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Fig. 1. Imaging behind occluders using visible surfaces on opposing sides of a hidden
space. (a) Top: A mannequin is hidden from the camera. Bottom: A third person
view of the occluding plant. (b) We illuminate points lying to one side of the hidden
space. and observe distorted shadows that hidden objects carve out of the two-bounce
light signal, which scatters off of the opposing visible surface towards our camera. (c)
Euclidean 3D reconstruction of the mannequin.

Abstract. We introduce the new non-line-of-sight imaging problem of
imaging behind an occluder. The behind-an-occluder problem can be
solved if the hidden space is flanked by opposing visible surfaces. We
illuminate one surface and observe light that scatters off of the opposing
surface after traveling through the hidden space. Hidden objects atten-
uate light that passes through the hidden space, leaving an observable
signature that can be used to reconstruct their shape. Our method uses
a simple capture setup—we use an eye-safe laser pointer as a light source
and off-the-shelf RGB or RGB-D cameras to estimate the geometry of
relay surfaces and observe two-bounce light. We analyze the photomet-
ric and geometric challenges of this new imaging problem, and develop a
robust method that produces high-quality 3D reconstructions in uncon-
trolled settings where relay surfaces may be non-planar.
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1 Introduction

Traditional optical imaging techniques produce images using measurements of
light that has propagated directly, along a straight and unoccluded line of sight,
from an object or scene of interest to one’s imaging sensor. Non-line-of-sight
(NLOS) imaging techniques, by contrast, generate images from measurements
of light that has traveled from the object or scene of interest via indirect paths
that typically include reflections off of intermediate surfaces. NLOS imaging
techniques are particularly useful for looking behind things—walls, buildings,
vehicles—any opaque surface that blocks one’s line of sight to objects at greater
depths.

In this paper, we introduce a new NLOS imaging problem, which we will refer
to as the problem of imaging behind an occluder. The problem can be described
as follows: any opaque occluder will block an observer’s line of sight to all surfaces
that lie behind it, creating a hidden volume that extends to infinite depth behind
the occluder. In some scenarios, an observer will have an unobstructed view of
surfaces that lie on either side of this hidden volume. This scenario is depicted
in Figure 3. Such a geometry immediately suggests an elementary measurement:
the observer can illuminate a point lying to one side of the hidden volume,
and observe a point lying on the other side. The line segment that connects
these two points passes through the hidden space. If no occluding surfaces lie
on this segment, then light reflected off of the illuminated point will propagate
to the observed point, which will then also appear illuminated. On the other
hand, if an occluding surface does lie upon this line segment, then the observed
point will lie in that surface’s shadow, and appear dim. The problem of imaging
behind an occluder is the problem of interpreting these shadows to produce a
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Fig. 2. Our method produces accurate reconstruction of hidden scenes containing mul-
tiple objects using a laser pointer and off-the-shelf RGB or RGB-D cameras.
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1.1 Contributions

We summarize the contributions of our paper as follows:

1. Formulation of a new non-line-of-sight imaging problem of imaging behind
an occluder. We discuss challenges and sources of error in imaging behind an
occluder, particularly in natural settings in which extraction of shadows and
3D estimation of visible surfaces are prone to error

2. Method that solves this problem with a space carving approach that exploits
two-bounce light measurements. Ours is the first NLOS method to recover
detailed 3D shapes of hidden objects without specialized equipment. We use
a laser pointer and off-the-shelf RGB or RGB-D cameras.

3. Reconstruction results that highlight the capability of our method to recover
fine structure of hidden objects, capture video reconstructions of moving
scenes, and handle non-planar and non-continious visible surfaces

Behind-an-occluder methods can be applied to a variety of useful tasks, in-
cluding vision in cluttered environments such as forests, maintaining spatial
awareness of the space behind neighboring vehicles on the road, seeing inside
buildings during search-and-rescue operations, or determining the 3D shape of
the back-facing side of an object. We present additional results that highlight po-
tential applications of our method to autonomous driving and search-and-rescue
operations.

