
Neural Predictor for Neural Architecture Search

Wei Wen1,2?, Hanxiao Liu1, Yiran Chen2, Hai Li2

Gabriel Bender1, Pieter-Jan Kindermans1

1 Google Brain, 2 Duke University

Abstract. Neural Architecture Search methods are effective but often
use complex algorithms to come up with the best architecture. We pro-
pose an approach with three basic steps that is conceptually much sim-
pler. First we train N random architectures to generate N (architecture,
validation accuracy) pairs and use them to train a regression model that
predicts accuracies for architectures. Next, we use this regression model
to predict the validation accuracies of a large number of random architec-
tures. Finally, we train the top-K predicted architectures and deploy the
model with the best validation result. While this approach seems simple,
it is more than 20× as sample efficient as Regularized Evolution on the
NASBench-101 benchmark. On ImageNet, it approaches the efficiency of
more complex and restrictive approaches based on weight sharing such
as ProxylessNAS while being fully (embarrassingly) parallelizable and
friendly to hyper-parameter tuning.

Keywords: Neural Architecture Search, Automated Machine Learning,
Graph Neural Networks, NASBench-101, Mobile Models, ImageNet

1 Introduction

Early Neural Architecture Search (NAS) methods showed impressive results,
allowing researchers to automatically find high-quality neural networks within
human-defined search spaces [22, 23, 18, 17]. However, these early methods re-
quired thousands of models to be trained from scratch to run a single search,
making the methods prohibitively expensive for most practitioners. Thus, algo-
rithms which can improve the sample efficiency are of high value. A second con-
sideration when designing a NAS algorithm is friendliness to hyper-parameter
tuning. In many existing approaches – such as those based on Reinforcement
Learning (RL) [22] or Evolutionary Algorithms (EA) [17], trying out a new set
of hyper-parameters for the search algorithm requires us to train and evaluate
a new set of neural network from scratch. Ideally, we would be able to train a
single set of neural networks, evaluate them once, and then use the results to
try out many different hyper-parameter configurations for the search algorithm.
A third design consideration of NAS is full parallelizability (or embarassing par-
allelizability): existing methods based on RL [22], EA [17] and Bayesian Opti-
mization (BO) [6] are complex to implement, requiring complex coordination

? Work done as a Research Intern and Student Researcher in Google Brain.



2 W. Wen, H. Liu, Y. Chen, H. Li, G. Bender, P.-J. Kindermans

between tens or hundreds of workers when collecting reward/fitness/acquisition
during a search. An fully parallelizable algorithm can avoid this coordination
and accelerate the search when idle computing resources are available. Ideally,
we pursue an algorithms with the above merits – sample efficiency, friendliness
to hyper-parameter tuning, and full parallelizability.

To design a NAS algorithm possessing the three merits described above,
we investigate how well it is possible to do using a combination of two tech-
niques which are ubiquitous in the ML community: supervised learning and
random sampling. We show that an algorithm that intelligently combines these
two approaches can be surprisingly effective in practice. With an infinite com-
pute budget, a very simple but näıve approach to architecture search would be
to sample tons of random architectures, train and evaluate each one, and then
select the architectures with the best validation set accuracies for deployment;
this is a straightforward application of the ubiquitous random search heuristic.
It is friendly to hyper-parameter tuning and is fully parallelizable. However, the
efficiency (computational requirements) of this approach makes it infeasible in
practice. For example, to exhaustively train and evaluate all of the 423, 624 ar-
chitectures in the NASBench-101 [21], it would take roughly 25 years of TPU
training time. Only a small number of companies and corporate research labs can
afford this much compute, and it is far out of reach for most ML practitioners.

Search space Train & 
validate

78.1%

75.2%

Neural
Predictor

Sample N models
(A small subset)

Build

Search space
77.9%

…

74.9%

All/ many
random models

Top 
K

Neural
Predictor

Predict
accuracy

Train & 
validate

Pick the best 
validation

True accuracy

Fig. 1: Building (top) and applying (bottom) the Neural Predictor.

One way to alleviate this is to identify a small subset of promising models. If
this is done with reasonably high precision (i.e., most models selected are indeed
of high quality) then we can train and validate just this limited set of models to
reliably select a good one for deployment. To achieve this, the proposed Neural
Predictor uses the following steps to perform an architecture search:

(1) Build a predictor by training N random architectures to obtain N
(architecture, validation accuracy) pairs. Use this data to train a regressor.

(2) Quality prediction using the regression model over a large set of ran-
dom architectures. Select the K most promising architectures for final validation.

(3) Final validation of the top K architectures by training them. Then we
select the architecture with the highest validation accuracy to deploy.

