
Supplementary Material: Neural Predictor for
Neural Architecture Search

Wei Wen1,2, Hanxiao Liu1, Yiran Chen2, Hai Li2

Gabriel Bender1, Pieter-Jan Kindermans1

1 Google Brain, 2 Duke University

1 Ablation Study of Neural Predictor Architectures

Figure 1 includes ablation study of different architectures for the Neural Predic-
tor on NASBench-101. We compared Graph Convolutional Networks (GCN) and
Multi-layer Perceptrons (MLP) in the figure. To generate inputs for a MLP, we
simply concatenate the one-hot codes of node operations with the upper triangle
of the adjacency matrix. From the figure, we can see such a simple MLP can
outperform state-of-the-art Regularized Evolution; more importantly, the GCN
that we selected achieves the best. We also tried Convolutional Neural Networks
(CNN) but completely failed with a performance near to random search. During
our development, we also proposed a data augmentation to improve the per-
formance of MLP and CNN. In this augmentation, we randomly permute the
order of nodes to generate new inputs online. However, we needed to perform
the permutation during validation; otherwise, the validation data distribution is
different from training data distribution. More importantly, GCN encodes the
inductive bias that the prediction should be permutation invariant. Therefore,
GCN is our final decision.

2 Reproduction of Regularized Evolution [5]

We follow the NASBench-101 paper and their released code1 to reproduce Reg-
ularized Evolution. The population size is set to 100, the sampling size from the
population is set to 10, and the mutation probabilities of edges and nodes are
1
14 and 1

10 respectively.
For reproduction purpose, we clarify two differences in this paper when plot-

ting curves of “the test accuracy versus training time spent”:

– in the NASBench-101 paper, the test accuracy comes from a single training
run, which leads to the use of a single validation accuracy as the signal
for search. We instead report the mean test accuracy over three records.
We use the mean because it is a quality expectation when the a discovered
architecture is distributed and re-trained by different users, and it simulates
a scenario where higher uncertainty exists. Moreover, it is the user case that
we encountered in the ImageNet experiments.

1 https://colab.research.google.com/github/google-research/nasbench

https://colab.research.google.com/github/google-research/nasbench/blob/master/NASBench.ipynb


2 W. Wen, H. Liu, Y. Chen, H. Li, G. Bender, P.-J. Kindermans

0 1000 2000 3000 4000 5000

The number of samples

94.0

94.2

94.4

94.6

94.8

95.0

95.2

95.4

V
a
lid

a
ti

o
n
 a

cc
u
ra

cy
 %

GCN

MLP

regularized evolution

random search

oracle

0 1000 2000 3000 4000 5000

The number of samples

93.0

93.2

93.4

93.6

93.8

94.0

94.2

94.4

T
e
st

 a
cc

u
ra

cy
 %

GCN

MLP

regularized evolution

random search

oracle

0 1 2 3 4 5 6 7 8

Total training time (seconds) 1e6

93.0

93.2

93.4

93.6

93.8

94.0

94.2

94.4

T
e
st

 a
cc

u
ra

cy
 %

GCN

MLP

regularized evolution

random search

oracle

Fig. 1: The ablation study of our Neural Predictor under different architectures.
Experiments are performed in NASBench-101. In this study, a one stage predic-
tor without a classifier is used. All methods are averaged over 600 experiments.
The shaded region indicates standard deviation of each search method. The x-
axis represents the total compute budget N + K. The vertical dotted line is at
N = 172 and represents the number of samples (or total training time) used to
build our Neural Predictor. From this line on we start from K = 1 and increase
it as we use more architectures for final validation.

– in our paper, we plot the test accuracy averaged over 600 experiments; while,
in the NASBench-101 paper, the median test accuracy over 100 experiments
were plotted.

3 Implementation Details of Neural Predictor

In this paper, the output/predicted accuracy by a Neural Predictor is the value
of percentage. For example, if the predicted validation accuracy is 76.2%, then
the Neural Predictor outputs the value of 76.2. Dropout is only applied to fully-
connected layers.

