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Abstract. Deep learning tools in computational pathology, unlike nat-
ural vision tasks, face with limited histological tissue labels for classifi-
cation. This is due to expensive procedure of annotation done by expert
pathologist. As a result, the current models are limited to particular diag-
nostic task in mind where the training workflow is repeated for different
organ sites and diseases. In this paper, we explore the possibility of trans-
ferring diagnostically-relevant histology labels from a source-domain into
multiple target-domains to classify similar tissue structures and cancer
grades. We achieve this by training a Convolutional Neural Network
(CNN) model on a source-domain of diverse histological tissue labels
for classification and then transfer them to different target domains for
diagnosis without re-training/fine-tuning (zero-shot). We expedite this
by an efficient color augmentation to account for color disparity across
different tissue scans and conduct thorough experiments for evaluation.

Keywords: Cancer Detection, Cancer Grade Classification, Deep Learn-
ing, Domain Adaptation, Zero-Shot Transfer, Color Augmentation

1 Introduction

Recent deep learning techniques have been achieving competitive (at times even
superior) performances compared to medical pathologists when diagnosing dis-
ease from Whole Slide Images (WSI). Histology slides are collected from par-
ticular organs and annotated with a particular disease to solve a particular
diagnostic task in mind and deep learning models are trained with these an-
notated images to produce accurate and diagnostically meaningful predictions
[1,9,11,12,19,27,29]. While the latter approach largely solves specific diagnostic
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problems, it also prevents ready application to other organs and diseases. There
has been little research to date on generalizing these state-of-the-art deep learn-
ing models to other datasets with different but related organs and diseases. This
is problematic, because without the ability to transfer relevant knowledge from
other datasets, it becomes prohibitively expensive and time-consuming to collect
the histological annotations needed to train a new deep learning model for each
new application [30,46].

There are two main bottlenecks to such knowledge transfer: (1) the lack
of annotated labels with diverse and generalizable tissue types from different
organs and diseases; and (2) the variation in WSI scanners and staining proto-
cols. Firstly, most openly available datasets were collected to solve a particular
diagnostic problem and hence only contain slides focusing on specific organs
and diseases: colorectal [22, 23, 37], breast [2, 4, 6], brain [13, 14], and various
organs [26, 35]. This restricts the scope of histopathology for representational
learning. In particular, most images are provided as single-label patches refer-
ring to specific tissue/disease related components. This restricts the ability to
train classifiers that can discriminate tissue components smaller than the patch.
Secondly, the color fidelity of WSI scans varies considerably: (a) digital pathol-
ogy scanners follow different optics configurations and camera sensor calibration
guidelines, and (b) pathology laboratories adopt different standards for staining
the histology slides [31,33,36]. This means the same histology slide prepared by
different institutions and digitized by different scanners can vary drastically by
color and illumination contrast, which causes enormous challenges for training
generalizable computational pathology algorithms [3, 8, 25,39–43].
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Fig. 1. Transferring HTT labels from source domain CNN (with labels available for
training) into target domains for both tissue and disease classification (with labels
unavailable for training) without re-training/fine-tuning. Labels are transferred based
on prior histological/histopathological knowledge.

In this paper, we address these gaps by proposing a new approach to com-
putational pathology - by training a “universal” model to recognize diverse his-
tological tissue types (HTTs) from a source domain dataset of healthy slides
(obtained from various organs), we can adapt the model to transfer diagnosti-
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cally relevant labels for tissue and disease classification in target domain datasets
without re-training or fine-tuning (i.e. zero-shot), see Figure 1 for demonstration.
Unlike the existing domain adaptation methods, our approach requires training
only once on the source domain dataset followed by a simple label adaptation
to the target domain consulted by expert pathologist. For this purpose, we em-
ploy the Atlas of Digital Pathology (ADP) database [18] as our source domain
dataset, where its diverse multi-label/multi-class set overlaps with many other
existing datasets. To account for color disparities in WSI scans, we explore two
different color augmentation methods for training using HSV [39,42, 43] as well
as a less complex color space transform i.e. YCbCr. Furthermore, we develop a
simple and yet efficient Convolutional Neural Network (CNN) architecture called
“HistoNet”, guided by the Reinforcement Learning (RL)-based Neural Architec-
ture Search (NAS) [48] as a means to the end goal of domain adaptation. We
further study optimum optical resolution that can produce acceptable perfor-
mance in processing WSI scans. We define two tasks in target domain labels:
(1) recognize tissues by matching labels in the source and target domains us-
ing prior histological knowledge; and (2) classify cancer grades by employing
the confidence scores of diagnostically relevant labels as a surrogate for disease
progression. Both tasks can be seen as variants of the “transductive” and “in-
ductive” transfer learning problems without the target domain images or labels
available during source domain training [32, 45]. Our results, for the first time,
reveal that different but related histopathology datasets can be unified and ef-
ficiently represented by a deep learning model trained on a sufficiently diverse
label set. Without retraining, our approach can form reasonable predictions of
the tissue classes and diseases in unseen images.

