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Abstract. Recent advances on unsupervised domain adaptation (UDA)
rely on adversarial learning to disentangle the explanatory and transfer-
able features for domain adaptation. However, there are two issues with
the existing methods. First, the discriminability of the latent space can-
not be fully guaranteed without considering the class-aware information
in the target domain. Second, samples from the source and target do-
mains alone are not sufficient for domain-invariant feature extracting in
the latent space. In order to alleviate the above issues, we propose a
dual mixup regularized learning (DMRL) method for UDA, which not
only guides the classifier in enhancing consistent predictions in-between
samples, but also enriches the intrinsic structures of the latent space.
The DMRL jointly conducts category and domain mixup regularizations
on pixel level to improve the effectiveness of models. A series of empiri-
cal studies on four domain adaptation benchmarks demonstrate that our
approach can achieve the state-of-the-art.
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1 Introduction

The development of deep neural networks has significantly improved the state
of the arts for a wide variety of machine learning tasks, such as computer vi-
sion[13], speech recognition[11], and reinforcement learning [23]. However, these
advancements often rely on the existence of a large amount of labeled training
data. In many real-world applications, collecting sufficient labeled data is often
prohibitive due to time, financial, and expertise constraints. Therefore, there is
a strong motivation to train an effective predictive model which can leverage
knowledge learned from a label-abundant dataset and perform well on another
label-scarce domains [17]. However, due to the existence of domain shift, deep
neural networks trained on one large scale labeled dataset can be weak at gen-
eralizing learned knowledge to new datasets and tasks [17].

To address the above issue, a general strategy called domain adaptation is
introduced by transferring knowledge from a label-rich domain, referred as the
source domain, to a label-scarce domain, referred as the target domain [1]. Unsu-
pervised domain adaptation addresses a more challenging scenario where there is
no labeled data in the target domain. A theoretical analysis of domain adaptation
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Fig. 1: Comparison of DANN and the proposed method. Left: DANN only tries
to match the feature distribution by utilizing adversarial learning; it does not
consider the class-aware information in the target domain and samples from the
source and target domains may not be sufficient to ensure domain-invariance
of the latent space. Right: Our proposed method uses category mixup regular-
ization to enforce prediction consistency in-between samples and domain mixup
regularization to explore more intrinsic structures across domains, resulting in
better adaptation performance.

is introduced by [1], it suggests that in UDA tasks, the risk on the target domain
can be bounded by the risk of a model on the source domain and the discrepancy
between distributions of the two domains. Early UDA methods learned to reduce
the discrepancy between domains in a shallow regime [7] or to re-weight source
instances based on their relevance to the target domain [6]. Later on, Maximum
Mean Discrepancy (MMD) [9] was proposed to measure the distribution differ-
ence between source and target domains [25, 14, 16]. More recently, the UDA
models are largely built on deep neural networks, and focus on learning domain-
invariant features across domains by using adversarial learning [4]. Adversarial
domain adaptation models can learn discriminative and domain-invariant fea-
tures across domains by playing a minimax game between a feature extractor
and a domain discriminator. The domain discriminator is trained to tell whether
the sample comes from the source domain or target domain, while the feature
extractor is learned to fool the domain discriminator. Many recent UDA meth-
ods based on adversarial learning can achieve the state-of-the-art performance
[20, 15, 30].

Even though adversarial domain adaptation method has shown impressive
performance for various tasks, such as image classification [15] and semantic
segmentation [20]. This approach still faces two issues: First, the adversarial
domain adaptation does not take class-aware information in the target domain
into consideration. Second, as we always use mini-batch stochastic gradient de-
scent (SGD) for optimization in practice, if the batch size is small, samples from
the source and target domains may not be sufficient to guarantee the domain-
invariance in the latent space. Therefore, after adaptation, as shown in the left
side of Figure 1, the classifier may falsely align target samples of one label with
samples of a different label in the source domain, which leads to inconsistent
predictions.
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In this paper, we propose a dual mixup regularized learning (DMRL) method,
which implements category and domain mixup regularizations on pixel level to
address the aforementioned issues for unsupervised domain adaptation. Mixup
has the ability of generating convex combinations of pairs of training samples and
their corresponding labels. Motivated by this data augmentation technique, we
propose two effective regularization mechanisms including domain-level mixup
regularization and category-level mixup regularization, which play crucial roles
in reducing the domain discrepancy for unsupervised domain adaptation. In par-
ticular, category mixup regularization is used to enforce consistent predictions
in the latent space, which is conducted on both source and target domains,
achieving a stronger discriminability of the latent space. Domain mixup regu-
larization can reveal more mixed instances within each domain and allows the
model to enrich internal feature patterns in the latent space, which can lead
to a more continuous domain-invariant latent space and help match the global
domain statistics across different domains. By using the two mixup-based reg-
ularization mechanisms, our model can effectively generate discriminative and
domain-invariant representations. Empirical studies on four benchmarks demon-
strate the performance of our approach. The contributions of our paper are
summarized as follows:

– We propose a dual mixup regularized learning method which can project the
source and target domains to a common latent space, and efficiently trans-
fer the knowledge learned from the labeled source domain to the unlabeled
target domain.