The workflow is illustrated in Figure 1. In this setup, the first step is a
traditional regression problem where we first generate a dataset of N samples
to train on. The second step can be carried out efficiently because evaluating a
model using the predictor is cheap and parallelizable. The third step is nothing



Neural Predictor for Neural Architecture Search 3

more than traditional validation where we only evaluate a well curated set of
K models. While the method outlined above might seem straightforward, this
solution is surprisingly effective and satisfies the three goals discussed above:

– Efficiency : The Neural Predictor strongly outperforms random search on
NASBench-101. It is also about 22.83 times as sample-efficient as Regularized
Evolution – the best performing method in the NASBench-101 paper. The
Neural Predictor can easily handle different search spaces. In addition to
NASBench-101, we evaluated it on the ProxylessNAS [5] search space and
found that the predicted architecture is as accurate as ProxylessNAS and
clearly better than random search.

– Friendliness to hyper-parameter tuning : All hyper-parameters of the regres-
sion model are cross validated by the dataset collected just once in step (1).
The cost of tuning those hyper-parameters is small because the predictor
model is small.

– Full parallelizability : The most computationally intensive components of the
method (training N models in step (1) and K models in step (3)) are
trivially parallelizable when sufficient computation resources are available.

Furthermore, the architecture selection process uses two of the most ubiqui-
tous tools from the ML toolbox: random sampling and supervised learning. In
contrast, many existing NAS approaches rely on more advanced techniques such
as RL, EA, BO, and weight sharing.

2 Related Work

Neural Architecture Search was proposed to automate the design of neural net-
works, by searching models in a design space using techniques such as RL [22],
EA [18] or BO [9, 6]. A clear limitation of the early approaches is their computa-
tion efficiency. Thus, recent methods often focus on efficient NAS by using weight
sharing [2, 4, 16, 5, 14]. As aforementioned, when comparing with previous works,
Neural Predictor is friendly to hyper-parameter tuning, conceptually simple and
fully parallelizable. Moreover, our Neural Predictor can potentially work as a
surrogate model to accelerate accuracy acquisition of architectures during the
search in RL, EA and BO, or during the candidate architecture evaluation in
weight sharing approaches [2].

The idea of predictive models of the accuracy, which we use, has been ex-
plored in prior works. In [7] an LSTM was used to generate a feature representa-
tion of an architecture, which was subsequently used to predict the quality. The
one-shot approach by Bender et al. [2] used a weight sharing model to predict the
accuracy of an individually trained architecture. Baker et al. [1] used predictive
models to perform early stopping to speed up architecture and hyper-parameter
optimization. NAO [15] used both a learned representation and a predictor to
search for high quality architecture. PNAS [13] progressively trained a predictor
to accelerate the search. A key difference between PNAS and Neural Predictor
is that in PNAS the predictor is only a small component in a large traditional



4 W. Wen, H. Liu, Y. Chen, H. Li, G. Bender, P.-J. Kindermans

NAS system. In PNAS, the predictor and the models are trained over time as the
architectures become more complex. Because of this, the PNAS approach cannot
be completely parallelized. Another popular approach combined a predictor with
Bayesian Optimization [6]. Unlike above methods, which used ν-SVR/random
forests [1], multi-layer perceptrons [13], LSTMs [15, 7] or Gaussian processes [6],
we use a Graph Convolutional Network (GCN) [10] for our regression model.
GCNs are naturally permutation-invariant, capturing the intuition that an ar-
chitecture under different node permutations should have the same predicted
accuracy. Furthermore, we show strong results can be achieved without the use
of advanced techniques such as RL, EA, BO or NAO [15], enabling our merits of
friendliness to hyper-parameter tuning and full parallelizability. Finally, because
the effectiveness of NAS has been questioned [12], we include random baseline
to show that the search spaces used in this work are meaningful and that while
the proposed approach is simple, it is clearly better than a random approach.

While preparing the final version of this paper, we found a concurrent work [19]
which also used a GCN to predict accuracy. However, a node in their graph is a
model in the search space; as the search space is usually huge, their method is
hard to scale up. In our design, a graph represents a model and the graph size is
approximately proportional to the number of layers in a model. Therefore, our
Neural Predictor is able to scale to huge search spaces, such as the ProxylessNAS
ImageNet search space with the size of 6.64× 1017.