The summary of our main contributions is as follows.

1. We introduce a new label transferring solution in computational pathology
from the ADP source domain to different target domain based on diagnos-
tically relevant labels for tissue type and cancer grade classification

2. We explore the possibility of efficient CNN training that can be robust and
optimized toward color disparities and pixel-resolution for tissue recognition
in WSI scans.

3. We provide thorough adaptation experiments on variety of target domain
datasets and show the strengths of source domain for generalization

1.1 Related Works

The problem of domain adaptation is widely used in machine learning such as
vision and language [15,16,32,45,47] to study the problem of knowledge transfer
from a source domain to perform a predefined target domain task. Most knowl-
edge transfer methods are done in an unsupervised fashion where the target-
domain data is unlabeled [15] but its representation is employed during the
training such as adversarial training in [16, 47]. This concept has been recently
investigated in computational pathology to train a classifier using the source
domain labels and adversaries from target-domain [7,28,31,34]. A common dis-
advantage to such methods is the target domain images must be available for
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training in the source domain. Therefore, retraining must be done independently
for each target domain task.

Color augmentation is noticeably becoming a key factor in computational
pathology domain adaptation, since the color disparities have strong effects on
CNN predictions [3,39,41–43,46]. Methods such as HSV transformation [3,39,43]
randomly perturbs the original images during training to expand the color space
and hence generalize the model to images with colors not seen in the original
training set. Stain normalization is also used to map the color distribution in
the target domain to the source domain [5, 7, 8, 21, 28, 31, 34]. The downside of
the latter approaches is that HSV performs a non-linear mapping and produces
color residues during transformation which tend to produce misleading results
[3]. Also, the stain normalization performs a one-to-one mapping between two
histological stains (usually H&E). Hence it is unsuitable for training domain
adaptation datasets such as ADP which contain multiple stains and using it
would limit model generalizability to other stains.

2 Transferring Diagnostically-Relevant Labels

In this section, we describe a useful tissue label mapping (a rule based approach)
that can be adapted between the HTT labels from ADP source domain and other
target domain labels. This adaptation is shown in Figure 2 for both healthy and
disease tissue labels, where the connections are consulted by expert pathologist
for label mapping. If the target task is tissue classification, we only map the
source labels to the target label set using its prior histological knowledge. If
the target task is disease classification problem, the corresponding source labels
correlated to disease level are identified and use their inverse confidence scores for
statistical inference of disease class. Note that the primary site in computational
pathology (i.e. the type of organ) is usually given as a prior knowledge. Our
hypothesis here is if ADP contains such organ tissues, then with good probability,
the relevant tissue type and disease class(es) can be well predicted through the
inference of HTTs. For instance, in GlaS (Colon tissues) dataset, we employ
two HTTs from ADP, i.e. E.M.C and H.Y, which are highly relevant for cancer
detection in Colon tissues.

While our approach is indeed rule-based, histological tissues exhibit many
superficial visual similarities, so taking a data-driven approach would be counter-
productive. Our label mapping was derived through consultation with a medical
pathologist and is a quick, one-step procedure. Our approach is more explainable
(and hence trustworthy) to pathologists because it mimics their own diagnos-
tic workflow better than a black-box solution. Pathologists cannot exhaustively
learn to diagnose all possible cases, so they learn from labeled educational ex-
amples (i.e. train on source domain healthy samples), transfer their knowledge
to diagnostic task at hand by searching for abnormalities (i.e. label mapping),
and diagnose each new case by classifying visual appearance of cancer diseases
(i.e. predict on target domain for grading).
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Fig. 2. Transferring Histological Tissue Type (HTT) labels from ADP source domain to
target domains consulted by expert pathologist. For the tissue classification case (top),
transferable target classes are in solid color and nontransferable classes are in striped
color. For the disease classification case (bottom), the normal classes are indicated in
magenta and the diseased classes in blue.

