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Abstract. Language acquisition is the process of learning words from
the surrounding scene. We introduce a meta-learning framework that
learns how to learn word representations from unconstrained scenes. We
leverage the natural compositional structure of language to create train-
ing episodes that cause a meta-learner to learn strong policies for lan-
guage acquisition. Experiments on two datasets show that our approach
is able to more rapidly acquire novel words as well as more robustly gen-
eralize to unseen compositions, significantly outperforming established
baselines. A key advantage of our approach is that it is data efficient,
allowing representations to be learned from scratch without language pre-
training. Visualizations and analysis suggest visual information helps our
approach learn a rich cross-modal representation from minimal examples.

1 Introduction

Fig. 1: What is “ghee” and “roti”? The
answer is in the footnote.1Although the
words “ghee” and “roti” may be unfamil-
iar, you are able to leverage the structure
of the visual world and knowledge of other
words to acquire their meaning. In this pa-
per, we propose a model that learns how to
learn words from visual context.

Language acquisition is the process of
learning words from the surrounding
environment. Although the sentence
in Figure 1 contains new words, we
are able to leverage the visual scene
to accurately acquire their meaning.
While this process comes naturally to
children as young as six months old
[54] and represents a major milestone
in their development, creating a ma-
chine with the same malleability has
remained challenging.

The standard approach in vision
and language aims to learn a common
embedding space [13,50,27], however
this approach has a number of key
limitations. Firstly, these models are inefficient because they often require mil-
lions of examples to learn. Secondly, they consistently generalize poorly to the
natural compositional structure of language [16]. Thirdly, fixed embeddings are

? Equal contribution
1 Answer: “ghee”isthebutterontheknife,and“roti”isthebreadinthepan
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Fig. 2: Learning to Learn Words from Scenes: Rather than directly learning word
embeddings, we instead learn the process to acquire word embeddings. The input to our
model is an episode of image and language pairs, and our approach meta-learns a policy
to acquire word representations from the episode. Experiments show this produces a
representation that is able to acquire novel words at inference time as well as more
robustly generalize to novel compositions.

unable to adapt to novel words at inference time, such as in realistic scenes that
are naturally open world. We believe these limitations stem fundamentally from
the process that models use to acquire words.

While most approaches learn the word embeddings, we propose to instead
learn the process for acquiring word embeddings. We believe the language acqui-
sition process is too complex and subtle to handcraft. However, there are large
amounts of data available to learn the process. In this paper, we introduce a
framework that learns how to learn vision and language representations.

We present a model that receives an episode of examples consisting of vision
and language pairs, where the model meta-learns word embeddings from the
episode. The model is trained to complete a masked word task, however it must
do so by copying and pasting words across examples within the episode. Although
this is a roundabout way to fill in masked words, this requires the model to learn
a robust process for word acquisition. By controlling the types of episodes from
which the model learns, we are able to explicitly learn a process to acquire novel
words and generalize to novel compositions. Figure 2 illustrates our approach.

Our experiments show that our framework meta-learns a strong policy for
word acquisition. We evaluate our approach on two established datasets, Flickr30k
[62] and EPIC-Kitchens [8], both of which have a large diversity of natural scenes
and a long-tail word distribution. After learning the policy, the model can re-
ceive a stream of images and corresponding short phrases containing unfamiliar
words. Our model is able to learn the novel words and point to them to describe
other scenes. Visualizations of the model suggest strong cross-modal interaction
from language to visual inputs and vice versa.

A key advantage of our approach is that it is able to acquire words with
orders of magnitude less examples than previous approaches. Although we train
our model from scratch without any language pre-training, it either outperforms
or matches methods with massive corpora. In addition, the model is able to
effectively generalize to compositions outside of the training set, e.g. to unseen
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compositions of nouns and verbs, outperforming the state-of-the-art in visual
language models by over fifteen percent when the compositions are new.

Our primary contribution is a framework that meta-learns a policy for visu-
ally grounded language acquisition, which is able to robustly generalize to both
new words and compositions. The remainder of the paper is organized around
this contribution. In Section 2, we review related work. In Section 3, we present
our approach to meta-learn words from visual episodes. In Section 4, we analyze
the performance of our approach and ablate components with a set of qualitative
and quantitative experiments. We will release all code and trained models.