– The proposed regularization mechanisms (category-level mixup regulariza-
tion and domain-level mixup regularization) can learn discriminative and
domain-invariant representations effectively to help reduce the distribution
discrepancy across different domains.

– We empirically confirm the effectiveness of our proposed method by evaluat-
ing it on four benchmark datasets. Conducting ablation studies and parame-
ter sensitivity analysis to validate the contributions of different components
in our model and evaluate how each hyperparameter influences the perfor-
mance of our method.

2 Related Work

This work builds on two threads of research: interpolation-based regularization
and domain adaptation. In this section, we briefly overview methods that are
related to these two tasks.

2.1 Interpolation-based Regularization

Interpolation-based regularization has been recently proposed for supervised
learning [29, 26], it can help models to alleviate issues such as instability in
adversarial training and sensitivity to adversarial samples. In particular, Mixup
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[29] is proposed to train models on virtual examples constructed as the convex
combinations of pairs of inputs and labels. It can also encourage models to have
a strictly linear behavior between training samples, by smoothing the models’
output for a convex combination of two inputs to the convex combination of
the outputs of each individual input [2]. Moreover, Mixup can also be used to
guarantee consistent predictions in the data distribution [27], which can induce
the separation of samples into different labels [3]. More recently, various variants
of Mixup have been studied. A manifold extension to Mixup, Manifold-Mixup
[26], proposes to perform interpolation in the latent space representations. [2] ex-
ploits interpolations in the latent space generated by an autoencoder to improve
performance.

2.2 Domain Adaptation

The main goal of domain adaptation is to transfer the knowledge learned from a
label-abundant domain to a label-scarce domain. Unsupervised domain adapta-
tion tackles a more challenging scenario where the target domain has no labeled
data at all. Deep neural network based methods have been widely studied for
UDA. The Deep Domain Confusion (DDC) method leverages Maximum Mean
Discrepancy (MMD) [9] metric in the last fully-connected layer to learn represen-
tations that are both discriminative and transferable [25]. [14] proposes a Deep
Adaptation Network (DAN) to enhance the feature transferability by minimizing
the multi-kernel MMD in several task specific layers. Asymmetric Tri-Training
(ATT) exploits three different networks to generates pseudo-labels for target
domain samples and utilizes these pseudo-labels to train the final classifier [19].
Joint Adaptation Networks (JAN) learn a transfer network by aligning the joint
distributions of multiple domain-specific layers across different domains based
on a joint maximum mean discrepancy criterion [16]. [31] proposes a Confidence
Regularized Self-Training (CRST) framework to construct the soft pseudo-label,
smoothing the one-hot pseudo-label to a conservative target distribution.

More recently, unsupervised domain adaptation methods are largely focusing
on learning domain-invariant features by using adversarial training [4]. Genera-
tive Adversarial Network (GAN) is proposed in [8], which plays a minimax game
between two networks: the discriminator is trained by minimizing the binary clas-
sification error of distinguishing the real images from the generated ones, while
the generator is learned to generate high-quality images that are indistinguish-
able by the discriminator. Motivated by GAN, [4] proposes a domain adversar-
ial neural network (DANN) that can learn discriminative and domain-invariant
features by exploiting adversarial learning between a feature extractor and a
domain discriminator. Many recent works have adopted the adversarial learning
mechanism and achieved the state-of-the-art performance for unsupervised do-
main adaptation. The Adversarial Discriminative Domain Adaptation method
(ADDA) uses an untied weight sharing strategy to align the feature distributions
of source and target domains [24]. The Maximum Classification Discrepancy
(MCD) utilizes different task-specific classifiers to learn a feature extractor that
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can generate category-related discriminative features [20]. [12] proposes Cycle-
Consistent Adversarial Domain Adaptation (CyCADA) which implements do-
main adaptation at both pixel-level and feature-level by using cycle-consistent
adversarial training. Multi-Adversarial Domain Adaptation (MADA) [18] can
exploit multiplicative interactions between feature representations and category
predictions to enforce adversarial learning. Generate to Adapt (GTA) provides
an adversarial image generation approach that directly learns a joint feature
space in which the distance between the source and target domains can be min-
imized [21]. Conditional Domain Adversarial Network (CDAN) conditions the
domain discriminator on a multilinear map of feature representations and cate-
gory predictions so as to enable discriminative alignment of multi-mode struc-
tures [15]. Consensus Adversarial Domain Adaptation (CADA) [30] enforces the
source and target encoders to achieve consensus to ensure the domain-invariance
of the latent space.

Our proposed DMRL can be regarded as an extension of this line of research
by introducing both category and domain mixup regularizations on pixel level
to solve complex, high dimensional unsupervised domain adaptation tasks.