2.1 Source Domain: ADP

The Atlas of Digital Pathology (ADP) [18] is a database of patch images ex-
tracted from 100 healthy slides from the same medical institution scanned with
a TissueScope LE1.2 at 0.25µm/px resolution. Each patch in the database is an-
notated with up to 33 hierarchical tissue types (modified from the 42 types in the
original release - see the Supplementary Materials for details) in multi-labeled
class format, covering a diverse set of morphological and functional types across
different organs, such as stomach, colon, and thyroid. For visual presentation
of this hierarchy, please refer to Figure 2. The label set in ADP contains tissue
types observed in different organs and hence overlaps with the healthy tissue
types in other histopathology databases.

2.2 Task 1: Tissue Classification

We simply map those target labels representing the same healthy tissue types
as in the source domain set. Our approach is both simpler (no retraining is
required) and requires less information (only the label set) from the target do-
main. We evaluate our approach for tissue classification in the ColoRectal Cancer
dataset CRC [22] and Histology Multiclass Texture (HMT) [23] datasets. The
CRC consists of patch images extracted from cancerous colorectal slides, each
labeled with one of nine tissue type labels. Five labels are largely healthy tissue
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types, two are disease types, and two are non-tissue types. We evaluate on the
un-normalized validation set of this dataset. The ADP labels are mapped to
the healthy types in CRC demonstrated in Table 1. The HMT consists of patch
images also extracted from cancerous colorectal slides, each labeled with one of
eight tissue type labels. Five of these are healthy tissue types, one is diseased,
and two are non-tissue types. The ADP labels are mapped to the healthy types
in HMT shown in the same Table 1.

Table 1. Mapping ADP Source-domain labels to CRC and HMT target datasets.

CRC HMT
Source Label Target Label Source Label Target Label

A → ADI (adipose) max(C.L, M) → 02 STROMA (simple stroma)
H.Y → LYM (lymphocyte) C.L → 03 COMPLEX (complex stroma)
M → MUS (muscle) H.Y → 04 LYMPHO (lymhocyte)
C.L → NORM (normal stroma) G.O → 06 MUCOSA (mucosa)

A → 07 ADIPOSE (adipose)

2.3 Task 2: Disease Classification

In preliminary experiments, we noticed that if the disease classes are quantified
between 0 (normal) and 1 (most diseased), the confidence scores of diagnostically
relevant classes would deteriorate with worsening disease. Here, we study three
diseased datasets i.e. Gland Segmentation (GlaS) challenge [37], PatchCame-
lyon [44] extracted from the WSI scans of the original Camelyon16 challenge
dataset [6], and Grand Challenge on Breast Cancer Histology (BACH) [2] all
listed in Table 2 including the diagnostic features of each dataset. For each
dataset, the diagnostically relevant HTT labels are identified from ADP source
domain. Note that GlaS is comprised of Colon tissues which already exist in the
ADP source domain. However, both PatchCamelyon and BACH are from breast
tissues missing from ADP. We will show in experiments that, in fact, classifica-
tion success is directly related to the type of organ tissues contained in the source
domain. Once an organ type is included in ADP, it will be accurately classified
through domain adaptation, e.g. GlaS but not for PatchCamelyon/BACH.

Table 2. HTT labels from source domain ADP identified as being diagnostically rel-
evant in three different disease datasets i.e. GlaS, PatchCamelyon and BACH. For
description of the labels please refer to label adaptation in Figure 2.

GlaS PatchCamelyon BACH

Type of Data patches extracted from
colorectal slides

patches extracted from lymph
node sections of breast slides

patches extracted from
breast slides

Disease Class(es) 5-classes: 1 normal + 4
progressive cancer grades

2-classes: normal + tumorous 4-classes: 1 normal + 3
progressive cancer grades

Diagnostically
Relevant Labels “E.M.C” and “H.Y” “E.T.C” and “G.O” “E.T.C” and “G.O”
Availability of Primary
Organ in ADP

Included Not Included Not Included
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3 YCbCr Color Augmentation

ADP contains a wide range of stained tissue colors which extends beyond H&E
spectrum. The goal is to develop simple and efficient color augmentation for
CNN training that accounts for such wide variations. HSV color augmentation
from [39, 42, 43] could be an alternative solution since it perturbs wide color
range but it is (a) slow for CNN training; and (b) produces color residuals
during forward/backward color conversion. Our solution to solve these issues is
to switch to YCbCr using a linear transformation.[