2 Related Work

Visual language modeling: Machine learning models have leveraged large text
datasets to create strong language models that achieve state-of-the-art results
on a variety of tasks [10,38,39]. To improve the representation, a series of papers
have tightly integrated vision as well [26,48,30,40,27,63,52,7,49,50,2]. However,
since these approaches directly learn the embedding, they often require large
amounts of data, poorly generalize to new compositions, and cannot adapt to an
open-world vocabulary. In this paper, we introduce a meta-learning framework
that instead learns the language acquisition process itself. Our approach outper-
forms established vision and language models by a significant margin. Since our
goal is word acquisition, we evaluate both our method and baselines on language
modeling directly.

Compositional models: Due to the diversity of the visual world, there has
been extensive work in computer vision on learning compositional representa-
tions for objects and attributes [35,20,34,37,32] as well as for objects and actions
[22,37,58]. Compositions have also been studied in natural language processing
[9,12]. Our paper builds on this foundation. The most related is [24], which also
develops a meta-learning framework for compositional generalization. However,
unlike [24], our approach works for realistic language and natural images.

Out-of-vocabulary words: This paper is related but different to models
of out-of-vocabulary words (OOV) [45,25,18,23,44,43,19,45]. Unlike this paper,
most of them require extra training, or gradient updates on new words. We com-
pare to the most competitive approach [45], which reduces to regular BERT in
our setting, as a baseline. Moreover, we incorporate OOV words not just as an in-
put to the system, but also as output. Previous work on captioning [28,31,61,59]
produces words never seen in the ground truth captions. However, they use pre-
trained object recognition systems to obtain labels and use them to caption the
new words. Our paper is different because we instead learn the word acquisition
process from vision and text data. Finally, unlike [4], our approach does not
require any side information or external information, and instead acquires new
words using their surrounding textual and visual context.

Few-shot learning: Our paper builds on foundational work in few-shot
learning, which aims to generalize with little or no labeled data. Past work has
explored a variety of tasks, including image classification [60,51,47], translating
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Fig. 3: Episodes for Meta-Learning: We illustrate two examples of training episodes.
Each episode consists of several pairs of image and text. During learning, we mask out
one or more words, indicated by a ? , and train the model to reconstruct it by pointing
to ground truth (in bold) among other examples within the episode. By controlling the
generalization gaps within an episode, we can explicitly train the model to generalize
and learn new words and new compositions. For example, the left episode requires the
model to learn how to acquire a new word (“carrot”), and the right episode requires
the model to combine known words to form a novel composition (“stir paneer”).

between a language pair never seen explicitly during training [21] or understand-
ing text from a completely new language [5,1], among others. In contrast, our
approach is designed to acquire language from minimal examples. Moreover, our
approach is not limited to just few-shot learning. Our method also learns a more
robust underlying representation, such as for compositional generalization.

Learning to learn: Meta-learning is a rapidly growing area of investigation.
Different approaches include learning to quickly learn new tasks by finding a
good initialization [14,29], learning efficient optimization policies [46,6,3,41,29],
learning to select the correct policy or oracle in what is also known as hierarchical
learning [15,19], and others [11,33]. In this paper, we apply meta-learning to
acquire new words and compositions from visual scenes.

3 Learning to Learn Words

We present a framework that learns how to acquire words from visual context.
In this section, we formulate the problem as a meta-learning task and propose
a model that leverages self-attention based transformers to learn from episodes.

3.1 Episodes

We aim to learn the word acquisition process. Our key insight is that we can
construct training episodes that demonstrate language acquisition, which pro-
vides the data to meta-learn this process. We create training episodes, each of
which contain multiple examples of text-image pairs. During meta-learning, we
sample episodes and train the model to acquire words from examples within each
episode. Figure 3 illustrates some episodes and their constituent examples.

To build an episode, we first sample a target example, which is an image
and text pair, and mask some of its word tokens. We then sample reference
examples, some of which contain tokens masked in the target. We build episodes
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that require overcoming substantial generalization gaps, allowing us to explicitly
meta-learn the model to acquire robust word representations. Some episodes may
contain new words, requiring the model to learn a policy for acquiring the word
from reference examples and using it to describe the target scene in the episode.
Other episodes may contain familiar words but novel compositions in the target.
In both cases, the model will need to generalize to target examples by using the
reference examples in the episode. Since we train our model on a distribution
of episodes instead of a distribution of examples, and each episode contains new
scenes, words, and compositions, the learned policy will be robust at generalizing
to testing episodes from the same distribution. By propagating the gradient from
the target scene back to other examples in the episode, we can directly train the
model to learn a word acquisition process.