3 Method

In this paper, we consider unsupervised domain adaptation in the following
setting. We have a labeled source domain Ds = {(xsi , ysi )}n

s

i=1 with xsi ∈ X
and ysi ∈ Y, and an unlabeled target domain Dt = {xti}n

t

i=1 with xti ∈ X . The
data in two domains are sampled from two distributions PS and PT . PS and
PT are assumed to be different but related (refereed as covariate shift in the
literature [22]). The target task is assumed to be the same with the source task.
Our ultimate goal is to utilize the labeled data in the source domain to learn a
predictive model h : X 7→ Y which can generalize well on the target domain.

3.1 Adversarial Domain Adaptation

Motivated by the domain adaptation theory [1] and GANs [8], [4] proposes
Domain Adversarial Neural Network (DANN), which can learn the domain-
invariant features that are generalizable across domains. The standard DANN
consists of three components: a feature extractor G, a category classifier C and
a domain discriminator D. We consider a feature extractor G : X 7→ Rm, which
maps any input instance x ∈ X from the input space X into the latent space
G(x) ∈ Rm; a category classifier C : Rm 7→ Y, which transforms a feature vec-
tor in the latent space into the output label space Y; a domain discriminator
D : Rm 7→ [0, 1], which distinguishes the source domain data (with domain label
1) from the target domain data (with domain label 0). By training G adver-
sarially to confuse D, DANN can learn domain-invariant features to bridge the
divergence between domains. Formally, the DANN can be formulated as:

min
G

max
D

Lc(G,C) + λdLAdv(G,D) (1)
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Fig. 2: The architecture of the proposed dual mixup regularized learning (DMRL)
method. Our DMRL consists of two mixup-based regularization mechanisms,
including category-level mixup regularization and domain-level mixup regular-
ization, which can enhance discriminability and domain-invariance of the latent
space. The feature extractor G aims to learn discriminative and domain-invariant
features, the domain discriminator D is trained to tell whether the sampled fea-
ture comes from the source domain or target domain, and the classifier C is used
to conduct object classification.

Lc(G,C) = E(xs,ys)∼Ds`(C(G(xs)), ys) (2)

LAdv(G,D) = Exs∼Ds logD(G(xs)) + Ext∼Dt log(1−D(G(xt))) (3)

where `(·, ·) is the canonical cross-entropy loss, and λd is a trade-off hyper-
parameter.

3.2 Dual Mixup Regularization

In this work, we propose a dual mixup regularized learning (DMRL) method
based on adversarial domain adaptation. This method conducts category and
domain mixup on pixel level. In general, Mixup performs data augmentation by
constructing virtual samples with convex combinations of a pair of samples and
their corresponding labels: (xi, yi) and (xj , yj):

x̃ =Mλ(xi,xj) = λxi + (1− λ)xj (4)

ỹ =Mλ(yi, yj) = λyi + (1− λ)yj (5)

where λ is randomly sampled from a beta distribution Beta(α, α) for α ∈
(0,∞). By encouraging linear interpolation regularization in-between training
samples, Mixup has been demonstrated effective in both supervised and semi-
supervised learning [29, 27].

We largely enhance the ability of prior adversarial-learning-based domain
adaptation methods by our proposed dual mixup regularized learning module,
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Fig. 3: The framework of unlabeled category mixup regularization.

which jointly conducts category and domain mixup on pixel level to guide adver-
sarial learning. Figure 2 depicts the whole framework of our proposed method.
For the input, images are linearly mixed by pixel-wise addition within each indi-
vidual domain. Therefore, in the input space, there exists four kinds of samples:
source samples, target samples, mixed source samples obtained by mixing two
source samples, and mixed target samples obtained by mixing two target sam-
ples. After that, there exists two streams. For one stream, features of the source
and target domains are used to align the global distribution statistics and con-
duct domain mixup regularization by the domain discriminator D. For the other
stream, object classification and category mixup regularization are implemented
by the classifier C. More details are provided in the following parts.

Category Mixup Regularization The category mixup regularization con-
sists of two components: labeled category mixup regularization and unlabeled
category mixup regularization. For the source domain, since we have the labeled
samples, we directly use mixed source samples and their corresponding labels to
enforce prediction consistency:

Lrs(G,C) = E(xsi ,y
s
i ),(x

s
j ,y

s
j )∼Ds`(h(x̃s), ỹs) (6)

where h denotes the composition of the feature extractor G and the classifier
C, h = G ◦ C, and it can be treated as the classification function in the input
space.