Y
Cb

Cr

]
=

[
0.2568 0.5041 0.0979
−0.1482 −0.2910 0.4392
0.4392 −0.3678 −0.0714

] [
IR
IG
IB

]
+

[
16
128
128

]
(1)

Consider the raw input image to the network (without channel normaliza-
tion) I in RGB color space to be augmented in YCbCr space through random
perturbations of both red and blue chroma channels I[R][G][B] 7→ I[Y ][Cb][Cr] 7→
I[Y ][Cb+N (0,sσb)][Cr+N (0,sσr)] 7→ Ĩ[R][G][B] where σb and σr are the standard devi-
ation of the chroma channels, and s is the significance of perturbation. This is
similar to the ratio defined in [43] where s = 0.1 is referred to as “Light” and
s = 1 as “Strong” augmentation. The main advantages of this transformation
are: (a) it separates the color chroma spaces (i.e. tuples of Cb and Cr) from the
Luma channel Y , enabling direct manipulation of the stain colors without affect-
ing the tissue illumination stimulated by WSI scanner condenser; and (b) the
computational cost of such transform is much lower due to simple multiplication
and addition operations.

Table 3. Distribution of color space shown in Hue-Saturation domain for five different
datasets: (a) HMT, (b) GlaS, (c) CRC, and (d) ADP. Two different augmentation
methods i.e. HSV [43] and YCbCr (Proposed) are considered to perturb ADP pixels
shown from (e) to (h) using scaling factors s = 0.1 (light) and s = 1 (strong).

HMT GlaS CRC ADP ADP0.1
HSV ADP0.1

YCbCr ADP1
HSV ADP1

YCbCr

0 2 4 6

Hue( )

0

0.2

0.4

0.6

0.8

1

S
a
tu

ra
ti
o
n

0 2 4 6

Hue( )

0 2 4 6

Hue( )

0 2 4 6

Hue( )

0 2 4 6

Hue( )

0 2 4 6

Hue( )

0 2 4 6

Hue( )

0 2 4 6

Hue( )

We demonstrate the effectiveness of YCbCr compared to the HSV augmen-
tations in Table 3 by randomly perturbing several image patches from ADP [18]
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and visually comparing them to patch examples from other datasets, i.e. HMT
[23], GlaS [37], PCam [6,44], and CRC [22]. Notice how applying different color
augmentation methods (using “Light”/“Strong”) can match color distribution
of other datasets. HSV-Strong method creates random outliers while YCbCr-
Strong remains more stable.

4 HistoNet for ADP Source Domain

Here, we design an efficient CNN model optimized on ADP database for HTT
classification. This is highly preferable in computational pathology for process-
ing thousands of image-patches cropped from GigaPixel WSI scans. Therefore,
both computational complexity and precision are equally important for practical
considerations.

4.1 Neural Architecture Search (NAS) for HistoNet

We design a CNN model with six sequential convolutional layers and one fully
connected layer, followed by a sigmoid layer for multi-label class activation. After
each convolutional layer, ReLU activation, Batch Normalization (BN), and max
pooling (2 × 2) are applied. Global max pooling is used at the end of the sixth

layer. The parameters we explore include the kernel size {w` × w`}6`=1 and the

number of filters {D`}6`=1 of the convolutional weights (tensor) for each layer
i.e. Φ` ∈ Rw`×w`×D`−1×D` . We recast the HistoNet design in two phases. First,
we seek the optimal configuration for {w`}6`=1 and {D`}6i=1 using the neural
architecture search with reinforcement learning algorithm introduced in [48].
A controller RNN is used to generate child CNN architectures with different
kernel sizes and kernel number configurations. The child CNN model is trained,
and the classification accuracy of child model is used as a reward signal to
update the controller to sample configurations for the next step. We explore the
search space of the RNN controller using different kernel size w` ∈ {1, 3, 5, 7}
and channel depth D` ∈ {32, 64, 128, 192, 256}. We run the controller RNN to
generate 250 child CNN architectures that have different configurations, and
train each child CNN for 20 epochs on ADP patches of size 224 × 224. The
250 trained CNN models are applied to the ADP test dataset and choose the
seven best configurations (by F1 score) for kernel size and number of filters. In
the second phase, we trained all the seven HistoNet models for 100 epochs and
selected the best configuration to finalize the network. The overall layout of the
optimized architecture is shown in Figure 3(a).