3.2 Model

Let an episode be the set ek = {v1, . . . , vi, wi+1, . . . , wj} where vi is an image and
wi is a word token in the episode. We present a model that receives an episode ek,
and train the model to reconstruct one or more masked words wi by pointing to
other examples within the same episode. Since the model must predict a masked
word by drawing upon other examples within the same episode, it will learn a
policy to acquire words from one example and use them for another example.

Transformers on Episodes: To parameterize our model, we need a rep-
resentation that is able to capture pairwise relationships between each exam-
ple in the episode. We propose to use a stack of transformers based on self-
attention [55], which is able to receive multiple image and text pairs, and learn
rich contextual outputs for each input [10]. The input to the model is the episode
{v1, . . . , wj}, and the stack of transformers will produce hidden representations
{h1, . . . , hj} for each image and word in the episode.

Transformer Architecture: We input each image and word into the trans-
former stack. One transformer consists of a multi-head attention block followed
by a linear projection, which outputs a hidden representation at each location,
and is passed in series to the next transformer layer. Let Hz ∈ Rd×j be the d
dimensional hidden vectors at layer z. The transformer first computes vectors
for queries Q = W z

qH
z, keys K = W z

kH
z, and values V = W t

vH
z where each

W∗ ∈ Rd×d is a matrix of learned parameters. Using these queries, keys, and
values, the transformer computes the next layer representation by attending to
all elements in the previous layer:

Hz+1 = SV where S = softmax

(
QKT

√
d

)
. (1)

In practice, the transformer uses multi-head attention, which repeats Equation
1 once for each head, and concatenates the results. The network produces a final
representation {hZ1 , . . . , hZi } for a stack of Z transformers.

Input Encoding: Before inputting each word and image into the trans-
former, we encode them with a fixed-length vector representation. To embed
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input words, we use an N × d word embedding matrix φw, where N is the
size of the vocabulary considered by the tokenizer. To embed visual regions, we
use a convolutional network φv(·) over images. We use ResNet-18 initialized on
ImageNet [42,17]. Visual regions can be the entire image in addition to any re-
gion proposals. Note that the region proposals only contain spatial information
without any category information.

To augment the input encoding with both information about the modality
and the positional information (word index for text, relative position of region
proposal), we translate the encoding by a learned vector:

φimg(vi) = φv(vi) + φloc(vi) + φmod(IMG) + φid(vi)

φtxt(wj) = φwj + φpos(wj) + φmod(TXT) + φid(wj)
(2)

where φloc encodes the spatial position of vi, φpos encodes the word position of
wj , φmod encodes the modality and φid encodes the example index.

Please see the supplementary material for all implementation details of the
model architecture. Code will be released.

3.3 Learning Objectives

To train the model, we mask input elements from the episode, and train the
model to reconstruct them. We use three different complementary loss terms.

Pointing to Words: We train the model to “point” [56] to other words
within the same episode. Let wi be the target word that we wish to predict,
which is masked out. Furthermore, let wi′ be the same word which appears in a
reference example in the episode (i′ 6= i). To fill in the masked position wi, we
would like the model to point to wi′ , and not any other word in the reference
set.

We estimate similarity between the ith element and the jth element in the
episode. Pointing to the right word within the episode corresponds to maximizing
the similarity between the masked position and the true reference position, which
we implement as a cross-entropy loss:

Lpoint = − log

(
Aii′∑
k Aik

)
where logAij = f(hi)

T f(hj) (3)

where A is the similarity matrix and f(hi) ∈ Rd is a linear projection of the
hidden representation for the ith element. Minimizing the above loss over a
large number of episodes will cause the neural network to produce a policy such
that a novel reference word wi′ is correctly routed to the right position in the
target example within the episode.

Other similarity matrices are possible. The similarity matrix A will cause the
model to fill in a masked word by pointing to another contextual representation.
However, we can also define a similarity matrix that points to the input word
embedding instead. To do this, the matrix is defined as logAij = f(hi)

Tφwj .
This prevents the model from solely relying on the context and forces it to
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specifically attend to the reference word, which our experiments will show helps
generalizing to new words.

