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1 ADP Label Set Modifications

Fig. 1. The ADP-flat database is a modification of the original ADP database, but
avoids some notable mislabeling cases by either merging (left) or omitting (right)
frequently-mislabeled classes.

The Atlas of Digital Pathology (ADP) [3] is a database of 17668 digital
pathology patch images extracted from 100 healthy slides from the same medical
institution scanned with a TissueScope LE1.2 at 0.25µm/px resolution. Each
1088×1088 patch in the original release was annotated with up to 42 hierarchical
tissue types.

https://github.com/mahdihosseini/HistoLabelTransfer/
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The database was shown to be well-annotated by training state-of-the-art
CNNs on the labels, although several classes were frequently mislabeled. To
mitigate the negative effects this might have on training, we modified the original
label set by (1) merging classes noted to be mislabeled as each other and (2)
removing rarely-occurring classes. We selected the ADP database as the source
domain for domain adaptation because, unlike other available computational
pathology databases, it contains data from diverse organs, utilizes a broadly-
applicable label set, and overwhelmingly contains healthy tissue. Intuitively, this
should make it possible to apply to datasets containing observed organs, observed
labels, and possibly even detect tissue abnormalities.

2 Histological Label Transferring Implementation

2.1 Dataset Details

Below, we provide extended details for each of the datasets evaluated in the
main paper, as well as the BACH dataset which was not included for reasons of
space.

CRC–The ColoRectal Cancer dataset [4] consists of 100000 patch images
(NCT-CRC-HE-100K-NONORM, or CRC-100K), each labeled with one of nine
tissue type labels. Five labels are largely healthy tissue types (e.g. ‘ADI’ for
adipose tissue, ‘LYM’ for lymphocytes), two are disease types (i.e. ‘STR’ for
cancerous stroma, ‘TUM’ for cancerous epithelia), and two are non-tissue types
(i.e. ‘BACK’ for background, ‘DEB’ for debris). The images are sized 224 × 224
and scanned at 0.5µm/px, so they were resized by a factor of 0.5

1 = 0.5 to
112× 112 and symmetric padded by 80 pixels on each side. An additional set of
7000 patch images color normalized using Macenko et al.’s method [6] was also
provided (CRC-VAL-HE-7K, or CRC-7K) but as these are color-normalized, we
only use the 100000 un-normalized images for evaluation - the 7000 normalized
set results are provided below.

HMT–The Histology Multiclass Texture dataset [5] consists of 5000 patch
images, each labeled with one of eight tissue type labels. Five of these labels are
largely healthy tissue types (e.g. ‘02 STROMA’ for stroma, ‘04 LYMPHO’ for
lymphocytes), while one is a disease type (i.e. ‘01 TUMOR’), and two are non-
tissue types (i.e. ‘05 DEBRIS’, ‘08 EMPTY’). The images are sized 150 × 150
and scanned at 0.495µm/px, so they were resized by a factor of 0.495

1 = 0.495
to 74 × 74 and symmetric padded by 99 pixels on each side. Ten additional
slide images (sized 5000× 5000) are also provided for validation, but we use the
5000-image training set for evaluation.

GlaS–The Gland Segmentation (GlaS) challenge dataset [7] consists of 85
training images and 80 test images. Each image is labeled with one of five colorec-
tal cancer grades - in order of worsening condition, they are: ‘healthy’, ‘adeno-
matous’, ‘moderately differentiated’, ‘moderately-to-poorly differentiated’, and
‘poorly differentiated’. All images are scanned at 0.62005µm/px (Zeiss MIRAX
MIDI) and the median image is sized 775× 522, so they were resized by a factor
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of 0.62005
1 = 0.62005 to 481× 324 and a minimally-overlapping set of 2× 2 crops

was extracted (for the median case). We combined both the training and test
sets for evaluation.