4.2 Choice of Pixel Resolution

Although the input image size studied to optimize the HistoNet is 224 × 224
(@1.21µm/pixel resolution), it is important to understand how the network
training corresponds to different scan resolutions. To study this, we downsize
the original ADP image from 1088× 1088 (@0.25µm/pixel resolution) into four
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(a) HistoNet Architecture (b) Scan Resolution Performance

Fig. 3. (a) HistoNet serial architecture. The network consists of six convolutional lay-
ers, followed by a fully-connected and sigmoid-activation layers for ADP multil-label
HTT classification. The kernel size and channel depth are optimized using the NAS-
Reinforcement Learning method in [48]; and (b) Classification performance (AUC) of
HistoNet on selected HTTs at different scan resolutions.

different pixel resolutions of {1µm, 2µm, 3µm, 4µm}. As shown in Figure 3(b),
decreasing the pixel resolution improves the AUC for all classes, especially for
smaller tissues such as simple squamous epithelium (E.M.S), leukocytes (H.K),
and transport vessels (T) (see Figure 2 for full HTT names).

The overall HistoNet performance for different scan resolutions and augmen-
tation methods is demonstrated in Table 4. While the network yields better
classification on higher resolutions, the choice of color augmentation impacts
the overall results. For instance, employing YCbCr-Strong augmentation im-
proves about 0.5% compared to no augmentation at the 1 µm scan resolution.
While both YCbCr and HSV provide similar performances, HSV adds about
40% computational overhead per epoch during training.

Table 4. HistoNet test set performance applied to HTT classification on ADP database
using different pixel-resolution scan and color augmentation methods. The perfor-
mances are reported by Area Under the Curve (AUC) of the ROC and F1 measure.

Sec/Epoch AUC F1

None HSV YCbCr None
HSV YCbCr

None
HSV YCbCr

Light Strong Light Strong Light Strong Light Strong

4µm 72 92 72 0.9136 0.9310 0.9205 0.9277 0.9208 0.7485 0.7780 0.7536 0.7699 0.7658
3µm 94 129 95 0.9276 0.9367 0.9325 0.9374 0.9369 0.7670 0.7836 0.7790 0.7895 0.7943
2µm 156 236 155 0.9454 0.9539 0.9526 0.9511 0.9525 0.8085 0.8247 0.8215 0.8203 0.8204
1µm 567 937 569 0.9594 0.9650 0.9638 0.9646 0.9645 0.8378 0.8534 0.8476 0.8499 0.8537

4.3 Network Performance Comparison

We further compare the performance of HistoNet to three CNNs, i.e. ResNet18
[17], MobileNet [20] and Xception [10]. Note that we trimmed number of mid-
dle flow blocks in Xception from eight (baseline) to one to reduce the network
parameters - we call this Xception-1. The criteria of our comparison networks
selection here is mainly based on the simplicity of architectures for practical



10 M. S. Hosseini et al.

implementations. All models are trained at 1 µm scan resolution following the
multi-label class weighting suggested in [18] as well as using Cyclical Learning
Rate [38] with an initial learning rate of 0.1, batch size of 32, and termination
after 100 epochs. Table5 demonstrates the predictive performance over different
networks and color augmentation methods. The rank performance of HistoNet is
preserved compared to the other CNNs, while consuming the lowest complexity
with 3M parameters.

Table 5. Test set performance of four different networks for HTT classification on
ADP database at 1µm/pixel with 272µm field-of-view scan (272× 272 input image).

# Conv Layers Params
AUC F1

NA HSV YCbCr NA HSV YCbCr

ResNet18 [17] 18 11.20M 0.9533 0.9511 0.9521 0.8244 0.8200 0.8209
Xception-1 [10] 15 9.60M 0.9576 0.9576 0.9567 0.8363 0.8362 0.8339
MobileNet [20] 14 3.26M 0.9521 0.9503 0.9518 0.8233 0.8200 0.8181

HistoNet/NAS [48] 6 3.00M 0.9594 0.9638 0.9645 0.8378 0.8476 0.8537

5 Experiments on HTT Transferability

To evaluate the transferability of HTT labels from ADP source domain into dif-
ferent target domains, we adopt the CNN models trained in previous Section
4 w- and w/o- color augmentation. Then, we transfer the models to solve two
datasets in tissue classification and three datasets in cancer detection and cancer
grade classification tasks. For tissue classification we compare the ROC perfor-
mance of the domain-adapted CNNs; for cancer detection we compare the ROC
performance of the relevant inverted source class scores against the target cancer
labels; and finally for cancer classification we compare the statistical correlation
of inverted source class scores against the target cancer grades. For details on
datasets, visual examples, and additional results, see the Supplementary Mate-
rials. Codes and trained models are available on GitHub5.

