are errors. As annealing proceeds, σ is raised, and there are
fewer areas with small wpq weights, making the old placements of boundaries on
the weaker edges more expensive. Increasingly more erroneous object areas are
discarded as CNN learns the common object appearance from the “surviving”
areas. The final annealing result (iter = 15) is a crude approximation to the
actual object, and it gets refined further during the normal training stage (last
column, right), as the weight of regularized loss is increased significantly.

After the annealing stage, we have the normal training stage. The parame-
ters are set to: λreg = 100, λv = λp = 1, σ = 0.15. Thus during normal training
stage, regularized loss is the major contributing component. After annealing, we
have a good approximate solution and can relax the penalty for objects that
deviate widely from half of the image size, do not overlap the image center, and
overlap image border. We do not set λv and λp to zero because then the optimal
solution is a trivial one, everything assigned to the object (or background).

If negative loss in Eq. 7 is used, we set λneg = 2. Also, we first train in
the annealing and normal stages without negative loss, and then train with the
negative loss in the normal stage for an additional 200 epochs.

4 Experimental Results

This section is organized as follows. We start with saliency datasets and Ox-
fordPet dataset in Sec. 4.1. We use these datasets to make choices about CNN
architecture and training protocol and then use these choices for all the other
experiments. In Sec. 4.2 we test our approach for cosegmentation. In Sec. 4.3 we
extend our approach to weakly supervised multi-class semantic segmentation.
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The supplementary materials contain additional experiments that experimen-
taly analyze properties of CNN trained with regularized loss, as well as other
minor experiments.

4.1 Saliency Datasets

We use two CNN architectures, both based on Unet [31]. They differ in the
module for feature extraction. The first one is based on MobileNetV2 [33] and
the second on ResNeXt [50]. The feature extraction modules are pretrained on
Imagenet [8]. The pretrained features are used in the encoder part Unet, and they
stay fixed during training. We refer to these networks, respectively, as UMobV2
and UResNext . UResNext is much bigger than UMobV2 . For both networks, we
add softmax as the last layer to convert the output to the range of (0, 1). We
train each network with regularized loss in Eq. (6) and with cross-entropy loss
on ground truth for comparison. To distinguish between these training types,
we add “gt” to the name of any network that is trained with ground truth, and
“reg” if it is trained with regularized loss.

For the experiments in this section, we use three saliency datasets: MSRA-
B [27], ECSSD [52], and DUT-OMRON [53]. We split MSRA-B into 3, 000 train-
ing and 2, 000 test images, ECSSD into 700 training and 300 test images, and
DUT-OMRON into 3, 678 training and 1, 490 test images.

We also use OxfordPet [42] dataset that has segmentations of cats and dogs.
To make it appropriate for single class segmentation, we combine the cat and dog
classes into one pet class. OxfordPet has 3, 680 training and 3, 669 test images.

We use F-measure as an accuracy metric, F = (1+β2)precision×recall
β2×precision+recall , with

β2 = 0.3.

OxfordPet MSRA-B ECSSD DUT-O

UMobV2-reg 94.62 86.20 57.96 53.79

UMobV2-gt 96.07 89.35 84.78 80.86

gap 1.45 3.15 26.82 27.07

UResNext-reg 94.77 88.36 73.47 64.48

UResNext-gt 96.53 89.68 86.11 81.47

gap 1.76 1.32 12.64 16.99
Table 2. F-measure for all networks and datasets; for each network and dataset, we
also show the gap between training with ground truth and regularized loss.

F-measures are computed on the test fold. However, since our method does
not use ground truth, the test and training folds have a similar F-measure.

For efficiency, we decrease resolution of all images on all experiments in this
section to 128×128. We use Adam optimizer [16] with a fixed learning rate 0.001
and train all networks for 50 epochs.
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The F-measures of UMobV2 and UResNext on the OxfordPet, MSRA-B,
ECSSD, and DUT-OMRON are in Table 2, both in the case of training with
regularized loss and training with ground truth. We also give the gap between
training with ground truth and regularized loss. Whether training with ground
truth or regularized loss, UResNext , a bigger network, performs better than
UMobV2 , and has a smaller gap from the network trained with ground truth on
3 out of 4 datasets. OxfordPet dataset is the easiest to fit dataset.

Replacing the Annealing Stage The purpose of the annealing training stage
is to find a good start for the normal training stage. We found that instead
of annealing, using weights from the same network trained on another dataset
also gives a good start for the normal training stage. Our training consists of
15 annealing and 50 normal epochs. So skipping 15 epochs of annealing gives
only a modest time saving. However, we found that transferring weights from
a network trained on an easy-to-fit dataset can lead to a much better result.
We use OxfordPet for weight transfer because it is the easiest dataset to fit.
Specifically, we train a network on OxfordPet both in the annealing and normal
training stage, and then use the resulting weights to start training in the normal
stage (skipping annealing) on another dataset.