3.1 NASBench-101 on Cifar-10

The Architecture of Neural Predictor starts with three bidirectional Graph Con-
volutional layers, whose node representations have the same size D. The node
representations from the last Graph Convolutional layer are averaged to obtain
a graph representation, which is followed by a fully-connected layer with hidden
size 128 and an output layer.

Training Hyper-parameters of the Neural Predictor are cross validated. For the
classifier in the two stage predictor, we use the Adam optimizer [3] with an initial
learning rate 0.0002, dropout rate 0.1 and weight decay 0.001. The learning rate
is gradually decayed to zero by a cosine schedule [4]. We train the classifier for
300 epochs with a mini-batch size 10. The regressor in the two stage predictor



Neural Predictor for Neural Architecture Search 3

uses the same hyper-parameters but an initial learning rate 0.0001. Note that
a small batch size is important, when the training dataset is small which is
common in our applications. Using a large batch size when a training dataset is
small will result in near full-batch gradient descent.

Node representation size D under different training dataset size N is listed in
Table 1.

N D N D
43 48 172 144
86 72 334 210
129 96 860 320

Table 1: Node representation size D under N

3.2 ProxylessNAS on ImageNet

The search space of ProxylessNAS is illustrated in Figure 2.

1 layer 4 layers 4 layers 4 layers4 layers4 layers 1 layer

H
ead

Stem
[IB with kernel size [3, 5, 7] and expansion factor [3, 6], zero]

[IB3×3, IB5×5, 
IB7×7]

32 filters 16 filters 32 filters 40 filters 80 filters 96 filters 192 filters 320 filters 1280 filters
Stride 2 Stride 2Stride 2 Stride 2

22 nodes

Fig. 2: The search space of ProxylessNAS. Only convolutional layers in blue are
searched. The optional operations in each layer are 6 types of Inverted Bottleneck
(IB) [6] (with a kernel size 3 × 3, 5 × 5 or 7 × 7 and an expansion factor of 3 or
6) and one zero operation (which outputs zeros for layer skipping purpose). The
expansion factor in the first block is fixed as 1, and the zero operation is forbidden
in the first layer of every block. The search space size is 3∗66 ∗715 ≈ 6.64×1017.

The Architecture of Neural Predictor includes 18 bidirectional Graph Convo-
lutional layers. The node representations from the last Graph Convolutional
layer are averaged to obtain a graph representation, which is followed by two
fully-connected layers with hidden sizes 512 and 128 and an output layer. The
predictor is one stage without a classifier. All Graph Convolutional layers have
a node representation size 96.



4 W. Wen, H. Liu, Y. Chen, H. Li, G. Bender, P.-J. Kindermans

The Training Hyper-parameters of Neural Predictor are cross validated. We have
119 samples2, 40 of which are validation samples and 79 are training samples.
Training hyper-parameters are validated by averaging over 10 random splits of
119 samples. We use the Adam optimizer with an initial learning rate 0.001 and
weight decay 0.00001. The learning rate is gradually decayed to zero by a cosine
schedule [4]. We train for 300 epochs with a mini-batch size 10.

Training Hyper-Parameters of Image Classification Models on ImageNet The
official ImageNet dataset consists of 1,281,167 training examples and 50,000
validation examples. Since the official test set for ImageNet was never publicly
released, we follow the standard (although admittedly confusing) convention of
using the 50,000-example validation set as our test set. We randomly partitioned
the 1,281,167-image training set into 1024 shards, and used the final 40 shards
– or 50,046 examples – as our validation set. For models which we planned to
evaluate on our validation set, we excluded these 50,046 examples during model
training. We did, however, use these examples for models we planned to evaluate
on our test set.

When training image classification models, we used distributed synchronous
SGD with four Cloud TPU v2 or v3 instances (i.e., 32 TPU cores) and a per-core
batch size of 128. Models were optimized using RMSProp with momentum 0.9,
decay 0.9, and epsilon 0.1. The learning rate was decayed according to a cosine
schedule. Models were trained with batch normalization with epsilon 0.001 and
momentum 0.99. Convolutional kernels were initialized with He initialization3

[1] and bias variables were initialized to 0. We initialized the final fully connected
layer of the network with mean 0 and stddev 0.01. We used an L2 regularization
rate of 4×10−5 for all convolutional kernels, but did not apply L2 regularization
to the final fully connected layer. Models were trained on 224×224 input images
with ResNet [2] image preprocessing. Models were trained for 90 (resp. 360)
epochs to obtain validation (resp. test) accuracy. We used a dropout rate of 0
(resp. 0.15) before the final fully connected layer when training models for 90
(resp. 360) epochs.