2 Related Work

2.1 Non-Line-of-Sight Imaging

Most NLOS imaging methods published to date have attempted to solve the
challenging problem of seeing around the corner. In the around-the-corner prob-
lem, an observer can only learn about the hidden scene from light that is reflected
off of intermediate surfaces after it has reflected off of or been emitted by the
hidden scene itself.

Velten et al. [20,27] demonstrated the first 3D reconstruction of an object
hidden around the corner by using time of flight (ToF) measurements to provide
constraints on hidden object locations. Since then, many robust and efficient al-
gorithms to image around corners have been proposed [1, 9, 15, 28]. Others exploit
speckle patterns [10], spatial coherence [3], and radiometric (intensity) measure-
ments [6, 11, 24] for NLOS imaging. Around-the-corner methods typically require
measurement of three-bounce photons. Our method captures two-bounce pho-
tons and does not require ToF measurements to recover the 3D geometry of
hidden objects.

Occlusions constrain the set of paths that light can take as it propagates
through the hidden scene and back to the observer. Occlusion-assisted imag-
ing techniques exploit knowledge of these constraints to produce a forward
light transport model that can be inverted to estimate hidden scene properties.
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Bouman et al. [5] produce 1D images of hidden scenes by exploiting the occlu-
sions that occur as light propagates past a corner or an edge. Others exploit
occlusions that occur within the hidden scene to recover surface albedos [21,
26], and 4D light fields [2] around corners. In these techniques, the occluders
and hidden scenes are considered separate, and the former is exploited to learn
about the latter. In our method, we directly measure the shadows cast by hidden
objects—in effect, the hidden object is the occluder.
We refer readers to [16] for a comprehensive overview of NLOS imaging.

2.2 Shape from Shadows

In shadowgram imaging methods, the shape of an object is estimated from a
series of shadows cast onto a planar screen for point sources placed at various lo-
cations [22,29]. Shadowgram methods are typically applied in controlled, object
scanning setups and require the placement of point sources with a direct line of
sight to the scene being imaged. Our method is designed to reconstruct scenes
that might be entirely hidden from view, and to utilize shadows projected onto
visible surfaces that may be non-planar, have varied surface albedo, and have to
be estimated by the observer.

Shadowgram methods exploit the fact that a sharp shadow cast onto a plane
by an object that is illuminated by a point source can be interpreted as a 2D sil-
houette image of that object, taken from the perspective of the point source. The
problem of determining the three-dimensional shape of an object from a series of
two-dimensional silhouettes has been studied extensively by the computer vision
community [14,18,25]. With multiple silhouettes, taken from multiple camera
points, an object’s shape can be confined to an intersection of affine cones, re-
ferred to as the visual hull [13]. The first shape-from-silhouettes (SfS) algorithm
is often credited to Baumgart [4]. Later, Martin and Aggarwal [17] introduced
a volumetric space carving approach to SfS in which voxels lying outside the
visual cone are “carved” away, forming a visual hull.

We modify our space carving approach so that it is robust to the errors
in visible surface geometry and shadow classification. Some researchers have
explored robust probabilistic carving methods. These methods are typically de-
signed for shape-from-silhouettes applications that require a direct view of an
imaged scene [8,12, 23], and cannot be applied directly to our problem of space
carving from distorted shadows cast onto arbitrary surfaces by objects that are
hidden from view.

3 Imaging Behind Occluders

Consider the flatland scene presented in Figure 3. In this scene, a large fraction
of the observer’s field of view is blocked by an occluder. We want to know what
is behind that occluder—specifically, we want to find out whether any opaque
object is occupying the hidden point x.



Imaging Behind Occluders Using Two-Bounce Light 5

Occluder

‘ Detector

Fig. 3. Visibility Carving Our algorithm reconstructs the shape of hidden objects
by determining the set of line segments l;-c; that pass through the hidden scene. Here
we observe that light can travel from points 1> to c2 without occlusion, and thus infer
that hidden point x is unoccupied.