The results are summarized in Table 3. Most F-measures improve, in some
cases by a large margin. UResNext is, again, the best, and is less than 3 points
of F-measure behind the same network trained with ground truth on all datasets
except DUT-OMRON. We also show the new gap between the same networks
trained with ground truth and regularized loss. The new best gaps are in bold.
For the rest of the experiments in this paper, we always start with the weights
pretrained on OxfordPet, skipping the annealing stage.

MSRA-B ECSSD DUT-O

UMobV2-reg 85.51 79.20 54.49

UMobV2-gt 89.35 84.78 80.86

gap 3.84 5.58 26.37

UResNext-reg 88.64 83.49 73.42

UResNext-gt 89.68 86.11 81.47

gap 1.04 2.61 8.05
Table 3. Replacing annealing stage by transferring the weights from OxfordPet.

Comparison to Saliency CNNs trained without ground truth There is
prior work that train saliency CNN without ground truth [55, 56, 28]. The F-
measure comparison is in Table 4. For fairness of comparison, as done in [55, 56,
28], we use the model trained on MSRA-B to test on ECSSD and DUT-OMRON.

Our method outperforms other methods on DUT-OMRON, and is not far
from the best other methods on MSRA-B and ECSSD. Note that in addition, our
method is generic and not tuned in architecture or loss function to the saliency
segmentation task, where as all three methods in [55] are saliency specific.
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MSRA-B ECSSD DUT-O

[55] NA 78.70 58.30

[56] 87.70 87.83 71.56

[28] 90.31 87.42 73.58

Ours UMobV2-reg 85.51 83.50 70.47

Ours UResNext-reg 88.64 86.10 74.77
Table 4. Comparison to other saliency-CNNs that do not use ground truth for training.

4.2 Cosegmentation

The goal of cosegmentation [32] is to segment an object common to all images in
a dataset. The setting of this problem is somewhat different from the setting we
assume. We assume that the object of interest is the main subject of the image.
For co-segmentation datasets, there maybe several salient objects of different
classes, and the task is to find the object class that occurs in all images.

We use Pascal-VOC cosegmentation dataset [10] for evaluation, the most
challenging cosegmentation benchmark. It has 20 separate subsets, one for each
Pascal category. This dataset is particularly challenging for our approach because
the number of images per class is only around 50, and our method needs more
images for accurate training, compared to training with ground truth, see sup-
plementary materials. We use UnetX network and train at resolution 256× 256.

There is one prior works that trains CNN for cosegmentation without full
supervision [14]. The comparison with our method is in Table 5. Our perfor-
mance, marked as ours1, is slightly inferior. However, our method is generic and
unchanged between various applications/datasets. The method in [14] is hand-
crafted for co-segmentation, has a costly loss function that depends on pairs of
images, and thus has quadratic complexity, which is infeasible for large datasets.
Furthermore, in [14] they use post-processing with dense-CRF and do not re-
port results without post-processing. We do not use any post-processing. For
comparison, in this table, we also include the most recent prior work [24] on
cosegmentation that does use full ground truth for training. It performs only
slightly better than [14] and ours1, despite using full supervision.

Next we add negative loss from Eq. 7. Namely, when training for, say, ’air-
plane’ category, images in all the other categories are used as negative examples.
Note that negative images can also have objects of class ’airplane’, since the
categories in cosegmentation dataset are not “pure”. That is the category “per-
son” has an object of type person in all examples, but may also have “airplane”
objects in some examples. Still, negative loss improves results, see column ours2
in Fig. 5. We now outperform [14]. Although we are using the same dataset
as [14], this comparison is somewhat unfair since [14] does not use any loss term
that depends on data across different object categories. Still, it is reasonable to
assume that the user provides examples of images without the object of interest
as negative examples. Fig. 3 illustrates how negative loss improves performance.
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Cosegmentation dataset has a small number of images, a problem for our
method. If we use Web dataset from Sec. 4.3 for training and evaluate on Pascal
cosegmentation, then our results are much improved, under ours3 in Fig. 5.
Training with more images does give us an advantage over [14]. But the method
in [14], with its quadratic loss function, is infeasible for large datasets.