4 Discovered Frontier Models on ImageNet

Table 2 includes discovered models by Neural Predictor in ProxylessNAS search
space. Our predictor discovers architectures with cheap operations (with small
kernel size and expansion factor) or the skip operation (i.e. zero by index 6)
in the early layers, and places diverse operations in later layers to make the
trade-off.

2 We trained 120 models and one crashed, ending up with the odd number 119
3 The default TensorFlow implementation of He initialization has an issue which can

cause it to overestimate the fan-in of depthwise convolutions by multiple orders of
magnitude. We correct this issue in our implementation.



Neural Predictor for Neural Architecture Search 5

Inference time Top-1 test accuracy Architecture

75.05ms 73.76 ± 0.08% (0, 0, 6, 0, 0, 0, 0, 0, 6, 1, 4, 6, 2, 4, 0, 1, 5, 0, 2, 6, 2, 3)
75.10ms 74.07 ± 0.09% (0, 0, 6, 0, 6, 1, 2, 0, 6, 3, 0, 1, 5, 2, 0, 0, 1, 4, 0, 6, 5, 3)
75.36ms 73.86 ± 0.19% (0, 1, 6, 6, 6, 0, 4, 6, 6, 4, 6, 6, 1, 5, 5, 1, 3, 1, 5, 2, 2, 3)
75.76ms 74.16 ± 0.20% (0, 0, 6, 6, 6, 2, 0, 2, 3, 4, 6, 1, 6, 0, 1, 1, 1, 5, 4, 2, 3, 3)
76.10ms 74.35 ± 0.08% (0, 0, 6, 0, 6, 2, 3, 6, 0, 4, 3, 4, 5, 3, 0, 6, 0, 1, 0, 2, 2, 3)
78.23ms 74.70 ± 0.15% (0, 0, 0, 6, 6, 1, 0, 6, 0, 5, 0, 2, 1, 4, 0, 2, 2, 5, 5, 0, 2, 3)
80.42ms 74.61 ± 0.07% (0, 0, 6, 0, 6, 2, 0, 0, 2, 1, 0, 0, 6, 5, 0, 1, 3, 5, 5, 2, 2, 3)
82.44ms 74.70 ± 0.04% (0, 0, 6, 6, 0, 2, 0, 0, 4, 5, 4, 6, 2, 4, 3, 3, 6, 5, 1, 2, 2, 3)
84.95ms 74.75 ± 0.09% (0, 0, 0, 0, 6, 1, 3, 1, 6, 4, 2, 1, 0, 2, 6, 0, 5, 4, 2, 2, 5, 3)

Table 2: Frontier architectures discovered by Neural Predictor in ProxylessNAS
search space. An architecture is represented by the indices of operations in all 22
layers. The mapping between indices and operations are listed in Figure 2 in this
supplemental material. In the first block (layer), an index selects [IB3x3, IB5x5,
IB7x7] with a fixed expansion factor 1. In other layers, an index selects [IB3x3-3,
IB5x5-3, IB7x7-3, IB3x3-6, IB5x5-6, IB7x7-6, zero], where a suffix “-M” denotes
an expansion factor M .

References

1. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In: Proceedings of the IEEE interna-
tional conference on computer vision. pp. 1026–1034 (2015)

2. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

3. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

4. Loshchilov, I., Hutter, F.: Sgdr: Stochastic gradient descent with warm restarts.
arXiv preprint arXiv:1608.03983 (2016)

5. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image clas-
sifier architecture search. In: Proceedings of the AAAI Conference on Artificial In-
telligence. vol. 33, pp. 4780–4789 (2019)

6. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: In-
verted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 4510–4520 (2018)


	Supplementary Material: Neural Predictor for Neural Architecture Search