Illumination
Source

3.1 The Elementary Measurement

We illuminate the visible point 1;, and observe point ¢, chosen such that the line
segment connecting 1; and c; passes through x. In this case, we note that point
ci lies in shadow. From this measurement, we can infer that a hidden object
must lie somewhere along the line segment 1;-cq, but cannot say for certain that
this object is located at point x.

We then take a second measurement, illuminating a different point 1y and
observing point co, again chosen such that the line segment lo-co passes through
x. This time the observed point co appears to be illuminated by light that has
been diffusely reflected from the visible surface at 1. This measurement is more
informative. If light has traveled from 1y to cs without occlusion, then there
cannot be an occluding surface at point x or at any point along the segment
12-C2.

This is the elementary measurement that underlies our method for seeing
behind occluders. The measurement can be extended to a reconstruction problem
by discretizing the hidden space into a grid of points X = {x1,X2,...,X,} to
be probed. Instead of probing the occupancy of each point x; with a series
of 1-c pairs, we can efficiently collect this data by using a camera to observe an
area on the visible surface rather than observing single points. In this case, every
measurement probes a large number of hidden points in the scene simultaneously.

3.2 Method

Our method can be decomposed into three basic steps: data capture, pre-processing,
and reconstruction.

In the data capture step, we use a galvo-scanned laser to illuminate points on
the visible surface. For each laser scan position, we take two photos: one short
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Fig. 4. A pipeline for imaging behind occluders. (a) Our imaging system consists
a RGB (or RGB-D) camera and a laser scanned by a two-axis galvo mirror. (b) We use
the laser to illuminate points on the visible surfaces and then capture images of the
laser spot and shadow. (c¢) We detect the pixels that belong to the shadowed regions
where light is blocked by the hidden object to perform (d) 3D reconstruction.

exposure photo that allows us to pinpoint the location and (if desired) brightness
of the laser spot, and a second, longer exposure photo that captures the shadows
cast onto the opposing visible surface with high contrast. Pictures of our data
capture equipment are shown in Figures 4(a).

In the pre-processing step, we loop through our acquired photo stacks. For
each short exposure photo, we pinpoint the image-space position of the laser spot
and convert this position to 3D world coordinates. If we are using an RGB camera
(as in Section 4) we rely on prior knowledge of visible surface geometry to make
this estimate. If geometry information is not available, we directly measure the
3D position using an RGB-D camera. For each longer exposure photo, we select
a region of interest that we expect will contain cast shadows that are informative
about the hidden scene. We classify each pixel in this region as shadowed or lit
or, in some cases, unknown. Our choice of shadow segmentation criteria can be
made simple (such as a binary threshold) or more complex depending on the
complexity of the visible scene. An example of shadow segmentation is shown in
Figures 4(b) and (c).

Finally, in the reconstruction step, we discretize the hidden space into a 3D
grid of points or voxels. Given an illumination spot 1 and its associated shadow
image, we project each element of the hidden grid onto the opposing visible
surface, using 1 as the center of projection. We then determine whether the
projection of this element lies inside the shadowed region of the visible surface
or outside of the shadows, in a lit region. It is also possible that the projection
does not land on the visible surface at all, or lands on a region of ambiguous
classification. If the element is a voxel, it may project to a mixture of shadowed
and lit pixels. In this case, we are conservative—classifying the voxel as outside
only if it projects to all lit pixels, and inside only if it projects to all shadowed
pixels. We perform this test on each element, for each illumination point and
shadow image in our stack. We count how many times an element has been
classified as inside and as outside. Once all frames have been processed, we use
these counts to determine which elements are occupied and which are empty.
In the naive version of our algorithm that is used in Section 4, an element is
assessed as empty if it is classified as outside in at least one frame. In Sections
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5 and 6 we apply a probabilistic thresholding procedure that is robust to errors
in the inside/outside test. An example reconstruction result is shown in Figure
4(d). In this example voxels are colored by probability of occupancy.