PatchCamelyon–The PatchCamelyon dataset [8] consists of 32768 patch
images extracted from the WSI scans of the original Camelyon16 challenge
dataset [2] and labeled as tumorous if the central 32 × 32 region contains at
least one pixel of tumor; it is labeled normal otherwise. The images are sized
96×96 and scanned at 0.243µm/px (Pannoramic 250 Flash II; 3DHISTECH), so
they were resized by a factor of 0.243

1 = 0.243 to 23 × 23 and symmetric padded
by 125 pixels on each side. We evaluate on the test annotations of this dataset.

BACH–The Grand Challenge on Breast Cancer Histology Images dataset [1]
consists of 400 training images and 100 test image. Each image is labeled with
one of four breast cancer classes - in order of worsening condition, they are:
‘Normal’, ‘Benign’, ‘InSitu’, and ‘Invasive’. The images are sized 2048 × 1536
and scanned at 0.42µm/px, so they were resized by a factor of 0.42

1 = 0.42 to
860×645 and a minimally-overlapping set of 4×3 crops was extracted. We used
only the training set for evaluation.

3 Domain Adaptation Experiments, Extended Results

3.1 CRC

Fig. 2. CRC-100K (non-normalized): per-class AUC for four network architectures
trained with three color augmentation methods each.

3.2 HMT

3.3 GlaS

3.4 PatchCamelyon

3.5 BACH

4 Visualizing Some Failure Cases

See Figure 10 for a visualization of some true positive and false positive predic-
tions in the CRC and GlaS sets.
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Fig. 3. CRC-7K (color normalized): per-class AUC for four network architectures
trained with three color augmentation methods each.

Fig. 4. HMT: per-class AUC for four network architectures trained with three color
augmentation methods each.

Fig. 5. GlaS: disease detection AUC for four network architectures trained with three
color augmentation methods each, using the E.M.C and H.Y classes.

Fig. 6. PatchCamelyon: disease detection AUC for four network architectures trained
with three color augmentation methods each, using the E.T.C and G.O classes.
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Fig. 7. BACH: disease detection AUC for four network architectures trained with three
color augmentation methods each, using the E.T.C and G.O classes.

Fig. 8. Correlation between select inverse HistoNet confidence scores (E.T.C and G.O)
and binarized disease classes in BACH (normal/tumor): PLCC (Pearson Linear Cor-
relation Coefficient), SROC (Spearman Rank Order Coefficient), and KROC (Kendall
Rank Order Coefficient).

Fig. 9. ROC curves of HistoNet in PatchCamelyon trained with different color aug-
mentation methods and evaluated on binary disease detection using two tissue types:
E.M.C and H.Y.
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Fig. 10. True and false positive predictions in tissue classification (NORM class in
CRC) and disease detection (in GlaS).

4.1 PatchCamelyon

Fig. 11. Correlation between select inverse HistoNet confidence scores (E.T.C and
G.O) and binarized disease classes in PatchCamelyon (normal/tumor): PLCC (Pearson
Linear Correlation Coefficient), SROC (Spearman Rank Order Coefficient), and KROC
(Kendall Rank Order Coefficient).

Statistical Correlation with Disease Classes. For PatchCamelyon, two
ADP classes - stratified cuboidal/columnar epithelium (E.T.C) and exocrine
gland (G.O) - had the highest correlation with the presence of tumors. Figure
12 shows that this correlation is most significant when the network is trained
with YCbCr-Light augmentation. Although the correlation values are relatively
low, the consistency of correlation is still remarkable because the patches are
extracted from breast tissue, which is not found in ADP. The selection of strati-
fied cuboidal/columnar epithelium and exocrine gland is intriguing because the
metastatic tumor cells are epithelial in nature but result in low scores for E.T.C
and G.O.