3 Neural Predictor

A cell or a network
Operations: [input, conv1x1, 
conv3x3, max-pool, output]

input

output

max-pool conv1x1

conv3x3 conv1x1
0, 1, 1, 0, 0, 1
0, 0, 0, 0, 0, 1
0, 0, 0, 1, 1, 0
0, 0, 0, 0, 0, 1
0, 0, 0, 0, 0, 1
0, 0, 0, 0, 0, 0

adjacency matrix

0, 0, 0, 0, 0, 0
1, 0, 0, 0, 0, 0
1, 0, 0, 0, 0, 0
0, 0, 1, 0, 0, 0
0, 0, 1, 0, 0, 0
1, 1, 0, 1, 1, 0

0

1 2

3 4

adjacency matrix 
transpose

[1,0,0,0,0]

[0,0,0,0,1]

[0,1,0,0,0]

[0,1,0,0,0][0,0,1,0,0]

[0,0,0,1,0]

0

1 2

3 4

5 5

Fig. 2: An illustration of graph and node representations. Left: A neural network archi-
tecture with 5 candidate operations per node. Each node is represented by a one-hot
code of its operation. The one-hot codes are inputs of a bidirectional GCN, which takes
into account both the original adjacency matrix (middle) and its transpose (right).

The core idea behind the Neural Predictor is that carrying out the actual
training and validation process is the most reliable way to find the best model.
The goal of the Neural Predictor is to provide us with a curated list of promising
models for final validation prior to deployment. The entire Neural Predictor
process is outlined below.



Neural Predictor for Neural Architecture Search 5

Step 1: Build the predictor using N samples. We train N models to
obtain a small dataset of (architecture, validation accuracy) pairs. The dataset
is then used to train a regression model that maps an architecture to a predicted
validation accuracy.

Step 2: Quality prediction. Because architecture evaluation using the
learned predictor is efficient and trivially parallelizable, we use it to rapidly
predict the accuracies of a large number of random architectures. We then select
the top K predicted architectures for final validation.

Step 3: Final validation on K samples. We train and validate the top
K models in the traditional way. This allows us to select the best model based
on the actual validation accuracy. Even if our predictor is somewhat noisy, this
step allows us to use a more reliable measurement to select our final architecture
for deployment.

Training N+K models is by far the most computationally expensive part of
the Neural Predictor. If we assume a constant compute budget, N and K are
key hyper-parameters which need to be set; we will discuss this next. Note that
the two most expensive steps (Step 1 and Step 3) are both fully parallelizable.

3.1 Hyper-parameters in the Workflow

Hyper-parameters for model training are always needed if we train a single
model in the search space. In this respect the Neural Predictor is no different
from other methods. We found that using the same hyper-parameters for all
models we train is an effective strategy, and was also used in NASBench-101.

Trade-off between N and K for a fixed budget: For a given compute
budget, the total number of architectures we train and evaluate, N + K, must
remain fixed. However, we can trade off between N (the number of samples used
to train the predictor) and K (the number of samples used for final evaluation).
If N is too small, the predictor’s outputs will be very noisy and will not provide
a reliable signal for the search. As we increase N , the predictor will become
more accurate; however, increasing N requires us to decrease K. If K is small,
the predictor must very reliably identify high-quality models from the search
space. As K increases, we will be able to tolerate larger noise in the predictor,
and the predictor’s ability to precisely rank architectures in the search space will
become less important. Because it is difficult to theoretically predict the optimal
trade-off between N and K, we will investigate this in the experimental setting.

To find a lower bound on N we can start with a small number of samples,
and iteratively increase N until we observe a good cross-validation accuracy. This
means that contrast to some other methods such as Regularized Evolution [17],
ENAS [16], NASNet [23], ProxylessNAS [5], there is no need to repeat the entire
search experiment in order to tune this hyper-parameter. The same applies to
the hyper-parameters and the architecture of the Neural Predictor itself.

The hyper-parameters of the Neural Predictor can be optimized by
cross-validation using the N training samples. The cost of training a neural
predictor including the hyper-parameter tuning is negligible compared to the
cost of training image models. It takes 25 seconds to train a neural predictor on



6 W. Wen, H. Liu, Y. Chen, H. Li, G. Bender, P.-J. Kindermans

N = 172 samples from NASBench-101. The mean (resp. median) training time
of a CIFAR-10 model in NASBench-101 is 32 (resp. 26) minutes. At the cost
of training two CIFAR-10 models (about one hour), we could try 144 hyper-
parameter configurations for the neural predictor. In contrast, RL or EA require
us to train more models in order to try out a new hyper-parameter configuration.

3.2 Modeling by Graph Convolutional Networks

We tried many options for the architecture of the predictor. We find Graph
Convolutional Networks (GCNs) work best. Due to space constraints we will
limit our discussion to GCNs. A comparison against other regression models
is in the supplementary material. Graph Convolutional Networks (GCNs) are
good at learning representations for graph-structured data [10, 20] such as a
neural network architecture. The graph convolutional model we use is based on
[10], which assumes undirected graphs. We will modify their approach to handle
neural architectures represented as directed graphs.

