
Forgetting Outside the Box
Supplementary Material

Aditya Golatkar, Alessandro Achille, and Stefano Soatto

In the Supplementary Material we:

– Appendix A: Provide implementation details for our scrubbing procedure;
– Appendix B: Show further experiments on more datasets (CIFAR-10, La-

cuna, TinyImagenet) and models (AllCNN, ResNet).
– Appendix C: Provide proofs for all propositions and equations in the paper;

A Experimental Details

We train our models with SGD (learning rate ⌘ = 0.01 and momentum m = 0.9)
using weight decay (� = 0.1). All models are trained to convergence (we stop
the training 5 epochs after the model achieves zero training error).

Pre-training and weight-decay. In all cases, we use pre-trained models (we
pre-train the models on CIFAR-100/Lacuna-100/TinyImageNet (first 150 classes)
respectively), and denote by w0 the pre-trained weight configuration. One im-
portant point is that we change the weight decay regularization term from the
standard kwk22 (which pulls the weights toward zero) to kw�w0k22 (which pulls
the weights toward the initialization). This serves two purposes, (i) It ensures
that the weights remain close to the initialization (in our case, a pre-trained
network). This further helps the weight during training to remain in the neigh-
borhood of the initialization where the the linear approximation (NTK) is good;
(ii) With this change, the training dynamics of the weights/activations of a lin-
earized network only depend on the relative change in the weights from its initial
value (see [27, Section 2.2] for more details).

NTK matrix, weight decay and cross-entropy. For clarity, in Section 4
and Proposition 2 we only considered a unregularized MSE regression problem.
To apply the theory to the more practical case of a classification cross-entropy
loss with weight-decay regularization, we need the following changes.

First, using weight decay the NTK matrix becomes ⇥ = rf0(D)rf0(D)T +
�I, where � is the weight decay coe�cient. Second, when using the cross-
entropy loss, the gradients rf lin

t (D)L of the loss function can be approximated
as rfw(x)L ⇡ rfw0(x)

L + Hfw0 (x)
(fw(x) � fw0(x)), where Hfw0 (x)

is the Hes-
sian of the loss with respect to the output activations. With these two together,
we obtain ⇥ = Hfw0 (x)

rf0(D)rf0(D)T + �I as the NTK matrix to use in our
setting.

We did however notice that replacing Hfw0 (x)
with the identity matrix I

works better in practice. This may be due to Hfw0 (x)
estimating the wrong

curvature when the softmax saturates. Also we found that — while in princi-
ple identical as long as the network remains in the linear regime — linearizing

18 Golatkar, Achille, Soatto

Fig. 5: Isosceles Trapezium Trick: kw(Dr) � w(D)k = kwlin(Dr) � wlin(D)k +
2 sin↵kwlin(D)�w(D)k. This allows us to match outputs of the linear dynamic
model with the real output, without having to match the e↵ective learning rate
of the two, and while being more robust to wrong estimation of the curvature
by the linearized model.

around w(D) provides a better estimate of the scrubbing direction compared to
linearizing around w0.

Trapezium trick. We observe that the linearized dynamics of in eq. (8) and
eq. (9) correctly approximate the training direction but they usually undershoot
and give a smaller norm solution than SGD. This may be due to di�culty in
matching the learning rate of continuous gradient descent and discrete SGD. To
overstep these issues in a robust way, we use the following simple “trapezium
trick” (Figure 5) to renormalize the scrubbing vector obtained with the linear
dynamics: Instead of trying to predicting the unknown w(Dr) directly using the
scrubbing vector suggested by eq. (10), we compute the two final points of the lin-
earized dynamics wlin(D) and wlin(Dr), and approximate w(Dr) by constructing
the isosceles trapezium in Figure 5. E↵ectively, this rescales the ideal linearized
forgetting direction wlin(Dr)� wlin(D) to correct for the undershooting.

B Additional Experiments

In Figure 6 we use a PCA projection to show the geometry of the loss landscape
after convergence and the training paths obtained by training the weights on
the full dataset D or only on Dr. We observe that the loss landscape around the
pretraining point is smooth and almost convex. Moreover, the two training paths
remain close to each other. This supports our choice of using a simple linearized
approximation to compute the shift that jumps from one path to the other.

In Figure 7 and Figure 8 we show additional experiments on several architec-
tures (ResNet-18, All-CNN) and datasets (Lacuna, CIFAR-10, TinyImageNet).
In all cases we observe a similar qualitative behavior to the one discussed in the
paper.

Forgetting outside the box 19

Fig. 6: (Right) The loss landscape and training dynamics after pre-

training are smooth and regular. This justifies our linearization approach
to study the dynamics. The black and yellow lines are the training paths on D
and Dr respectively. Notice that they remain close. (Upper left) Loss along

the line joining the model at initialization (↵ = 0) and the model after training
on D (↵ = 1) (the black path). (Lower left) Loss along the line joining the end
point of the two paths (↵ = 0 and 1 respectively), which is the ideal scrubbing
direction.