Binary Disease Detection. When the E.T.C and G.O scores are used,
HistoNet fails to properly detect disease in PatchCamelyon unless YCbCr-Light
is applied, as shown in Figure 12 ( [8] reports an AUC of 0.963). This justifies
the utility of color augmentation, since reasonable prediction are not possible
otherwise and the usefulness of our approach in detecting disease in organs not
seen in the source domain.
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Fig. 12. ROC curves of HistoNet in PatchCamelyon trained with different color aug-
mentation methods and evaluated on binary disease detection using two tissue types:
E.M.C and H.Y.

5 Disease Analysis on WSI Level

In this section, we provide visual results on WSI analysis. For the experiment, two
Colon tissue organs are selected as shown in Figure 13. Both WSIs are mosaiced
into multiple image patches and fed to the HistoNet model with 1µm/pixel
resolution for HTT prediction. Accordingly, image patches are down sized to
272×272 and normalized before feeding to HistoNet. We construct the heatmap
for four different color augmentation models shown in Figure 14 corresponding
to inverse prediction score of Stratified Cuboidal/Columnar Epithelial (E.T.C)
tissue type. In the following subsections, the pathologist’s evaluation on each
organ are provided.

5.1 Pathologist’s Diagnosis on Colon-1

This WSI depicts an adenomatous polyp of the colon, shown in Figure 13(a).
The majority of the epithelium in this slide is abnormal (neoplastic, precancer-
ous), but there is an area of muscularis mucosa and normal epithelium at area
where the polyp was removed. The heatmaps in Figure 14 (first row) show a
high probability of abnormality in the areas of adenomatous epithelium (yellow,
orange, and red), and indicate a low probability of abnormality in the regions
with muscularis mucosa and normal epithelium (blue). The HSV Strong proto-
col appears to show the strongest correlation with histologic findings, followed
by HSV Light, then YCbCr Light. The YCbCr Strong protocol shows the least
correlation (while it still correctly indicates the normal areas, it appears to be
less sensitive in identifying areas of abnormality compared to the other method-
ologies).

5.2 Pathologist’s Diagnosis on Colon-2

This WSI is also from a section of an adenomatous polyp, shown in Figure 13(b).
Similar to the previous case, the majority of the columnar epithelium on the slide
shows histologic abnormality, but there are regions of normal tissue (muscularis
mucosa) and normal columnar epithelium. In the associated heatmaps shown in
Figure 14 (second row), the areas of normal muscularis mucosa are marked as
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’abnormal’ with a predominance of red. Areas of normal mucosa are appropri-
ately marked blue, while the abnormal adenomatous mucosa shows a variable
pattern. It appears that for this slide, the AI tool is marking non-epithelial tis-
sues as abnormal. Whereas, this is expected as we demonstrate the abnormality
heatmap solely based on Epithelial section of the HTT. The protocol with the
best correlation with epithelial abnormality in this series is YCbCr light, followed
by HSV strong, HSV light. YCbCr strong shows the least correlation.

(a) Colon-1: Ade-
nomatous Polyp

(b) Colon-2: Ade-
nomatous Polyp

Fig. 13. Two Colon tissue organs are selected for processing and diagnosed by pathol-
ogist.

There is overall much better correlation on the first case i.e. Color-1. It is
interesting in the first case i.e. Color-1 that muscularis mucosa correlated with
normal on the heatmap, but did the opposite in the second case i.e. Color-2.
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(a) Colon-1: HSV-
Light
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(b) Colon-1: HSV-
Strong
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(c) Colon-1:
YCbCr-Light
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(d) Colon-1:
YCbCr-Strong
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(e) Colon-2: HSV-
Light
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(f) Colon-2: HSV-
Strong
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(g) Colon-2:
YCbCr-Light
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(h) Colon-2:
YCbCr-Strong

Fig. 14. Heatmaps of Abnormality based on the inverse prediction of Stratified
Cuboidal/Columnar Epithelial (E.T.C). The first and the second rows correspond to
the Colon-1 and Colon-2 organs, accordingly. For visual overlay, please refer to Figure
13 for the original WSI scans.
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