For the target domain, we have no access to the label information. There-
fore, mixup needs to be applied on the pseudo-labels generated by the clas-
sifier C. Specifically, we replace yti and ytj with h(xti) and h(xtj), which are
the current predictions of C. Literally, h(xti) and h(xtj) are termed as pseudo-
labels of (xti) and (xtj). Figure 3 presents the process of unlabeled category
mixup regularization. First, we should construct convex combinations, denoted
as (x̃t,Mλ(h(xti), h(xtj))), of pairs of samples (xti,x

t
j) and their virtual labels

(h(xti), h(xtj)). Then we conduct regularization by enforcing h(x̃t) to be consis-
tent with Mλ(h(xti), h(xtj)) via a penalty term:

Lrt (G,C) = Exti,x
t
j∼DtDis(h(x̃t),Mλ(h(xti), h(xtj))) (7)
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where Dis(·, ·) denotes the penalty term which can punish the difference
between h(x̃t) and Mλ(h(xti), h(xtj)), encouraging a linear behavior in-between
training samples and λ equals to the one used in labeled category mixup regu-
larization. In our experiments, we use L1-Norm function as the penalty term. In
general, Category mixup regularization can smooth the output distribution by
constructing neighboring samples of the training samples and enforce prediction
consistency between the neighboring and training samples, which exploits the
class-aware information of the target domain in the training process, leading to
performance improvement.

Domain Mixup Regularization In practice, as we use mini-batch SGD in
training, samples from the source and target domains alone are usually insuffi-
cient for global distribution alignment. Domain mixup has the ability of gener-
ating more intermediate samples and exploring more internal structures within
each domain. Linear interpolations of each domain can be generated in the input
space, and the domain mixup regularization term can be defined as follows:

LrAdv(G,D) = Exsi ,x
s
j∼Ds logD(G(x̃s)) + Exti,x

t
j∼Dt log(1−D(G(x̃t))) (8)

where λ is the same as the one used in category mixup regularization. Con-
trary to prior adversarial-learning-based domain adaptation methods [4, 24, 15],
not only the samples from source and target domains, but also the mixed sam-
ples are used to align the global distribution statistics. Finally, in our pro-
posed domain mixup regularization applied to adversarial domain adaptation,
the domain-invariance of the latent space is expected to be enhanced, and with
category mixup regularization, the learned representations can be more discrim-
inative. Formally, the DMRL method can be formulated as:

min
G,C

max
D

Lc(G,C) + λsLrs(G,C) + λtLrt (G,C) + λdLAdv(G,D) + λrLrAdv(G,D)

(9)
where λs, λt, λd and λr are hyperparameters for trading off different losses.

3.3 Training Procedure

The training algorithm of DMRL which uses mini-batch SGD is presented in
Algorithm 1. In each iteration, we first mix the samples in the input space for
the source and target domains, separately. Then the mixed samples and their
constitutions are used to guide the adversarial learning and conduct two mixup-
based regularizations. The category mixup regularization can enforce consistent
prediction constraint, while the domain mixup regularization can enrich the fea-
ture patterns in the latent space, so that the learned representation can be both
discriminative and domain-invariant. α is a hyperparameter that controls the se-
lection of λ. λs, λt, λd and λr are hyperparameters that balance different losses.
In our experiments, we set α, λs and λr as 0.1, 0.0001 and 0.00001. According
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Algorithm 1 Stochastic gradient descent training algorithm of DMRL

1: Input: Source domain: Ds, target domain: Dt and batch size: N .
2: Output: Configurations of DMRL
3: Initialize α, λs, λt, λd and λr

4: for number of training iterations do
5: (xs, ys) ← RANDOMSAMPLE(Ds, N)
6: (xt) ← RANDOMSAMPLE(Dt, N)
7: λ← RANDOMSAMPLE(Beta(α, α))
8: (x̃s, ỹs)← Eq. (4, 5) #get mixed images for the source domain
9: (x̃t)← Eq.(4) #get mixed images for the target domain

10: Calculate lD =λdLAdv(G,D)+λrLr
Adv(G,D);

Update D by ascending along gradients ∇lD.

11: Calculate loss=Lc(G,C)+λsLr
s(G,C)+λtLr

t (G,C)+λdLAdv(G,D)+λrLr
Adv(G,D);

Update G, C by descending along gradients ∇loss.
12: end for

to our parameter sensitivity analysis, the values of α, λs and λr do not influence
much the adaptation performance of our approach, and these hyperparameters
are kept fixed in all experiments. The value of λt has an influence on the adap-
tation performance, so λt is selected via tuning on the unlabeled test data for
different tasks. λd is adapted according to the strategy from [5].

3.4 Discussion

For the adversarial-learning-based domain adaptation methods, both the do-
main label and category label play crucial roles in filling the gap between the
source and target domains. Specifically, domain labels are used to help make
global distribution alignment across different domains, and category labels can
enable features to be discriminative [4, 24, 15]. These two types of information
can help reduce the domain discrepancy in different aspects, and complement
each other for domain adaptation. However, prior adversarial domain adaptation
methods suffer two limitations: (1) The lack of class-aware information of the
target domain can make the extracted features less discriminative; (2) As we
use mini-batch SGD in training, samples from source and target domains do not
allow models to completely explore internal feature patterns in the latent space.