Word Cloze: We additionally train the model to reconstruct words by di-
rectly predicting them. Given the contextual representation of the masked word
hi, the model predicts the missing word by multiplying its contextual represen-
tation with the word embedding matrix, ŵi = arg maxφTwhi. We then train with
cross-entropy loss between the predicted word ŵi and true word wi, which we
write as Lcloze. This objective is the same as in the original BERT [10].

Visual Cloze: In addition to training the word representations, we train
the visual representations on a cloze task. However, whereas the word cloze task
requires predicting the missing word, generating missing pixels is challenging.
Instead, we impose a metric loss such that a linear projection of hi is closer to
φv(vi) than φv(vk 6=i). We use the tripet loss [57] with cosine similarity and a
margin of one. We write this loss as Lvision. This loss is similar to the visual loss
used in state-of-the-art visual language models [7].

Combination: Since each objective is complementary, we train the model
by optimizing the neural network parameters to minimize the sum of losses:

min
Ω

E [Lpoint + αLcloze + βLvision] (4)

where α ∈ R and β ∈ R are scalar hyper-parameters to balance each loss term,
and Ω are all the learned parameters. We sample an episode, compute the gra-
dients with back-propagation, and update the model parameters by stochastic
gradient descent.

3.4 Information Flow

We can control how information flows in the model by constraining the attention
in different ways. Isolated attention implies examples can only attend within
themselves. In the full attention setting, every element can attend to all other
elements. In the target-to-reference attention setting we can constrain the
attention to only allow the target elements to attend to the reference elements.
Finally, in attention via vision case, we constrain the attention to only transfer
information through vision. See the supplementary material for more details.

3.5 Inference

After learning, we obtain a policy that can acquire words from an episode con-
sisting of vision and language pairs. Since the model produces words by pointing
to them, which is a non-parametric mechanism, the model is consequently able
to acquire words that were absent from the training set. As image and text pairs
are encountered, they are simply inserted into the reference set. When we ulti-
mately input a target example, the model is able to use new words to describe
it by pulling from other examples in the reference set.

Moreover, the model is not restricted to only producing words from the ref-
erence set. Since the model is also trained on a cloze task, the underlying model
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is able to perform any standard language modeling task. In this setting, we only
give the model a target example without a reference set. As our experiments will
show, the meta-learning objective also improves these language modeling tasks.

4 Experiments

The goal of our experiments is to analyze the language acquisition process that
is learned by our model. Therefore, we train the model on vision-and-language
datasets, without any language pretraining. We call our approach EXPERT.2

4.1 Datasets

We use two datasets with natural images and realistic textual descriptions.
EPIC-Kitchens is a large dataset consisting of 39, 594 video clips across

32 homes. Each clip has a short text narration, which spans 314 verbs and
678 nouns, as well as other word types. EPIC-Kitchens is challenging due to
the complexities of unscripted video. We use object region proposals on EPIC-
Kitchens, but discard any class labels for image regions. We sample frames from
videos and feed them to our models along with the corresponding narration. Since
we aim to analyze generalization in language acquisition, we create a train-test
split such that some words and compositions will only appear at test time. We
list the full train-test split in the supplementary material.

Flickr30k contains 31, 600 images with five descriptions each. The language
in Flickr30k is more varied and syntactically complex than in EPIC-Kitchens,
but comes from manual descriptive annotations rather than incidental speech.
Images in Flickr30k are not frames from a video, so they do not present the same
amount of visual challenges in motion blur, clutter, etc., but they cover a wider
range of scene and object categories. We again use region proposals without their
labels and create a train-test split that withholds some words and compositions.

Our approach does not require additional image regions as input beyond the
full image, and our experiments show that our method outperforms baselines
similarly even when trained only with the full image as input, without other
cropped regions (see supplementary material).

4.2 Baselines

We compare to established, state-of-the-art models in vision and language, as
well as to ablated versions of our approach.

BERT is a language model that recently obtained state-of-the-art perfor-
mance across several natural language processing tasks [10]. We consider two
variants. Firstly, we download the pre-trained model, which is trained on three
billion words, then fine-tune it on our training set. Secondly, we train BERT
from scratch on our data. We use BERT as a strong language-only baseline.