[14] [24]∗ ours1 ours2 ours3

airplane 0.77 0.78 0.78 0.82 0.83
bike 0.27 0.29 0.27 0.28 0.32
bird 0.70 0.71 0.68 0.70 0.67
boat 0.61 0.66 0.53 0.61 0.68

bottle 0.58 0.58 0.58 0.61 0.72
bus 0.79 0.82 0.76 0.84 0.84
car 0.76 0.79 0.76 0.79 0.82
cat 0.79 0.81 0.81 0.82 0.86

chair 0.29 0.35 0.34 0.35 0.38
cow 0.75 0.78 0.77 0.80 0.83

dining table 0.28 0.26 0.15 0.16 0.21
dog 0.63 0.65 0.70 0.70 0.76

horse 0.66 0.78 0.75 0.77 0.79
motorbike 0.65 0.69 0.69 0.71 0.73

person 0.37 0.39 0.44 0.46 0.60
potted plant 0.42 0.45 0.41 0.45 0.60

sheep 0.75 0.77 0.77 0.80 0.81
sofa 0.67 0.70 0.55 0.60 0.67
train 0.68 0.73 0.68 0.75 0.82

tv 0.51 0.55 0.33 0.40 0.50

mean 0.60 0.63 0.59 0.62 0.67
Table 5. Results on Pascal VOC Cosegmentation, evaluation metric is Jaccard. Here
’*’ indicates that a method uses full ground truth for training.

4.3 Semantic Segmentation

We extend our approach to handle weakly supervised semantic segmentation
following a simpler version of [36]. We use Web image search on 20 class names
in Pascal VOC [9] to automatically collect about 800 images per class. Let us call
these datasets as ’airplane’-Web, ’bicycle’-Web, etc. Then we train our UMobV2-
reg on each class separately. We train at resolution 256× 256. Let the resulting
trained CNNs be called ’airplane’-CNN, ’bicycle’-CNN, etc.

We use the obtained segmentations to generate pseudo-ground truth. We run
airplane-CNN on airplane-Web. Each pixel that is labelled ’salient’ is assigned
to label ’airplane’. Each pixel that is labeled ’background’ stays assigned ’back-
ground’. There are no ambiguity issues as images in airplane-Web dataset go
only through airplane-CNN. We process all other classes similarly. Note that
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Fig. 3. Sample results on Pascal VOC cosegmentation dataset. The columns are: input
image, ground truth, our results without negative loss, our results with negative loss.
Negative loss helps to rule out the salient objects that are not of the class of interest.

our pseudo-ground truth is multi-label, but each individual image has only 2
labels: background and one of the object classes. Similarly to cosegmentation,
we train both with and without negative loss in Eq. (7).

Method [36]∗ [47]# [48]# [1]# [37]∗ [54] [23] [38] ours∗1 ours∗2 ours∗3

mIoU 56.4 60.3 60.4 61.7 63.0 63.3 64.9 64.9 64.0 66.7 67.1
Table 6. Comparison (mIoU metric) to other weakly supervised semantic segmentation
methods on Pascal VOC 2012 validation fold.

Our Web dataset has around 16K images and thus is larger than the aug-
mented Pascal training dataset. However, our Web images are of lower similarity
to Pascal validation images. Therefore we also train on the subset of augmented
Pascal training dataset that has only one class per image. We call this dataset
PascalSingle, it has around 5K images. We generate pseudo-ground truth for
PascalSingle using the same procedure as for our Web dataset, described above.

Next we train a multi-class CNN on our pseudo-ground truth. We use DeepLab-
ResNet101 [5] pretrained on ImageNet [8]. We follow the same training strategy
as in [5], except our initial learning rate is 0.001. DeepLab is trained on images of
size 513× 513. We also use random horizontal flip, Gaussian blur, and rescaling
for data augmentation. We train for 100 epochs.

Table 6 compares the performance of our method with the most related or
most recent work. Methods marked with “*” use additional data for training
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Fig. 4. Sample results on Pascal VOC 2012 validation fold.

(with image-level tags), usually obtained by Web search. Methods marked with
“#” use saliency datasets together with their pixel precise ground truth. We
compare three versions of our method. Ours1 is trained on Web images. Ours2
and Ours3 are trained on PascalSingle dataset, without and with negative loss,
respectively. Our method trained with negative loss outperforms all prior work.

Fig. 4 shows some sample segmentations. Despite being trained on images
each containing only one semantic class, we are able to segment images contain-
ing multiple semantic classes. Note that we do not use any post-processing, and
therefore our results are likely to improve with CRF-based refinement.

Conclusions

We presented a new method of training segmentation CNNs using regularized
loss instead of ground truth. Our approach is a simple end-to-end trainable
system with no need to adapt architecture or loss for a specific dataset/task. In
some cases, our method obtains results that are only a few points behind the
results when training the same CNN with pixel precise ground truth. There are
several future research directions. First our regularized loss is rather simple and
cannot work well for all object classes. It will be interesting to research other loss
functions that can be useful for training. Second research direction is extending
our approach to a multi-class setting in a unified manner, not as a separate
pseudo-ground truth generating stage, as we do currently.
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