In our method, we conduct two mixup-based regularizations to alleviate the
above issues. First, we apply category mixup regularization on source and target
domains. Specifically, for unlabeled target data, pseudo-labels are introduced.
Since there are obviously false labels as target pseudo-labels, consistent predic-
tion constraint is exploited to suppress the detrimental influence brought by the
false target pseudo-labels. Moreover, category mixup regularization can smooth
the output distribution of the model by encouraging the model to behave lin-
early in-between training samples. Then, Mixup [29], as an effective data aug-
mentation technique, is expected to provide extra mixed samples for adversarial
learning. Domain mixup regularization is used to explore more internal feature
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patterns in the latent space, which leads to a more continuous domain-invariant
latent distribution. In summary, our proposed approach can learn discriminative
and domain-invariant representations and improve the performance of different
unsupervised domain adaptation tasks.

4 Experiments

We evaluate our proposed DMRL on unsupervised domain adaptation tasks of
four benchmarks, validate the effectiveness of different components in detail and
investigate the influences of different hyperparameters.

4.1 Setup

Dataset We conducted experiments on four domain adaptation benchmarks,
Office-31, ImageCLEF-DA, VisDA-2017 and Digits. Office-31 is a bench-
mark domain adaptation dataset containing images belonging to 31 classes from
three domains: Amazon (A) with 2,817 images, Webcam (W) with 795 images
and DSLR (D) with 498 images. We evaluate all methods on six domain adap-
tation tasks: A → W, D → W, W → D, A → D, D → A, and W → A.

ImageCLEF-DA is a benchmark dataset for ImageCLEF 2014 domain adap-
tation challenges, which contains 12 categories shared by three domains: Caltech-
256 (C), ImageNet ILSVRC 2012 (I), and Pascal VOC 2012 (P). Each domain
contains 600 images and 50 images for each category. The three domains in this
dataset are of the same size, which is a good complementation of the Office-
31 dataset where different domains are of different sizes. We build six domain
adaptation tasks: I → P, P → I, I → C, C → I, C → P, and P → C.

VisDA-2017 is a large simulation-to-real dataset, with over 280,000 images of
12 classes in the combined training, validation, and testing domains. The source
images were obtained by rendering 3D models of the same object classes as in the
real data from different angles and under different lighting conditions. It contains
152,397 synthetic images. The validation and test domains comprise natural
images. The validation one has 55,388 images in total. We use the training
domain as the source domain and validation domain as the target domain.

For Digits domain adaptation tasks, we explore three digit datasets: MNIST,
USPS and SVHN. Each dataset contains digit images of 10 categories (0-9). We
adopt the experimental settings of CyCADA [12] with three domain adaptation
tasks: MNIST to USPS (MNIST→USPS), USPS to MNIST (USPS→MNIST),
and SVHN to MNIST (SVHN→MNIST).

Comparison Methods We compare our proposed DMRL with state-of-the-art
models. For Office-31, we compare with Deep Adaptation Network (DAN) [14],
Domain Adversarial Neural Network (DANN) [4], Joint Adaptation Network
(JAN) [16], Generate to Adapt (GTA) [21], Multi-Adversarial Domain Adapta-
tion (MADA)[18], Conditional Domain Adaptation Network (CDAN) [15] and
Confidence Regularized Self-Training (CRST). For ImageCLEF-DA, we compare
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with DAN, DANN, JAN, MADA and CDAN. For VisDA-2017, We compare
with DANN, DAN, JAN, GTA, Maximum Classifier Discrepancy (MCD) [20]
and CDAN. To further validate our method, we also conduct experiments on
digit datasets, including MNIST, USPS and SVHN, we compare with DANN,
Adversarial Discriminative Domain Adaptation (ADDA)[24], Cycle-consistent
Adversarial Domain Adaptation (CyCADA)[12], MCD, CDAN and Consensus
Adversaria Domain Adaptation (CADA)[30].

Implementation Details We follow standard evaluation protocols for unsu-
pervised domain adaptation [20, 15]. For Office-31 and ImageCLEF-DA datasets,
we utilize ResNet50 [10] pre-trained on ImageNet [13] as the backbone. For each
domain adaptation task of the Office-31 and ImageCLEF-DA datasets, we re-
port classification results of mean ± standard error over three random trials.
For VisDA-2017 dataset, we follow [20] and use ResNet101 [10] pre-trained on
ImageNet [13] as the backbone. For Digits datasets, we use a modified version
of Lenet architecture as the base network, and train the models from scratch.
For each backbone, we use all its layers up to the second last one as the feature
extractor G and replace the last full-connected layer with a task-specific fully-
connected layer as the category classifier C. For discriminator, we use the same
architecture as DANN [4].

We adopt mini-batch SGD with momentum of 0.9 and the learning rate an-
nealing strategy as [5]: the learning rate is adjusted by ηp = η0

(1+θp)β
, where p

denotes the process of training epochs that is normalized to be in [0,1], and we
set η0 = 0.01, θ = 10, β = 0.75, which are optimized to promote convergence
and low errors on the source domain. λd is progressively changed from 0 to 1 by

multiplying to 1−exp(−δp)
1+exp(−δp) , where δ = 10. For all experiments, we set the hyper-

parameter α of distribution Beta(α, α) to 0.2 as used in [29]. λs and λr are fixed
as 0.0001 and 0.00001 respectively. λt is chosen in the range {0.1, 1, 2, 5, 6, 10},
we select it on a per-experiment basis relying on unlabeled target data.