We start with a D0-dimensional representation for each of the I nodes in the
graph, giving us an initial feature vector V0 ∈ RI×D0 . For each node we use a
one-hot vector representing the selected operation. An example for NASBench-
101 is shown in Figure 2. The node representation is iteratively updated using
Graph Convolutional Layers. Each layer uses an adjacency matrix A ∈ RI×I

based on the node connectivity and a trainable weight matrix Wl ∈ RDl×Dl+1 :

Vl+1 = ReLU (AVlWl) . (1)

Following previous work [10], we add an identity matrix to A (corresponding to
self cycles) and normalize it using the node degree.

The original GCNs [10] assume undirected graphs. When applied to a directed
acyclic graph, the directed adjacency matrix allows information to flow only in a
single direction. To make information flow both ways, we always use the average
of two GCN layers: one where we use A to propagate information in the forward
directions and another where we use AT to reverse the direction:

Vl+1 =
1

2
ReLU

(
AVlW

+
l

)
+

1

2
ReLU

(
ATVlW

−
l

)
.

Figure 2 shows an example of how the adjacency matrices are constructed (with-
out normalization or self-cycles).

GCNs are able to learn high quality node representations by stacking multiple
of these layers together. Since we are more interested in the accuracy of the over-
all network (a global property), we take the average over node representations
from the final graph convolutional layer and attach one or more fully connected
layers to obtain the desired output. Details are provided in the supplementary.

4 Experiments

In this section we will discuss two studies. First we will analyze the Neural
Predictor’s behavior in the controlled environment from NASBench-101 [21].



Neural Predictor for Neural Architecture Search 7

Afterwards we will use our approach to search for high quality mobile models in
the ProxylessNAS search space [5].

4.1 NASBench-101

NASBench-101 [21] is a dataset used to benchmark NAS algorithms. The goal
is to come up with a high quality architecture as efficiently as possible. The
dataset has the following properties: (1) train time, validation and test accuracy
are provided for all 423,624 models in the search space; (2) each model was
trained and evaluated three times. This allows us to look at the variance across
runs; (3) all models were trained in a consistent manner, preventing biases from
the implementation from skewing results; (4) NASBench-101 recommends using
only validation accuracies during a search, and reserving test accuracies for the
final report; this is important to avoid overfitting.

NASBench-101 uses a cell-based NAS [23] on CIFAR-10 [11]. Each cell is a
Directed Acyclic Graph (DAG) with up to 7 nodes. There is an input node, an
output node and up to 5 interior nodes. Each interior node can be a 1× 1 con-
volution (conv1x1), 3×3 convolution (conv3x3) or max-pooling op (max-pool).
One example is shown in Figure 2 (left). In each experiment, we use the valida-
tion accuracy from a single run1 as a search signal. The single run is uniformly
sampled from these three records. This simulates training the architecture once.
Test accuracy is only used for reporting the accuracy on the model that was
selected at the end of a search. For that model we use the mean test accuracy
over three runs as the “ground truth” measure of accuracy.

Validation accuracy % Validation accuracy %

Te
st

 a
cc

ur
ac

y 
%

Best test model Best validation 
model

Fig. 3: (Left) Validation vs. test accuracy in NASBench-101. (Right) Zoomed in on the
highly accurate region. Each model (point) is the validation accuracy from a single
training run. Test accuracies are averaged over three runs. This plot demonstrates that
even knowing the validation accuracy of every possible model is not sufficient to predict
which model will perform best on the test set.

1 In the training dataset of our Neural Predictor, this means that each model’s accu-
racy label is sampled once and fixed across all epochs.



8 W. Wen, H. Liu, Y. Chen, H. Li, G. Bender, P.-J. Kindermans

0 1000 2000 3000 4000 5000

The number of samples

94.0

94.2

94.4

94.6

94.8

95.0

95.2

95.4

V
a
lid

a
ti

o
n
 a

cc
u
ra

cy
 %

neural predictor w classifier

neural predictor w/o classifier

regularized evolution

random search

oracle

0 1000 2000 3000 4000 5000

The number of samples

93.0

93.2

93.4

93.6

93.8

94.0

94.2

94.4

T
e
st

 a
cc

u
ra

cy
 %

neural predictor w classifier

neural predictor w/o classifier

regularized evolution

random search

oracle

0 1 2 3 4 5 6 7 8

Total training time (seconds) 1e6

93.0

93.2

93.4

93.6

93.8

94.0

94.2

94.4

T
e
st

 a
cc

u
ra

cy
 %

neural predictor w classifier

neural predictor w/o classifier

regularized evolution

random search

oracle

Fig. 4: Comparison of search efficiency among oracle, random search, Regularized Evo-
lution and our Neural Predictor (with and without a two stage regressor). All exper-
iments are averaged over 600 runs. The x-axis represents the total compute budget
N + K. The vertical dotted line is at N = 172 and represents the number of samples
(or total training time) used to build our Neural Predictor. From this line on we start
from K = 1 and increase it as we use more architectures for final validation. The
shaded region indicates standard deviation of each search method.