2 Episodic Cross-Modal Pointing for Encoder Representations from Transformers



Learning to Learn Words from Visual Scenes 9

Ratio

1:1 2:1 Cost

Chance 13.5 8.7

-
BERT (scratch) [10] 36.5 26.3
BERT+Vision [7] 63.4 57.5

E
X

P
E

R
T

Isolated attention 69.0 57.8 O(n)
Tgt-to-ref attention 71.0 63.2 O(n)
Via-vision attention 72.7 64.5 O(n)

+ Input pointing 75.0 67.4 O(n)
Full attention 76.6 68.4 O(n2)

BERT (pretrained) [10] 53.4 48.8

Table 1: Acquiring New Words on
EPIC-Kitchens: We test our model’s
ability to acquire new words at test
time by pointing. The difficulty of this
task varies with the number of dis-
tractor examples in the reference set.
We show top-1 accuracy results on
both 1:1 and 2:1 ratios of distractors to
positives. The rightmost column shows
computational cost of the attention
variant used.

BERT+Vision refers to the family of visually grounded language mod-
els [26,2,50,63,27,48,36,7], which adds visual pre-training to BERT. We experi-
mented with several of them on our tasks, and we report the one that performs
the best [7]. Same as our model, this baseline does not use language pretraining.

We also compare several different attention mechanisms. Tgt-to-ref atten-
tion, Via-vision attention, and Full attention indicate the choice of atten-
tion mask; the base one is Isolated attention. Input pointing indicates the
use of pointing to the input encodings along with contextual encodings. Unless
otherwise noted, EXPERT refers to the variant trained with via-vision attention.

4.3 Acquisition of New Words

Our model learns the word acquisition process. We evaluate this learned process
at how well it acquires new words not encountered in the training set. At test
time, we feed the model an episode containing many examples, which contain
previously unseen words. Our model has learned a strong word acquisition policy
if it can learn a representation for the new words, and correctly use them to fill
in the right masked words in the target example.

Specifically, we pass each example in an episode forward through the model
and store hidden representations at each location. We then compute hidden
representation similarity between the masked location in the target example
and every example in the reference set. We experimented with a few similarity
metrics, and found dot-product similarity performs the best, as it is a natural
extension of the attention mechanism that transformers are composed of.

We compare our meta-learned representations to state-of-the-art vision and
language representations, i.e. BERT and BERT with Vision. When testing, base-
lines use the same pointing mechanism (similarity score between hidden repre-
sentations) and reference set as our model. Baselines achieve strong performance
since they are trained to learn contextual representations that have meaningful
similarities under the same dot-product metric used in our evaluation.

We show results on this experiment in Table 1. Our complete model obtains
the best performance in word acquisition on both EPIC-Kitchens and Flickr30k.
In the case of EPIC-Kitchens, where linguistic information is scarce and sentence
structure simpler, meta-learning a strong lexical acquisition policy is particularly
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Fig. 4: Word Acquisition: We show examples where the model acquires new words. ?
in the target example indicates the masked out new word. Bold words in the reference
set are ground truth. The model makes predictions by pointing into the reference set,
and the weight of each pointer is visualized by the shade of the arrows shown (weight
< 3% is omitted). In bottom right, we show an error where the model predicts the
plate is being placed, where the ground truth is “grabbed”.

Fig. 5: Word Acquisition versus
Distractors: As more distractors are
added (testing on EPIC-Kitchens), the
problem becomes more difficult, caus-
ing performance for all models to go
down. However, EXPERT decreases at
a lower rate than baselines.
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important for learning new words. Our model outperforms the strongest base-
lines (including those pretrained on enormous text corpora) by up to 13% in this
setting. Isolating attention to be only within examples in an episode harms ac-
curacy significantly, suggesting that the interaction between examples is key for
performance. Constraining this interaction to pass through the visual modality,
the computational cost is linear in number of examples with only a minor drop
in accuracy, allowing our approach to efficiently scale to larger episodes.

Figure 4 shows qualitative examples where the model must acquire novel lan-
guage by learning from its reference set, and use it to describe another scene with
both nouns and verbs. In the bottom right of the figure, an incorrect example is
shown, in which EXPERT points to place and put instead of grab. However, both
incorrect options are plausible guesses given only the static image and textual
context “plate”. This example suggests that video information would further
improve EXPERT’s performance.

Figure 5 shows that, even as the size of the reference set (and thus the diffi-
culty of language acquisition) increases, the performance of our model remains
relatively robust compared to baselines. EXPERT outperforms baselines by 18%
with one distractor example, and by 36% with ten.