4.2 Results

The unsupervised domain adaptation results in terms of classification accuracy
in the target domain on Office-31, ImageCLEF-DA, VisDA-2017 and Digits
datasets are reported in Table 1, 2 and 3 respectively, with results of comparison
methods directly cited from their original papers wherever available.

Results on the Office-31 dataset are presented in Table 1. The results of
ResNet-50 trained with only source domain data serve as the lower bound. Our
proposed approach can obtain the best performance in four of six tasks: D →
W, W → D, A → D, and D → A. For task W → A, DMRL can produce
competitive accuracy comparing with the state-of-the-art. It is noteworthy that
DMRL results in improved accuracies in two hard transfer tasks: A→ D, and D
→ A. For two easier tasks: D→W and W→ D, our approach achieves accuracy
no less than 99.0%. Moreover, our method can achieve the best average domain
adaptation accuracy on this dataset. Given the fact that the number of samples
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Table 1: Accuracy (%) on Office-31 .

Method A→W D→W W→D A→D D→A W→A Avg

ResNet-50 [10] 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1
DAN [14] 80.5±0.4 97.1±0.2 99.6±0.1 78.6±0.2 63.6±0.3 62.8±0.2 80.4
DANN [4] 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2
JAN [16] 85.4±0.3 97.4±0.2 99.8±0.2 84.7±0.3 68.6±0.3 70.0±0.4 84.3
GTA [21] 89.5±0.5 97.9±0.3 99.8±0.4 87.7±0.5 72.8±0.3 71.4±0.4 86.5

MADA [18] 90.0±0.1 97.4±0.1 99.6±0.1 87.8±0.2 70.3±0.3 66.4±0.3 85.2
CDAN [15] 93.1±0.2 98.2±0.2 100.0±0.0 89.8±0.3 70.1±0.4 68.0±0.4 86.6
CRST [31] 89.4±0.7 98.9±0.4 100.0±0.0 88.7±0.8 72.6±0.7 70.9±0.5 86.8

DMRL (Proposed) 90.8±0.3 99.0±0.2 100.0±0.0 93.4±0.5 73.0±0.3 71.2±0.3 87.9

per category is limited in the Office-31 dataset, these results can demonstrate
that our method manages to improve the generalization ability of adversarial
domain adaptation in the target domain.

Table 2: Accuracy (%) on ImageCLEF-DA.
Method I→P P→I I→C C→I C→P P→C Avg

ResNet-50 [10] 74.8±0.3 83.9±0.1 91.5±0.3 78.0±0.2 65.5±0.3 91.2±0.3 80.7
DAN [14] 74.5±0.4 82.2±0.2 92.8±0.2 86.3±0.4 69.2±0.4 89.8±0.4 82.5
DANN [4] 75.0±0.6 86.0±0.3 96.2±0.4 87.0±0.5 74.3±0.5 91.5±0.6 85.0
JAN [16] 76.8±0.4 88.0±0.2 94.7±0.2 89.5±0.3 74.2±0.3 91.7±0.3 85.8

MADA [18] 75.0±0.3 87.9±0.2 96.0±0.3 88.8±0.3 75.2±0.2 92.2±0.3 85.8
CDAN [15] 76.7±0.3 90.6±0.3 97.0±0.4 90.5±0.4 74.5±0.3 93.5±0.4 87.1

DMRL (Proposed) 77.3±0.4 90.7±0.3 97.4±0.3 91.8±0.3 76.0±0.5 94.8±0.3 88.0

Results on the ImageCLEF-DA dataset are shown in Table 2, the results re-
veal several interesting observations: (1) Deep transfer learning methods outper-
form standard deep learning methods; this validates that domain shifts cannot
be captured by deep networks [28]. (2) The three domains in the ImageCLEF-
DA dataset are more balanced than those in the Office-31 dataset. We can verify
whether the performance of domain adaptation models can be improved when
domain size does not change, with these more balanced domains. From Table
2, we can see that our approach can outperform all comparison methods in all
transfer tasks but with lower improvements compared to the results of the Office-
31 dataset in term of the average accuracy, which validates that the domain size
may cause domain shift [16]. (3) our proposed DMRL method can achieve a new
state-of-the-art on the ImageCLEF-DA dataset, strongly confirming the effec-
tiveness of our method in aligning the features across domains. Moreover, for
three of six tasks: C → I, C → P and P → C, our method can produce results
with larger rooms of improvement, which further illustrates the effectiveness of
the two mixup-based regularization mechanisms.