C Proofs

Markov chain in Section 3.1. We consider the retain set Dr (not shown) as
an observed random variable, while the cohort to forget Df is an hidden variable
sampled randomly from the data distribution. The directed edge Df ! w in the
Markov chain derives from the fact that we first sample Df , to obtain the full
complete training set D = Dr tDf , and then train the network on D to obtain
the weights w.

Proof of Lemma 1. We have the following upper-bound for I(Df ; fS(w)(x)):

I(Df ; fS(w)(x)) = I(Df ; fS(w)(x))

= EDf

⇥
KL

�
p(fS(w)(x)|Df [Dr) k p(fS(w)(x)|Dr)

�⇤

= EDfEp(fS(w)(x)|Df[Dr)

h
log

p(fS(w)(x)|Df [Dr)

p(fS(w)(x)|Dr)

i

= EDfEp(fS(w)(x)|Df[Dr)

h
log

p(fS(w)(x)|Df [Dr)

p(fS(w)(x)|Dr)

+ log
p(fS0(w)(x)|Dr)

p(fS0(w)(x)|Dr)

i

= EDf

⇥
KL

�
p(fS(w)(x)|Df [Dr) k p(fS0(w)(x)|Dr)

�⇤

�KL
�
p(fS(w)(x)|Dr) k p(fS0(w)(x)|Dr)

�

 EDf

⇥
KL

�
p(fS(w)(x)|Df [Dr) k p(fS0(w)(x)|Dr)

�⇤

20 Golatkar, Achille, Soatto

Fig. 7: Same experiment as Figure 2 for di↵erent architectures and datasets.
(Row 1): ResNet-18 on CIFAR, (Row 2): ResNet-18 on Lacuna, (Row 3):
All-CNN on TinyImageNet and (Row 4): ResNet-18 on TinyImageNet. In all
the experiments we observe that for di↵erent readout functions the proposed
method lies in the green (target) region.

where the last inequality follows from the fact that KL-divergence is always
non-negative.

Proof of Lemma 2. We have the inequalities:

I(Df ; fS(w)(x)) EDf

⇥
KL

�
p(fS(wD)(x)) k p(fS0(wDr)

(x))
�⇤

 EDf ,✏

h
KL

�
p(fS(wD)(x)) k p(fS0(wDr)

(x))
�i

where the first inequality comes from Lemma 1, and the second inequality is
from [16, Proposition 2].

Proof of eq. (5). The activations of a scrubbed network (using the Gaussian
scrubbing procedure in eq. (4)) for a given sample x are given by fh(w)+n(x),
where n ⇠ N(0,⌃). By linearizing the activations (using NTK formalism)
around h(w), we obtain the distribution of the scrubbed activations:

fh(w)+n(x) ⇠ N(fh(w)(x),rwfh(w)(x)⌃rwfh(w)(x)
T)

Forgetting outside the box 21

Fig. 8: Same experiment as Figure 3 for di↵erent architectures and datasets.
(Row-1): ResNet-18 on CIFAR, (Row-2): ResNet-18 on Lacuna, (Row-3):
All-CNN on TinyImageNet, (Row-4): ResNet-18 on TinyImageNet. We observe
consistent behaviour across di↵erent architectures and datasets.

22 Golatkar, Achille, Soatto

For the original model we compute this at w = wD and take h to be the the
NTK scrubbing shift in eq. (10). The baseline model does not use any shift, so
h(w) = w, and is computed at w = wDr .

Proof of Proposition 1, eq. (6). As in [16, Example 2].

Proof of Proposition 1, eq. (7). Using Equation (5) we write the distribution
of the activations of a scrubbed network:

fS(wD)(x) ⇠ N(fh(wD)(x), J⌃JT)

where J = rwfh(wD)(x). We can similarly write the activations for baseline as:

fS0(wDr)
(x) ⇠ N(fwDr

(x), J 0⌃0J
0T)

where J 0 = rwfwDr
(x) Using the two distributions, we rewrite the bound in

Lemma 2 as:

I(Df ; fS(w)(x)) EDf ,✏

⇥
KL

�
N(fh(wD)(x), J⌃JT) kN(fwDr

(x), J 0⌃0J 0T �⇤

= EDf ,✏

⇥
�fT⌃0

x
�1

�f + tr(⌃x⌃
0
x
�1

)� log |⌃x⌃
0
x
�1|� n

⇤

where �f = fh(wD)(x) � fwDr
(x), ⌃x = J⌃JT , ⌃0

x = J 0⌃0J 0T , and we used
the closed form expression for the KL divergence of two normal distributions.

Proof of Proposition 2. Let D = Dr [Df be the complete training set.
To keep the notation simpler, we assume that the loss is an mean-square-error
regression loss (we discuss classification using cross-entropy in Appendix B).