In Flickr30k, visual scenes are manually described in text by annotators
rather than transcribed from incidental speech, so they present a significant
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Ratio

Method 1:1 2:1

Chance 3.4 2.3
BERT (scratch) 31.6 25.7
BERT with Vision [7] 32.1 26.8
EXPERT 69.3 60.9

BERT (pretrained) 69.4 60.8

Table 2: Acquiring New Words on Flickr30k:
We run the same experiment as Table 1 (top-1 accu-
racy pointing to new words), except on the Flickr30k
dataset, which has more complex textual data. As
before, we show results on 1:1 and 2:1 ratios of dis-
tractors to positives. By learning the acquisition pol-
icy, our model obtains competitive performance with
orders of magnitude less training data.

EPIC-Kitchens Flickr30k
Method Verbs Nouns All Verbs Nouns All

Chance 0.1 0.1 0.1 < 0.1 < 0.1 < 0.1
BERT (scratch) [10] 68.2 48.9 57.9 64.8 69.4 66.2
BERT with Vision [7] 77.3 63.2 65.6 65.1 70.2 66.5
EXPERT 81.9 73.0 74.9 69.1 79.8 72.0

BERT (pretrained) [10] 71.4 51.5 59.8 69.5 79.4 72.2

Table 3: Acquiring Familiar
Words: We report top-5 ac-
curacy on masked language
modeling of words which ap-
pear in training. Our model
outperforms all other baselines.

challenge in their complexity of syntactic structure and diversity of subject mat-
ter. In this setting, our model significantly outperforms all baselines that train
from scratch on Flickr30k, with an increase in accuracy of up to 37% (Table 2).
Since text is more prominent, a state-of-the-art language model pretrained on
huge (> 3 billion token) text datasets performs well, but EXPERT achieves the
same accuracy while requiring several orders of magnitude less training data.

4.4 Acquisition of Familiar Words

By learning a policy for word acquisition, the model also jointly learns a repre-
sentation for the familiar words in the training set. Since the representation is
trained to facilitate the acquisition process, we expect these embeddings to also
be robust at standard language modeling tasks. We directly evaluate them on
the standard cloze test [53], which all models are trained to complete.

Table 3 shows performance on language modeling. The results suggest that
visual information helps learn a more robust language model. Moreover, our
approach, which learns the process in addition to the embeddings, outperforms
all baselines by between 4 and 9 percent across both datasets. While a fully
pretrained BERT model also obtains strong performance on Flickr30k, our model
is able to match its accuracy with orders of magnitude less training data.

Our results suggest that learning a process for word acquisition also col-
laterally improves standard vision and language modeling. We hypothesize this
happens because learning acquisition provides an incentive for the model to gen-
eralize, which acts as a regularization for the underlying word embeddings.

4.5 Compositionality

Since natural language is compositional, we quantify how well the representations
generalize to novel combinations of verbs and nouns that were absent from the



12 D. Suŕıs, D. Epstein et al.

Table 4: Compositionality:
We show top-5 accuracy at pre-
dicting masked compositions of
seen nouns and verbs. Both the
verb and the noun must be
correctly predicted. EXPERT
achieves the best performance
on both datasets.

EPIC-Kitchens Flickr30k

Method Seen New Diff Seen New Diff

Chance < 0.1 < 0.1 - < 0.1 < 0.1 -
BERT (scratch) [10] 34.3 17.7 16.6 43.4 39.4 4.0
BERT with Vision [7] 56.1 37.6 18.5 45.0 42.0 3.0
EXPERT 63.5 53.0 10.5 48.7 47.1 1.6

BERT (pretrained) [10] 39.8 20.7 19.1 48.8 47.2 1.6

Table 5: Retrieval: We test
the model’s top-1 retrieval ac-
curacy (in %) from a 10 sam-
ple retrieval set. T→I and I→T
represent retrieval from image
to text and text to image.

EPIC-Kitchens Flickr30k
Method T→I I→T T→I I→T

Chance 10.0 10.0 10.0 10.0
BERT with Vision [7] 13.8 13.9 54.9 57.4
EXPERT 32.6 25.3 57.5 60.6

training set. We again use the cloze task to evaluate models, but require the
model to predict both a verb and a noun instead of only one word.