4 Reconstructing the Shape of Hidden Objects

In this section, we demonstrate that our method is capable of producing highly
detailed reconstructions of stationary hidden scenes, and also demonstrate how
our method could be used to capture video reconstructions of hidden objects
that are moving. We place hidden objects in a simple testbed consisting of two
white relay walls and a black occluding wall. This simple testbed allows us
to demonstrate the potential capabilities of our method when errors in pre-
processing—that is, visible surface estimation and shadow segmentation errors—
are minimal. In later sections, we will address the problem of reconstructing a
hidden scene when pre-processing errors are unavoidable.

4.1 Implementation

Our testbed consisted of two white observation walls, and a black occluding
wall placed between the scene-to-be-imaged and all imaging equipment. The
observation walls were 61 cm x 76 cm rectangles oriented parallel to one another
and spaced 76 cm apart. A photo of the testbed is shown in Figure 2. We
illuminate the two observation walls at a series of points using a green CW laser
with a power of ~5 mW scanned with a two-axis scanning galvo mirror system,
and use a Point Grey Blackfly RGB camera to capture images. To segment
shadow images into lit and shadowed regions, we binarize the pixels in a region
of interest using either a hand-tuned threshold or a threshold set adaptively
using Otsu’s method [19]. We de-noise this binary image using a bilateral filter
and then use a second threshold to separate the filtered images into shadowed
and illuminated pixels. We found that this second filtering step resulted in more
robust pixel classifications.

In this set of collections, we assume that the geometry of the two observation
walls is known to the observer. Since the observation walls are planar, this means
that we can measure the position of the laser spot in pixel space and then convert
that measurement to 3D world coordinates using a homography. Likewise, to test
the inside/outside status of a hidden point x, we find the point at which the ray
drawn from 1 and through x intersects the opposing observation wall, and then
use a homography to convert this point of intersection to pixel space. We then
compare the ray’s point of intersection with the estimated shadow boundaries
in pixel space to determine whether it falls inside or outside of the illuminated
region. All points that accrue one or more outside classifications are carved out
of the reconstructed scene. Inside classifications are not used.
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Fig. 5. Reconstruction results. (a) Our method recovers the complex geometry of
a spring (left) and a plant (right). An additional reconstruction of a disco dance party
can be seen in Figure 2. We use the shadows cast by hidden objects to reconstruct their
3D shape. (b) Snapshots from a 15 FPS video reconstruction of a moving mannequin.
Reconstructed frames are colored by time. For clarity, snapshots in this figure are
spaced 3 seconds apart. The full video reconstruction can be found in the supplemental
material.

4.2 Stationary Hidden Objects

We scanned a variety of stationary objects in this testbed. Photos of three of
these objects, along with our estimation of each object’s shape, can be seen in
Figures 2 and 5. Our method reproduces the fine structure of reasonably complex
objects. On the left side of Figure 5(a), we recover the shape of a spring. Our
estimate correctly reconstructs the spring as a singular object, with no breaks
along the coil. On the right side of Figure 5(a), we estimate the shape of a plant
and are able to resolve individual leaves despite significant self-occlusion. Finally,
as shown in Figure 2(a), we recover the shape of a dance party. We believe that
the quality of the estimated scene should be more than sufficient for high level
tasks such as pose estimation. We also note that the specular surfaces of the
scene’s three disco balls had no effect on our ability to recover their shapes.

For each object, we scanned a 9 x 11 grid of illumination points on both the
left and right observation walls. Points on these grids were evenly spaced and
spanned almost the entire area of each observation wall. The total acquisition
time for each object was 27 seconds. After the acquisition and shadow segmen-
tation, space carving was initiated on a grid of hidden points with a 0.25 cm
spacing.
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4.3 Moving Hidden Object

By reducing the number of scan points per reconstruction, we can capture videos
of dynamic hidden scenes. Although these videos do not capture fine detail, we
are able to recover the approximate size, shape, and position of a moving object
using only four observed shadows per video frame.