Oracle: an upper bound baseline. Under the assumption of infinite com-
pute, a traditional machine learning approach would be to train and validate
all possible architectures to select the best one. We refer to this baseline as the
“oracle” method. Figure 3 plots the validation versus the test accuracy for all
models. The model that the oracle method would select based on the validation
accuracy of 95.15% has a test set accuracy of 94.08%. This means that the or-
acle does not select the model with the highest test set accuracy. The
global optimum on the test set is 94.32%. However, since this model cannot be
found using extensive validation, one should not expect this model to be found
using any NAS algorithm. A more reasonable goal is to reliably select a model
that has similar quality to the one selected by the oracle. Furthermore, it is
important to realize that even an oracle approach has variance. We have
three training runs for each model, which allows us to run multiple variations of
the “oracle”. This simulates the impact of random variations on the final result.
Averaged over 100 oracle experiments, where in each experiment we randomly
select one of 3 validation results, the best validation accuracy has a mean 95.13%
and a standard deviation 0.03%. The test accuracy has a mean of 94.18% and a
standard deviation 0.07%.

Random search: a lower bound baseline. Recently, Li et al. [12] ques-
tioned whether architecture search methods actually outperform random search.
Because this depends heavily on the search space and Li et al. [12] did not investi-
gate the NASBench-101 search space, we need to check this ourselves. Therefore
we replicate the random baseline from NASBench-101 by sampling architectures
without replacement. After training, we pick the architecture with the highest
validation accuracy and report its result on the test set. Here we observe that



Neural Predictor for Neural Architecture Search 9

even when we train and validate 2000 models, which requires a massive compute
budget, the gap to the oracle is large (Figure 4). For random search the average
test accuracy is 93.66% compared to 94.18% for the oracle. This implies that
there is a large margin for improvement over random search. More-
over, the variance is quite high, with a standard deviation of 0.25%. Finally,
evaluating 5000 models in total produces only a small gain over evaluating 2000
models at a high computational cost.

Regularized evolution: a state of the art baseline. In the NASBench-101
paper [21], Regularized Evolution [17] was the best performing method. We repli-
cated those experiments using the open source code and their hyper-parameter
settings (available in the supplementary material). Regularized evolution is
significantly better than random as shown in Figure 4. However even after
2000 models are trained, it is still clearly worse than the oracle (on average) with
an accuracy of 93.97% and a standard deviation of 0.26%.

Neural Predictor. Having set our baselines, we now describe the precise Neu-
ral Predictor setup and evaluation. The graph representation of a model is a DAG
with up to 7 nodes. Each node is represented by an one-hot code of “[input,
conv1x1, conv3x3, max-pool, output]”. The GCN has three Graph Convolu-
tional layers with the constant node representation size D and one hidden fully-
connected layer with output size 128. Finally, the accuracy we need to predict
is limited to a finite range. While it is not that common for regression, we can
force the network to make predictions in this finite range by using a sigmoid
at the output layer. Specifically, we use a sigmoid function that is scaled and
shifted such that its output accuracy is always between 10% and 100%.

All hyper-parameters for the predictor are first optimized using cross-validation
where 1

3N samples were used for validation. After setting the hyper-parameters,
we use all N samples to train the final predictor. At this point we heuristically
increase the node representation size D of the predictor such that the number
of parameters in the Neural Predictor is also 1.5× as large. Specific N and D
values and other training details are in the supplementary material. The models
selected for final evaluation are always trained in the same way, regardless of the
method (baseline or predictor) that selected the model, to ensure fairness.

A two stage predictor. Looking at a small dataset of N = 172 models
in Figure 6 (left) during cross-validation,2 we realized that for NASBench-101 a
two stage predictor is needed. The NasBench-101 dataset contains many models
that are not stable during training or perform very poorly (e.g. a model with
only pooling operations). The two stage predictor, shown in Figure 5, filters
obviously bad models first by predicting whether each model will achieve an
accuracy above 91%. This allows the the second stage to focus on a narrower
accuracy range. It makes training the regression model easier, which in turn

2 In our implementation, we split the NASBench-101 dataset to 10, 000 shards and
each shard has 43 samples. The N = 172 comes from a random 4 shards.



10 W. Wen, H. Liu, Y. Chen, H. Li, G. Bender, P.-J. Kindermans

makes it more reliable. Both stages share the same GCN architecture but have
different output layers. A classifier trained on these N = 172 models has a low
False Negative Rate as shown in Figure 6 (right). This implies that the classifier
will filter out very few actually good models.