Let w0 be the weights obtained after pre-training on Dpre-train. Taking inspi-
ration from the NTK analysis [23, 27] we approximate the activations fw(x) for
a test datum x after fine-tuning on D using the liner approximation f lin

w (x) =
fw0(x) +rwfw0(x)(w � w0). To keep the notation uncluttered, we write f0(x)
instead of fw0(x).

The training dynamics under the linear approximation (assuming continuous
gradient descent) are then given by eq. (8) and (9), and will converge at the final
solution (see [27] for more details):

wlin(D) = rf0(D)T⇥�1(f0(D)� Y) + w0.

Here rf0(D) 2 RNc⇥p is the gradient of the output with respect to the parame-
ters (at initialization) for all the samples in D stacked along the rows to form a
matrix (p is the number of parameters in the model, N = |D| and c is the num-

ber of classes), ⇥ = rf0(D)rf0(D)T (2 RNc⇥Nc) is the NTK matrix. Similarly,
Y is the matrix formed by stacking all ground-truth labels one below the other
and f0(D) 2 R(Nc⇥1) are the stacked outputs of the DNN at initialization on D.

Forgetting outside the box 23

Similarly the baseline solution (training only on the data to retain) is:

wlin(Dr) = rf0(Dr)
T⇥�1

rr (f0(Dr)� Yr) + w0,

where ⇥rr = rf0(Dr)
Trf0(Dr). The optimal scrubbing vector (at least for the

linearized model) would then be �w := wlin(Dr) � wlin(D): adding �w to the
weights obtained by training on D makes us forget the extra examples (Df), so
that we obtain weights equivalent to training on Dr alone. We now derive the
simplified expression in eq. (10) for the optimal scrubbing vector �w. We start
by rewriting wlin(D) using block matrixes:

wlin(D) = rf0(D)T⇥�1(f0(D)� Y) + w0

=
h
rf0(Dr)

Trf0(Df)
T
i⇥rr ⇥rf

⇥T
rf ⇥ff

��1
f0(Dr)� Yr

f0(Df)� Yf

�
+ w0

We can expand the inverse of the NTK matrix using the following equations:

⇥rr ⇥rf

⇥T
rf ⇥ff

��1

=

"h
⇥rr �⇥rf⇥

�1
ff ⇥

T
rf

i�1
�⇥�1

rr ⇥rfM

�M⇥T
rf⇥

�1
rr M

#

Where M =
⇥
⇥ff �⇥T

rf⇥
�1
rr ⇥rf

⇤�1
. Using Woodbury Matrix Identity:

(A+ UCV)�1 = A�1 �A�1U(C�1 + V A�1U)�1V A�1

We obtain:

h
⇥rr �⇥rf⇥

�1
ff ⇥

T
rf

i�1
= ⇥�1

rr +⇥�1
rr ⇥rfM⇥T

rf⇥
�1
rr

Thus,

⇥rr ⇥rf

⇥T
rf ⇥ff

��1

=

⇥�1

rr +⇥�1
rr ⇥rfM⇥T

rf⇥
�1
rr �⇥�1

rr ⇥rfM
�M⇥T

rf⇥
�1
rr M

�

Using the above relation we get

wlin(D) = rf0(Dr)
T
⇣
⇥�1

rr +⇥�1
rr ⇥rfM⇥T

rf⇥
�1
rr

⌘
(f0(Dr)� Yr)

�rf0(Df)
TM⇥T

rf⇥
�1
rr (f0(Dr)� Yr)

�rf0(Dr)
T⇥�1

rr ⇥rfM(f0(Df)� Yf)

+rf0(Df)
TM(f0(Df)� Yf) + w0.

24 Golatkar, Achille, Soatto

Finally, using this the optimal shift �w for scrubbing the weights is

�w = wlin(Dr)� wlin(D)

= �rf0(Dr)
T⇥�1

rr ⇥rfM⇥T
rf⇥

�1
rr (f0(Dr)� Yr)

+rf0(Df)
TM⇥T

rf⇥
�1
rr (f0(Dr)� Yr)

+rf0(Dr)
T⇥�1

rr ⇥rfM(f0(Df)� Yf)

�rf0(Df)
TM(f0(Df)� Yf)

=
h
I �rf0(Dr)

T⇥�1
rr rf0(Dr)

i
rf0(Df)

TM
h
⇥T

rf⇥
�1
rr (f0(Dr)� Yr)

i

+
h
I �rf0(Dr)

T⇥�1
rr rf0(Dr)

i
rf0(Df)

TM
h
(Yf � f0(Df))

i

= Prf0(Df)
TMV,

where P = I � rf0(Dr)
T⇥�1

rr rf0(Dr), M =
⇥
⇥ff � ⇥T

rf⇥
�1
rr ⇥rf

⇤�1
and V =

[(Yf � f0(Df)) +⇥T
rf⇥

�1
rr (Yr � f0(Dr))].