Our reconstructed video can be found in the supplemental material. Snap-
shots of the result are plotted in Figure5(b). The hidden object was a mannequin
that was slowly moved around the hidden area. We acquire 15 shadows per sec-
ond, such that the four-point scan pattern can be completed in .27 seconds.
Space carving was executed on a 55 cm X 45 cm X 55 cm grid of hidden points,
with a grid spacing of 1 cm.

5 Overcoming Geometric and Photometric Challenges of
Imaging Behind Occluders

The physical principle that underlies our method of imaging behind occluders
using two-bounce light is simple: if we observe that light can travel directly
between two points without occlusion, then we know that no opaque surfaces can
be present on the line segment that connects those two points. Unfortunately
reality is typically messier than this. Errors in visible surface estimation and
shadow segmentation will invariably impact our ability to determine which voxels
lie inside and outside of the true hidden scene.

In this section, we discuss how such errors manifest as reconstruction artifacts
when a naive carving approach, such as the approach used in Section 4, is used.
We then apply this insight to develop a probabilistic carving approach that is
robust to pre-processing errors. We apply our robust method to reconstruct the
shape of a mannequin using shadows cast onto non-planar relay surfaces that
must be estimated from noisy depth measurements. We show that our robust
algorithm handily outperforms a naive carving approach in this setting.

5.1 Sources of Error in Imaging Behind Occluders

False Carving: In a naive carving approach, a voxel is discarded from the set of
points that lie inside a hidden object if just a single ray drawn from a laser spot
to an observed “lit” pixel passes through that voxel. The reasoning behind this
decision makes physical sense—if a voxel is occupied by an opaque material, then
light should not be able to pass through it. In practice, this model is too strict. If
the observed pixel is wrongly classified as lit when it in fact lies in shadow, then
an entire ray of voxels might be erroneously carved out of the reconstructed
scene. Furthermore, if there are errors in our estimates of the laser spot and
observed pixel’s 3D locations, then the line segment that we carve through the
scene will be misaligned with respect to the true propagation path. This will
lead to further erroneous carving.

Complex light transport phenomena such as inter-reflections, specular re-
flections, translucent hidden objects or refraction can also cause false carving
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because they cannot be explained by a two-bounce scattering model or opaque
occlusions. An example of this is shown in Figure 6(a).

>
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Source Source

(a) False carving due to specular reflection (b) False Positives due to unobservable surface

Fig. 6. Limitations on the hidden scene reconstruction. (a) Complex light trans-
port such as specular reflection (blue surface) can result in unintended carving of the
space occupied by the hidden object. (b) The shape of visible surfaces determines the
recoverable space in the hidden volume.

False Positives: In addition to erroneously carving away voxels that are
inside of a hidden object, a carving method may also fail to carve away a voxel
that lies outside of all hidden objects. In some cases, these false positives cannot
be prevented—for instance, if an empty voxel happens to lie inside of the hidden
scene’s visual hull [13]. In other cases an empty voxel may remain uncarved for
the same reasons that an occupied voxel may be carved erroneously; that is, due
to errors in shadow classification or visible surface estimation. These sources of
error tend to produce more false negatives (over-carving) than false positives
when most voxels in the scene are probed by a large number of rays. This is
because a naive carving method only requires a single outside result to carve
away a voxel, whereas all tests must return an inside result for a voxel to be
classified as outside of a hidden scene.

When the number of rays that probe a voxel is low, however, the probability
of false positive classification becomes more significant. This becomes more of
a problem when the visible surface geometry is complex, due to the fact that
non-planar surfaces will often occlude themselves from the point of view of the
observer. This self-occlusion reduces the set of points on the surface that can
be illuminated and observed to probe the hidden scene. In many situations, this
self-occlusion renders large swaths of the hidden scene unobservable. A simple
example of this is shown in Figure 6(b). In general, however, any level of self-
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occlusion will reduce the set of rays that can be probed and this will tend to
increase the number of false positives in the reconstructed scene.