GCN 
Classifier

GCN 
Regressor

inaccurate 
models

models
accurate 
models

accuracies

Fig. 5: Neural Predictor on
NASBench-101. It is a cascade of
a classifier and a regressor. The
classifier filters out inaccurate
models and the regressor predicts
accuracies of accurate models.

Fig. 6: The classifier filtering out inaccu-
rate models in NASBench. 172 models (left)
are sampled to build the classifier, which is
tested by unseen data (right).

The two stage approach improves the results but is not required. If
we only use a single stage, the MSE for the validation accuracy is 1.95 (averaged
over 10 random splits). By introducing the filtering stage this reduces to 0.66.
In Figure 4 we observe that even without the filtering stage the predictor clearly
outperforms the random search baseline and regularized evolution. Therefore the
two stage approach should be seen as a non-essential fine-tuning of the proposed
method. Using only a single stage is more elegant, but adding the second stage
gives additional performance benefits.

Results using N=172 (or 0.04% of the search space) for training are shown
in Figure 4. We used N = 172 models to train the predictor. Then we vary K,
the number of architectures with the highest predicted accuracies to be trained
and validated to select the best one. Therefore, “the number of samples” in the
figure equals N +K for Neural Predictor. In Figure 4 (left), our Neural Predic-
tor significantly outperforms Regularized Evolution in terms of sample efficiency.
The mean validation accuracy is comparable to that of the oracle after about
1000 samples. The sample efficiency in validation accuracy transfers well to test
accuracy in terms of both the total number of trained models in Figure 4 (mid-
dle) and wall-clock time in Figure 4 (right). After 5000 samples, Regularized
Evolution reaches validation and test accuracies of 95.06% and 94.04% respec-
tively; our predictor can reach the same validation accuracy 12.40× faster and
the same test accuracy 22.83× faster. Another advantage we observe is that
Neural Predictor has small search variance.

N vs K and ablation study. We next consider the problem of choosing
an optimal value of N when the total number of models we’re permitted to
train, N +K, is fixed. Figure 7 summarizes our study on N . A Neural Predictor
underperforms with a very small N (43 or 86), as it cannot predict accurately
enough which models are interesting to evaluate. Finally, we consider the case
where N is large (e.g., N = 860) but K is small. In this case we clearly see
that the increase in quality of the GCN cannot compensate for the decrease in
evaluation budget. Note that in Figure 3 we have shown that some models are



Neural Predictor for Neural Architecture Search 11

0 1000 2000 3000 4000 5000

The number of samples

94.0

94.2

94.4

94.6

94.8

95.0

95.2

95.4

V
a
lid

a
ti

o
n
 a

cc
u
ra

cy
 %

neural predictor 860

neural predictor 344

neural predictor 172

neural predictor 129

neural predictor 86

neural predictor 43

regularized evolution

random search

oracle

0 1000 2000 3000 4000 5000

The number of samples

93.0

93.2

93.4

93.6

93.8

94.0

94.2

94.4

T
e
st

 a
cc

u
ra

cy
 %

neural predictor 860

neural predictor 344

neural predictor 172

neural predictor 129

neural predictor 86

neural predictor 43

regularized evolution

random search

oracle

0 1 2 3 4 5 6 7

Total training time (seconds) 1e6

93.0

93.2

93.4

93.6

93.8

94.0

94.2

94.4

T
e
st

 a
cc

u
ra

cy
 %

neural predictor 860

neural predictor 344

neural predictor 172

neural predictor 129

neural predictor 86

neural predictor 43

regularized evolution

random search

oracle

Fig. 7: Analysis of the trade-off between N training samples vs K final validation
samples in the neural predictor. The x-axis is the total compute budget N + K. The
vertical lines indicate different choices for N – the number of training samples and the
point where we start validating K models. All experiments are averaged over 600 runs.

higher ranked according to validation accuracies than test accuracies. This can
cause the test accuracy to degrade as we increase K in Figure 7.

4.2 ImageNet Experiments

While the NASBench-101 dataset allows us to look at the behavior in a well
controlled environment, it does not allow us to evaluate whether the approach
generalizes to larger scale problems. It also does not address the issue of finding
high-quality inference time constrained models. Therefore, to demonstrate that
our approach is more widely applicable we look at this use case in our second
set of experiments on ImageNet [8] with the ProxylessNAS search space [5]. We
will compare our results to a random baseline and our own reproduction of the
ProxylessNAS search. In this search space, the goal is to find a good model that
has an inference time between 75ms and 85ms on a Pixel-1 phone.