5.1 Image Modifications and Pixel-Resolution Adjustment

The source-domain CNN is trained on ADP square patch images Xs of size
Ws × Ws pixels with a ρs resolution (in µm/px) and a fixed Field-Of-View
(FOV) of 272µm, so to ensure the target-domain images Xt of size Ht×Wt and
ρt resolution have the same pixel resolution and FOV, a few modifications must
be performed. To ensure the same pixel resolution, they are resized by a constant
factor α = ρt/ρs, such that (Wt, Ht)← α · (Wt, Ht). The target image must be
also padded (if the FOV is too small) and/or cropped (if the FOV is too large).
It is symmetrically padded by (kx, ky) = (max(Ws −Wt, 0), max(Ws − Ht, 0)),

5 https://github.com/mahdihosseini/HistoLabelTransfer/

https://github.com/mahdihosseini/HistoLabelTransfer/
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such that (Wt, Ht)← (Wt + kx, Ht + ky). Then, if Ws < Wt or Ws < Ht, crops
of size Ws ×Ws are extracted and the confidence scores of the cropped patches
are later aggregated back to the image level by taking their average.

5.2 Transferability in CRC Dataset for Tissue Classification

The images in CRC are colorectal tissues which partially correlates with primary
sites compiled in ADP. The stain color distributions of CRC, however, differs
from ADP (see Figure 3). Figure 4 (top) shows that HistoNet performs well
in all adapted classes except for the LYM (Lymphocyte) class ( [22] reports a
mean 4-class AUC of 0.995). Here, the “lighter” forms of color augmentation
are better. Furthermore, class performance in CRC is heavily dependent on the
network architecture used. Figure 4 (bottom) shows that HistoNet performs best
in the large tissue classes (ADI, MUS, and NORM) and that the other networks
progressively get better performance with increasing depth.

Fig. 4. Network ROC performance on CRC trained with different color augmentations
and evaluated on (a) four classes of ADI, LYM, MUS, and NORM (top row); and (b)
four different CNNs of HistoNet, ResNet18, Xception-1, and MobileNet (bottom row).

5.3 Transferability in HMT Dataset for Tissue Classification

The HMT images are very similar to CRC in the organ of origin but have a
smaller FOV and a different color distribution (see Figure 3). Figure 5 (top)
shows that HistoNet struggles to classify the smaller tissues (02 STROMA,
03 COMPLEX, 04 LYMPHO) and excels in the larger tissues (06 MUCOSA,
07 ADIPOSE). We hypothesize this phenomena due to stain normalization used
in original dataset for training where color representation of tissues are deterio-
rated from their original spectrum. ( [23] reports a mean 8-class AUC of 0.976).
YCbCr-Strong color augmentation is the only method to consistently improve
upon the unaugmented case. Again, class performance in HMT depends on the
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architecture used. Figure 5 (bottom) shows that HistoNet is superior in three of
five classes, with the other networks performing better with decreasing depth.

Fig. 5. Network ROC performance on HMT trained with different color augmenta-
tions and evaluated on (a) five classes: 02 STROMA, 03 COMPLEX, 04 LYMPHO,
06 MUCOSA, and 07 ADIPOSE (top); and (b) four different CNNs of HistoNet,
ResNet18, Xception-1, and MobileNet (bottom).

5.4 Transferability in GlaS Dataset for Cancer Classification

Following the cancer mapping guideline for Colon tissues (i.e. GlaS) from Table
2, two ADP classes - simple cuboidal/columnar epithelium (E.M.C) and lym-
phocytes (H.Y) - are diagnostically relevant labels for classification. In Figure
6 (left) we demonstrate the statistical correlation measures using PLCC (Pear-
son Linear Correlation Coefficient), SROC (Spearman Rank Order Coefficient),
and KROC (Kendall Rank Order Coefficient) calculated between predicted con-
fidence scores (inverted) from network and five cancer grades for classification.
Both YCbCr-Strong and HSV-Strong yield higher correlation results. This ob-
servation is interesting because it matches prior knowledge of colorectal cancer
grades: high tumor differentiation distorts epithelial cell boundaries and absence
of tumor infiltrating lymphocytes (TILs) has been linked to poor cancer prog-
nosis. We further demonstrate the ROC analysis in Figure 6 (right) on cancer
detection (binarizing healthy versus cancer) in Glas using E.M.C and H.Y. The
HistoNet performs excellently here for all color augmentation methods achieving
0.95 AUC as the best result for lighter augmentation.