5.2 Robust Carving

To improve the robustness of our method to the false outside results that cause
over-carving, we can relax our acceptance criteria by requiring some number
M > 1 outside results to accrue before a voxel can be carved out of the hidden
scene. This relaxed threshold reduces the probability of false carving at the cost
of an increased false positive rate. This trade-off is often worth it if a stricter
acceptance threshold would lead to excessive overcarving. To reduce the number
of false positives, we can add a new acceptance criteria that requires some number
N > 0 of inside results to accept a voxel as lying inside of the hidden scene. This
acceptance criteria is motivated by the fact that an occupied voxel that is probed
should produce inside results most of the time, in spite of any errors. This test
also provides the added benefit of screening out all voxels in the hidden scene
that are unobservable due to visible surface self-occlusion, or for other reasons.

Ideally, we would prefer to set these acceptance criteria using a principled
approach that considers the probability of occupancy of each voxel. To this
end, we considered a simple probabilistic model inspired by an acceptance test
that was employed by Cheung et al. [7] for shape-from-silhouettes. If a voxel is
subjected to N inside/outside tests, the result y; of any single test is treated as
a Bernoulli trial that is independent of the other NV — 1 tests when conditioned
on the true state of the probed voxel, which can be either empty (e) or occupied
(0). Under this model the probability that a voxel is occupied given m outside
results and n inside results is

(L= )", "
1 —=&)mEpe +n™ (1 —n)"p, .

Here 1 is the miss probability—that is, the probability that an occupied voxel
projects to an illuminated region (is declared outside)—and € is the probability of
false alarm—the probability that an empty voxel projects to a shadowed region
(is declared inside). The values p, = P(v; = 0) and p. = P(v; = e) represent the
prior probabilities that voxel i is occupied or empty, respectively. A derivation
of Eq. (1) is provided in the supplemental material.

To use Eq. (1) as an acceptance criterion, we can assume that all voxels
share the same values of 7, £, p,, and p.. Then we can calculate the conditional
occupancy probability for all combinations of m and n that we might feasibly
encounter in N observations (at most (N + 1)? values) and store these probabil-
ities in a lookup table. When all inside/outside tests have been completed, we
look up the appropriate occupancy probability based on number of inside and
outside counts, and accept a voxel as occupied if the probability lies above some
threshold.

In theory, the parameters 7, &, p,, and p. could be determined via an em-
pirical analysis of inside/outside test errors. In practice we use them as tuning

]P)(Ui = O‘yh ...yN) = (
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parameters. A lower value of 1 signifies a higher level of trust in outside results.
Reducing this parameter should reduce the rate of false positives and increase
the rate of false carving. Setting n equal to zero reproduces the naive carving
acceptance criteria. A lower value of £ strengthens the effect of inside results.
This means that fewer inside measurements will be required to declare a voxel
occupied. The prior probabilities guide the acceptance criterion in the absence
of measurement data, and in practice have very little effect on the acceptance
result if a voxel has been probed more than a handful of times.

(a) Scene / Camera View (b) Naive Carving (c) Robust Carving (d) Probability Map
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Fig. 7. Imaging behind occluders with complex visible geometries. (a) Scene
setup and view from the camera. A mannequin is hidden behind an occluder. (b) A
naive carving algorithm removes voxels occupied by the mannequin. (c¢) A robust carv-
ing method demonstrates robustness in reconstructing the hidden object with complex
visible surfaces. (d) The probability map of voxel occupancy computed using Eq. (1).

5.3 Implementation

To test our robust carving method, we attempt to reconstruct the shape of
a mannequin hidden behind an occluder by observing shadows cast onto non-
planar and non-continuous visible surfaces consisting of various white objects
(see supplemental material for results obtained when relay surface albedo varies
spatially). We acquire the laser spot positions and the shape of the visible surface
using a RealSense D435 active stereo RGB-D camera. We acquire shadow images
and laser spot positions while the mannequin is present in the hidden scene. We
then remove the mannequin to acquire a set of background images to aid in
background segmentation. We perform shadow segmentation by applying a per-
pixel threshold on the ratio of pixel values in shadow frames and background
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frames. We note that we were also able to obtain good results without the aid
of background measurements. These results as well as the shadow segmentation
method that we used can be found in the supplemental material.