Search space. The ProxylessNAS search space does not have the cell-based
structure from NASBench-101; it instead requires independent choices for the
individual layers. There is a visualization of the search space in the supplemen-
tary material. The layers are divided up into blocks, each of which has its own
fixed resolution and a fixed number of output filters. We search over which layers
to skip and what operations to use in each layer. (The first layer of a block is
always present.) There are approximately 6.64×1017 models in the search space.

Baselines. Because this search space is so large, we cannot generate the or-
acle baseline; we must instead rely on the random search and ProxylessNAS
re-implementations we discuss next.

The random search baseline samples 256 models with inference times
between 75ms and 85ms. All these models are trained for 90 epochs. We then look
at which models are Pareto optimal (i.e. have good trade-offs between inference
time and validation quality). All Pareto optimal models were then trained for
360 epochs to be evaluated on the test set. The results are shown in Figure 8.
Implementation details are in the supplementary.



12 W. Wen, H. Liu, Y. Chen, H. Li, G. Bender, P.-J. Kindermans

ProxylessNAS [5] is an efficient NAS algorithm based on weight sharing
and RL. It trains a large neural network where different paths can be switched
on or off to mimic specific architectures in the search space. Our baselines were
obtained using reproductions of their search algorithm and RL reward function,
as well as one of their best searched models. These reproductions come from the
TuNAS [3] codebase. Our reproduction of their model (with slightly improved
training hyper-parameters) achieves 74.9% accuracy, compared with 74.6% in
the original paper. Across 5 independent runs, the search algorithm finds mod-
els with an average accuracy of 75.0% with a variance of 0.1%; latencies are
comparable to that of the ProxylessNAS model. These results are near state-
of-the-art for mobile CPUs. The RL controllers for ProxylessNAS and TuNAS
assume that for a single network all decisions can be made independently (i.e.
the probability distribution over architectures is factorized). To train the shared
weights of the large model, TuNAS repeatedly (i) samples an architecture from
the RL controller and (ii) trains it for a single step. To update the RL controller,
another batch is sampled. This time the batch is evaluated on the validation set,
and this result is used in combination with additional information (i.e. the la-
tency) to compute a reward used to update the RL controller. Since these results
are close together we consider this sufficiently good as a basis for comparison.

Neural predictor. Overall, we use the same basic pipeline as in the NASBench-
101 experiments. However, because the models in the ProxylessNAS search space
are much more stable than those in NASBench-101, we only need a single stage
predictor. To transfer from NASBench-101 to the ProxylessNAS search space,
all we have to do is to modify the graph and its node representations. The
ProxylessNAS search space is just a linear graph, and the node representation
at the input is nothing more than a one hot vector with length 7. This allows us
to describe all architectures.

Training and validating the neural predictor. To build the neural pre-
dictor we randomly sample 119 models; 79 samples are used for training and 40

Inference Time (ms)

Tr
ue
va
lid
at
io
n
ac
cu
ra
cy

Pr
ed
ic
te
d
ac
cu
ra
cy

Tr
ue
te
st
ac
cu
ra
cy

Inference Time (ms) Inference Time (ms)

Fig. 8: Comparison between random search, ProxylessNAS and Neural Predictor. Left:
Frontier models predicted by the Neural Predictor. Middle: Validation accuracy of
each found frontier models. Right: Test accuracy of each found frontier model. (Each
test accuracy is averaged over 5 training runs under different initial weight values.
Error bars with 95% confidence interval are also plotted in the figure.)



Neural Predictor for Neural Architecture Search 13

Training samples Validation samples Test samples

Fig. 9: The performance of Neural Predictor on training, validation and test samples.

samples are for validation. To find the GCN’s hyperparameters we average vali-
dation MSE scores over 10 random training and validation splits. Based on this
we select a GCN with 18 Graph Convolutional layers with node representation
size 96, and with two fully-connected layers with hidden sizes 512 and 128 on top
of the mean node representations in the last Graph Convolutional layer. After
all hyper-parameters are finalized, we train our GCN with all 119 samples.

Our validation also showed that for ImageNet experiments, no classifier is
needed to filter inaccurate models. This is because model accuracies lie within
a relatively small range as as shown in Figure 9 (left and middle). Our final
settings for the Neural Predictor achieved on MSE 0.109± 0.028 averaged over
10 validation runs. Figure 9 shows an example of the correlation between true
accuracy and predicted accuracy for training samples (left) and validation sam-
ples (middle). For validation samples, the Kendall rank correlation coefficient is
0.649 and the R2 score is 0.648895.