Positive results are also obtained on the VisDA-2017 and Digits datasets, as
shown in Table 3. For VisDA-2017, our approach achieves the highest accuracy
among all compared methods, and exceeds the baseline of ResNet-101 pre-trained
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Table 3: Accuracy (%) on Digits and VisDA-2017.
Method MNIST→USPS USPS→MNIST SVHN→MNIST Avg Method Synthetic→Real

No Adaptation [12] 82.2 69.6 67.1 73.0 ResNet-101 [10] 52.4
DANN [4] 90.4 94.7 84.2 89.8 DANN [4] 57.4
ADDA [24] 89.4 90.1 86.3 88.6 DAN [14] 61.1

CyCADA [12] 95.6 96.5 90.4 94.2 JAN [16] 65.7
MCD [20] 92.1 90.0 94.2 92.1 GTA [21] 69.5
CDAN [15] 93.9 96.9 88.5 93.1 MCD [20] 71.9
CADA [30] 96.4 97.0 90.9 95.6 CDAN [15] 73.7

DMRL (Proposed) 96.1 99.0 96.2 97.2 DMRL (Proposed) 75.5

on ImageNet with a great margin. For the Digits datasets, our approach can gain
improvements of more than 1.5% on two tasks: USPS → MNIST and SVHN →
MNIST, while for the MNIST → USPS task, we can obtain competitive results
with the existing approaches.

4.3 Further Analysis

Ablation Study We conduct ablation study with two domain adaptation tasks
on the Digits dataset, MNIST→USPS and USPS→MNIST, to investigate the
contributions of different components in DMRL. First, in order to examine the
effectiveness of domain mixup (DM) and category mixup (CM), we produce two
variants of DMRL: DMRL(w/o DM) and DMRL(w/o CM). Furthermore, since
category mixup consists of two components: labeled category mixup (LCM) and
unlabeled category mixup (UDM), DMRL(w/o LCM) and DMRL(w/o UCM)
are also taken into consideration. In addition, the very basic baseline ”No Adap-
tation”, which simply trains the model on the source domain and tests on the
target domain, is included in our study as well. The comparison results are
presented in Table 4. The results show that both domain mixup and category
mixup can contribute to our method, which verify the effectiveness of these two
mixup-based regularizations. In particular, category mixup contributes more to
the model than domain mixup. When evaluating two components in category
mixup, we can see that the model without unlabeled category mixup produces
worse classification accuracies for both tasks, demonstrating that class-aware in-
formation in the target domain can make a significant contribution in adversarial
domain adaptation. All variants produce inferior results, and the full model with
two regularizations produces the best results. This validates the contribution of
both category and domain mixup regularization terms.

Parameter Sensitivity Analysis In this section, we discuss the sensitivity of
our approach to the values of the hyperparameters α, λs, λr and λt. λs, λr and
λt are used to trade-off among losses, and α constrains the selection of λ when
conducting Mixup. We evaluate these hyperparameters on the Digits dataset,
especially, the MNIST→USPS task. When evaluating one hyperparameter, the
others are fixed to their default values (e.g., α = 2, λs = 0.0001, λr = 0.00001
and λt = 2). α is tested in the range {0.1, 0.2, 0.5, 1.0, 2.0}, λs and λr are explored
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Table 4: Ablation Studies.
Method MNIST→USPS USPS→MNIST

No Adaptation[12] 82.2 69.6
DMRL(w/o DM) 94.8 97.8
DMRL(w/o CM) 90.3 92.6

DMRL(w/o LCM) 95.0 97.9
DMRL(w/o UCM) 90.7 93.3

DMRL(full) 96.1 99.0

0.1 0.2 0.5 1.0 2.0

α

90

92

94

96

98

100

A
cc

u
ra

cy

(a) α

0.000001 0.00001 0.0001 0.001 0.01 0.1

λs

90

92

94

96

98

100

A
cc

u
ra

cy

(b) λs

0.000001 0.00001 0.0001 0.001 0.01 0.1

λr

90

92

94

96

98

100

A
cc

u
ra

cy

(c) λr

0.1 1.0 2.0 5.0 10.0

λt

90

92

94

96

98

100

A
cc

u
ra

cy

(d) λt

Fig. 4: Parameter sensitivity analysis

in the range {0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1}, and λt is evaluated in
the range {0.1, 1, 2, 5, 6, 10}. The experimental results are reported in Figure 4.

From Figure 4, it can be observed that the domain adaptation performance
is not sensitive to the hyperparameters α, λs and λr. Consequently, we can set
α, λs and λr as 0.2, 0.0001 and 0.00001 in all experiments. In addition, with the
increase of λt, the accuracy increases dramatically and reaches the best value at
λt = 2.0, then it decreases rapidly. The parameter sensitivity analysis illustrates
that a properly selected λt can effectively improve the performance.