We present two reconstructions of the hidden mannequin. Each utilizes the
same set of 30 illumination spots and shadow images. The first result, which is
shown in 7(b), was produced by applying a naive carving criterion in which all
voxels that are projected to an illuminated region of the visible surface at least
once are carved away, and inside tests are not used. In this case, the mannequin
reconstruction is clearly overcarved and resembles 3D pepper noise. The absence
of inside tests also results in a residue of false positives at the periphery of
the voxel grid. In Figure 7(c) we show results obtained when we applied the
probabilistic acceptance criteria based on Eq. (1), and in Figure 7(d) we visualize
the voxel occupancy probability map using a maximum intensity projection. In
these results we can clearly distinguish the form of the mannequin.

6 Applications

Scene / Camera View Frames Reconstruction

RGB-D Camera
+

Laser

(a) Behind Truck

RGB-D Camera
+

Laser

(b) Two Windows

Fig. 8. Demonstration of potential applications of imaging behind occluders.
Our technique can be used to (a) detect a person that is behind a truck and (b)
reconstruct the a hidden part of rooms that have at least two windows.

We highlight some potential applications of our method by reconstructing
hidden scenes embedded in settings that simulate situations that might be en-
countered in the real world.

Seeing Behind Trucks for Autonomous Vehicles: We want to simulate
the ability to detect a child that is playing with a ball behind a parked truck and
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is about to run out into the street. We observe a truck parked next to a building’s
wall. A mannequin and ball were placed in front of the truck and out of view of
the observer. We illuminate points distributed on the ground plane and on the
building’s facade, and also observe shadows cast onto these surfaces. We acquire
these surfaces with an RGB-D camera and use our robust carving method to
reconstruct the shape of the reckless child. Results are shown in Figure 8(a).

Imaging Between Windows for Search and Rescue: We want to sim-
ulate a rescue team’s ability to locate humans in rooms. We observe a room
with two windows from the outside. The room geometry has three vertical walls
that are not parallel. The room also contains clutter seen in the left window.
We shine the laser through one window and observe shadows cast onto a wall
through the other window. As in the behind-trucks scene, we use an RGB-D
camera to acquire the intensity and position of observed and illuminated pixels,
and then use our robust carving method to reconstruct a hidden scene consisting
of two humans in conflict. Results are shown in Figure 8(b).

7 Conclusion

We have introduced the novel NLOS imaging problem of imaging behind an oc-
cluder, and have demonstrated a method that solves this problem using a space
carving approach that exploits observations of two-bounce light. We have mod-
ified our algorithm to be robust to errors in shadow segmentation and relay
surface estimation, and this has enabled us to reconstruct hidden scenes embed-
ded in reasonably complex visible scenes. As far as we are aware, we are the first
to recover the detailed 3D shape of hidden, non-line-of-sight objects without the
use of complex, specialized devices or significant calibrations, and are also the
first to do so in real time and in non-trivial settings.

Our method can spur development in application areas such as new medical
endoscopes, drones that can see behind trees while flying through forests, colli-
sion avoidance for autonomous vehicles, the rescue of humans hidden in rooms
with more than one window, aerial imaging, industrial inspection, and more.

We hope to inspire more research in the imaging and computer vision com-
munities that exploits the information conveyed by cast shadows. We also believe
that our work highlights non-line-of-sight imaging as a new area of relevance for
shape-from-silhouettes research.

In future work we hope to apply our method outside of the laboratory and in
natural, larger-scale scenes. We believe that this is feasible if interference from
ambient background light can be reduced by operating at infrared wavelengths or
by employing time-modulated illumination. An exploration of how relay surface
surface geometry affects reconstruction quality would also be valuable. Finally,
variations on the behind-occluders problem could be explored such as reconstruc-
tion without depth information, or reconstructing transparent hidden objects.
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