5.5 Alternative Source Domain Choice

While the ADP is mainly studied here to highlight the importance of transferring
pathologists knowledge in the form of annotated labels, we further investigate
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Fig. 6. Cancer classification on GlaS dataset using two HTTs: (a) Correlation measures
(PLCC, SROC, and KROC) between select inverse HistoNet confidence scores (E.M.C
and H.Y) and five quantified disease classes in GlaS (left plot); and ROC curves of
HistoNet in GlaS on classifying normal/cancerous (right plot).

the reproducibility of similar results using other source domain choice. For this
purpose, we directly train the HistoNet on CRC dataset using 1µm resolution,
five different color augmentations, and 6:1:3 train-validation-test split. The ob-
tained class AUCs for all healthy labels (see Table 1) achieved almost perfect
classification i.e. AUC> 0.99 similar to what original authors reported in [22].
Two labels are selected from CRC as being diagnostically relevant in Colon can-
cer i.e. LYM (lymphocyte) and NORM (normal stroma) and transfer into GlaS
for cancer classification. Note that the cancer cells alter and embed in normal
stroma [24]. The results are shown in Figure 7, where inferior performances are
achieved for cancer grade classification comparing to ADP source domain, imply-
ing that the annotated labels in CRC is less comprehensive compared to ADP.
This is in spite the fact that the train data size in CRC is statistically significant
(70K patches) compared to ADP (∼ 14.3K patches).

Fig. 7. (Cancer classification on GlaS dataset using two HTTs: (a) Correlation mea-
sures (PLCC, SROC, and KROC) between select inverse HistoNet confidence scores
(E.M.C and H.Y) and five quantified disease classes in GlaS (left plot); and ROC curves
of HistoNet in GlaS on classifying normal/cancerous (right plot).

6 Cancer Detection on WSI Level

In this section, we analyze a Colon tissue organ for cancer detection on the WSI
level shown in Figure 8. The slide is mosaiced into multiple patches and classi-
fied by HistoNet with 1µm/pixel resolution. We construct the heatmap for the
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best color augmentation result shown in Figure 8 corresponding to inverse pre-
diction score of Stratified Cuboidal/Columnar Epithelial (E.T.C). The pathol-
ogist’s evaluation reads as follows: This WSI depicts an adenomatous polyp of
the colon, shown in Figure 8(a). The majority of the epithelium in this slide is
abnormal (neoplastic, precancerous), but there is an area of muscularis mucosa
and normal epithelium at area where the polyp was removed. The heatmaps in
Figure 8 show a high probability of abnormality in the areas of adenomatous
epithelium (yellow, orange, and red), and indicate a low probability of abnor-
mality in the regions with muscularis mucosa and normal epithelium (blue). The
HSV Strong protocol appears to show the strongest correlation with histologic
findings, followed by HSV Light, then YCbCr Light. The YCbCr Strong protocol
shows the least correlation (while it still correctly indicates the normal areas, it
appears to be less sensitive in identifying areas of abnormality compared to the
other methodologies).
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Fig. 8. A Colon tissue organ is selected for processing and diagnosed by patholo-
gist. The heatmaps of abnormality is based on the inverse prediction of Stratified
Cuboidal/Columnar Epithelial (E.T.C).

7 Concluding Remarks

In this paper, a new tissue label transferring method is proposed to classify
different histological tissue structures and cancer grades across diverse target
domains. The method is based on training a CNN model on the source do-
main dataset (using the Atlas of Digital Pathology’s multi-label tissue types)
and then transferring those labels to the relevant target labels using prior histo-
logical knowledge. The ability of proposed method is demonstrated to produce
reasonable predictions in related tissue classification datasets. Furthermore, the
confidence prediction scores of diagnostically relevant labels are inferred as a
surrogate model for cancer grade progression. The results suggested that the di-
agnostically relevant labels can be better transferred by adopting an appropriate
source domain with broad spectrum of tissue structures for classification.
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