5 Conclusion

In this paper, we propose a dual mixup regularized learning (DMRL) framework
for adversarial domain adaptation. By conducting category and domain mixup
on pixel level, the DMRL cannot only guide the classifier in enhancing consistent
predictions in-between samples, which can help avoid mismatches and enforce
a stronger discriminability of the latent space, but also explore more internal
structures in the latent space, which leads to a more continuous latent space.
These two mixup-based regularizations can enhance and complement each other
to learn discriminative and domain-invariant representations for target task.
The experiments demonstrate that the proposed DMRL can effectively gain
performance improvements on unsupervised domain adaptation tasks.



Dual Mixup Regularized Learning for Adversarial Domain Adaptation 15

References

1. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.:
A theory of learning from different domains. Machine learning 79(1-2), 151–175
(2010)

2. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel,
C.: Mixmatch: A holistic approach to semi-supervised learning. arXiv preprint
arXiv:1905.02249 (2019)

3. Chapelle, O., Zien, A.: Semi-supervised classification by low density separation.
In: AISTATS. vol. 2005, pp. 57–64. Citeseer (2005)

4. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation.
In: ICML. pp. 1180–1189. JMLR. org (2015)

5. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F.,
Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks. The
Journal of Machine Learning Research 17(1), 2096–2030 (2016)

6. Gong, B., Grauman, K., Sha, F.: Connecting the dots with landmarks: Discrim-
inatively learning domain-invariant features for unsupervised domain adaptation.
In: ICML. pp. 222–230 (2013)

7. Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised
domain adaptation. In: CVPR. pp. 2066–2073 (2012)

8. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in neural
information processing systems. pp. 2672–2680 (2014)

9. Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., Smola, A.J.: A kernel
method for the two-sample-problem. In: Advances in neural information processing
systems. pp. 513–520 (2007)

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR. pp. 770–778 (2016)

11. Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A.r., Jaitly, N., Senior, A.,
Vanhoucke, V., Nguyen, P., Kingsbury, B., et al.: Deep neural networks for acoustic
modeling in speech recognition. IEEE Signal processing magazine 29 (2012)

12. Hoffman, J., Tzeng, E., Park, T., Zhu, J.Y., Isola, P., Saenko, K., Efros, A., Darrell,
T.: Cycada: Cycle-consistent adversarial domain adaptation. In: ICML (2018)

13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems.
pp. 1097–1105 (2012)

14. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with
deep adaptation networks. In: ICML. pp. 97–105. JMLR. org (2015)

15. Long, M., Cao, Z., Wang, J., Jordan, M.I.: Conditional adversarial domain adap-
tation. In: Advances in Neural Information Processing Systems. pp. 1640–1650
(2018)

16. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adap-
tation networks. In: ICML. pp. 2208–2217. JMLR. org (2017)

17. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Transactions on knowledge
and data engineering 22(10), 1345–1359 (2009)

18. Pei, Z., Cao, Z., Long, M., Wang, J.: Multi-adversarial domain adaptation. In:
Thirty-Second AAAI Conference on Artificial Intelligence (2018)

19. Saito, K., Ushiku, Y., Harada, T.: Asymmetric tri-training for unsupervised domain
adaptation. In: ICML. pp. 2988–2997. JMLR. org (2017)



16 Y. Wu et al.

20. Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy
for unsupervised domain adaptation. In: CVPR. pp. 3723–3732 (2018)

21. Sankaranarayanan, S., Balaji, Y., Castillo, C.D., Chellappa, R.: Generate to adapt:
Aligning domains using generative adversarial networks. In: CVPR. pp. 8503–8512
(2018)

22. Shimodaira, H.: Improving predictive inference under covariate shift by weighting
the log-likelihood function. Journal of statistical planning and inference 90(2),
227–244 (2000)

23. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Master-
ing the game of go with deep neural networks and tree search. nature 529(7587),
484 (2016)

24. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain
adaptation. In: CVPR. pp. 7167–7176 (2017)

25. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion:
Maximizing for domain invariance. arXiv preprint arXiv:1412.3474 (2014)

26. Verma, V., Lamb, A., Beckham, C., Najafi, A., Mitliagkas, I., Courville, A., Lopez-
Paz, D., Bengio, Y.: Manifold mixup: Better representations by interpolating hid-
den states. arXiv preprint arXiv:1806.05236 (2018)

27. Verma, V., Lamb, A., Kannala, J., Bengio, Y., Lopez-Paz, D.: Interpolation consis-
tency training for semi-supervised learning. arXiv preprint arXiv:1903.03825 (2019)

28. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in
deep neural networks? In: Advances in neural information processing systems. pp.
3320–3328 (2014)

29. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk
minimization. arXiv preprint arXiv:1710.09412 (2017)

30. Zou, H., Zhou, Y., Yang, J., Liu, H., Das, H.P., Spanos, C.J.: Consensus adver-
sarial domain adaptation. In: Proceedings of the AAAI Conference on Artificial
Intelligence. vol. 33, pp. 5997–6004 (2019)

31. Zou, Y., Yu, Z., Liu, X., Kumar, B., Wang, J.: Confidence regularized self-training.
In: Proceedings of the IEEE International Conference on Computer Vision. pp.
5982–5991 (2019)