We report results on compositions in Table 4 for both datasets. We break-
down results by whether the compositions were seen or not during training.
Note that, for all approaches, there is a substantial performance gap between
seen and novel compositions. However, since our model is explicitly trained for
generalization, the gap is significantly smaller (nearly twice as small). Moreover,
our approach also shows substantial gains over baselines for both seen and novel
compositions, improving by seven and sixteen points respectively. Additionally,
our approach is able to exceed or match the performance of pretrained BERT,
even though our model is trained on three orders of magnitude less training data.

4.6 Retrieval

Following prior work [30,48,26,7], we evaluate our representation on cross-modal
retrieval. We observe significant gains from our approach, outperforming base-
lines by up to 19%. Specifically, we run an image/text cross-modal retrieval test
on both the baseline BERT+Vision model and ours. We freeze model weights
and train a classifier on top to decide whether input image and text match, ran-
domly replacing data from one modality to create negative pairs. We then test
on samples containing new compositions. Please see Table 5 for results.

4.7 Analysis

In this section, we analyze why EXPERT obtains better performance.
How are new words embedded in EXPERT? Figure 6 shows how EX-

PERT represents new words in its embedding space at test time. We run sen-
tences which contain previously unseen words through our model. Then, we cal-
culate the nearest neighbor of generated hidden representations of these unseen
words in the learned word embedding matrix. Our model learns a representation
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Fig. 6: Embedding New Words with EXPERT: We give EXPERT sentences
with unfamiliar language at test time. We show the hidden vectors h(new word |
context, image) it produces, conditioned on visual and linguistic context, and their
nearest neighbors in word embedding space φtxt(known word). EXPERT can use its
learned vision-and-language policy to embed new words near other words that are
similar in object category, affordances, and semantic properties.

space such that new words are embedded near semantically similar words (de-
pendent on context), even though we use no such supervisory signal in training.

Does EXPERT use vision? We take our complete model, trained with
both text and images, and withhold images at test time. Performance drops to
nearly chance, showing that EXPERT uses visual information to predict words
and disambiguate between similar language contexts.

What visual information does EXPERT use? To study this, we with-
hold one visual region at a time from the episode and find the regions that cause
the largest decrease in prediction confidence. Figure 7 visualizes these regions,
showing that removing the object that corresponds to the target word causes the
largest drop in performance. This suggests that the model is correlating these
words with the right visual region, without direct supervision.

How does information flow through EXPERT? Our model makes pre-
dictions by attending to other elements within its episode. To analyze the learned
attention, we take the variant of EXPERT trained with full pairwise attention
and measure changes in accuracy as we disable query-key interactions one by
one. Figure 8 shows which connections are most important for performance.
This reveals a strong dependence on cross-modal attention, where information
flows from text to image in the first layer, and back to text in the last layer.

How does EXPERT disambiguate multiple new words? We evaluate
our model on episodes that contain five new words in the reference set, only one
of which matches the target token. Our model obtains an accuracy of 56% in
this scenario, while randomly picking one of the novel words would give 20%.
This shows that our model is able to discriminate between many new words in an
episode. We also evaluate the fine-tuned BERT model in this same setting, where
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Fig. 7: Visualizing the Attention:
We probe how the model uses visual in-
formation. We remove various objects
from input images in an episode, and
evaluate the model’s confidence in pre-
dicting masked words . Removing im-

age regions with a yellow box causes

the greatest drop in confidence (other

regions are shown in red ). The most
important visual regions for the predic-
tion task contain an instance of the tar-
get word. These results suggest that our
model learns some spatial localization of
words automatically.

Fig. 8: Visualizing the Learned Process: We visualize how information flows
through the learned word acquisition process. The width of the pipe indicates the im-
portance of the connection, as estimated by how much performance drops if removed.
In the first layer, information tends to flow from the textual nodes to the image nodes.
In subsequent layers, information tends to flow from image nodes back to text nodes.

it obtains a 37% accuracy, significantly worse than our model. This suggests that
vision is important to disambiguate new words.

5 Discussion

We believe the language acquisition process is too complex to hand-craft. In this
paper, we instead propose to meta-learn a policy for word acquisition from vi-
sual scenes. Compared to established baselines, our experiments show significant
gains at acquiring novel words, generalizing to novel compositions, and learning
more robust word representations. Visualizations and analysis reveal that the
learned policy leverages both the visual scene and linguistic context.
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