Looking at the predictive performance of the predictor. In Figure 9
(right), we test the generalization of our Neural Predictor to unseen test architec-
tures. We first randomly sample 100,000 models from the ProxylessNAS search
space without inference time constraint and predict their accuracies. We then
pick the model with minimum predicted accuracy (72.94%), the model with max-
imum predicted accuracy (78.45%), and 8 additional models which are evenly
spaced between those two endpoints. We train those 10 models to obtain their
true accuracies. In Figure 9 (right), the Kendall rank correlation coefficient is
0.956 and the R2 score is 0.929. More interesting, although our training dataset
never observed models with accuracies higher than 76%, our Neural Predictor
can still successfully predict the 5 models with accuracies higher than 76%. This
demonstrates the generalization of our Neural Predictor to unseen data.

Finding high quality mobile sized models. We now use the predictor
to select frontier models with good trade-offs between accuracies and inference
times. We randomly sample N = 112,000 models with inference times between
75ms and 85ms, and predict their accuracies as shown in Figure 8 (left). As
a sanity check, we also predict the quality of the ProxylessNAS model. The
predicted validation accuracy is 76.0% and close to its true accuracy 76.3%.

The next step is selecting K Pareto optimal models. However, because the
predictor can make mistakes, we need a soft version of Pareto optimality. To



14 W. Wen, H. Liu, Y. Chen, H. Li, G. Bender, P.-J. Kindermans

do so, we sort the models based on increasing inference time. In the regular
definition, a model is Pareto optimal if no faster model has higher quality. In our
setup, we define a model as ”soft-Pareto optimal” when the predicted accuracy
is higher than the minimum of the previous J models. In our experiments we
set J = 6. This leaves us with 137 promising models in green in Figure 8 (left).
All K = 137 models are then trained and validated. This allows us to obtain a
traditional Pareto frontier as shown in Figure 8 (middle). The architectures of
those true frontier models are included in the supplementary material.

The Neural Predictor outperforms the random baseline and is com-
parable to ProxylessNAS. Recall that the random baseline trained 256 mod-
els. This is the same number of models we trained in total for our method
(N = 119 models for training the predictor and K = 137 models selected for
final validation). For test accuracy comparisons, we train the frontier models in
Figure 8 (middle) for 360 epochs. The results are shown in Figure 8 (right). Now
we observe that the gap between the Pareto frontier of the neural predictor and
the random baseline is stable on unseen data. Note that, unlike Neural Predictor
which obtained frontier models in a single search, to obtain a frontier for Proxy-
lessNAS, one should run multiple searches to reduce/increase the inference time.
We opt to reduce filters in each layer to 0.92× for a faster model. The results
show that the Neural Predictor and ProxylessNAS perform comparably.

The resource cost of the Neural Predictor vs. ProxylessNAS. Di-
rectly comparing the resource cost of the Neural Predictor versus ProxylessNAS
is difficult. Training all N + K = 256 models for the entire Neural Predictor
experiment took 47.5 times as much compute as a single ProxylessNAS search.
However, in practice the gap is actually much smaller because optimizing the
hyper-parameters of the Neural Predictor has negligible cost. Trying out a new
hyper-parameter configuration for ProxylessNAS requires a full search. In our
experiments we needed to run 7 searches to fine-tune the hyper-parameters for
ProxylessNAS when we made a modification to the search space. This makes
the Neural Predictor at most 7 times as expensive as ProxylessNAS. On top of
that, the Neural Predictor is more effective at targeting different latency targets
than ProxylessNAS, which needs a search per target. This could reduce the gap
even more. Finally, in the ideal case we can parallelize model training for the
Neural Predictor (N = 119 models for training in parallel followed by K = 136
for validation in parallel). This would finish in half the time of a ProxylessNAS
run. Based on the analysis above, we believe that the Neural Predictor and Prox-
ylessNAS are complementary. The method of choice will depend on the effort
on tuning hyper-parameters, the complexity of implementing the search space
(with weight sharing) and the available resources. The biggest advantage of our
approach, and the most remarkable result to us, is how effective the Neural
Predictor is given the simplicity of the method.

Acknowledgements. We would like to thank Chris Ying, Ken Caluwaerts,
Esteban Real, Jon Shlens and Quoc Le for valuable input and discussions.



Neural Predictor for Neural Architecture Search 15

References

1. Baker, B., Gupta, O., Raskar, R., Naik, N.: Accelerating neural architecture search
using performance prediction. arXiv preprint arXiv:1705.10823 (2017)

2. Bender, G., Kindermans, P.J., Zoph, B., Vasudevan, V., Le, Q.: Understanding and
simplifying one-shot architecture search. In: International Conference on Machine
Learning. pp. 549–558 (2018)

3. Bender, G., Liu, H., Chen, B., Chu, G., Cheng, S., Kindermans, P.J., Le, Q.V.:
Can weight sharing outperform random architecture search? an investigation with
tunas. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 14323–14332 (2020)

4. Brock, A., Lim, T., Ritchie, J.M., Weston, N.: Smash: one-shot model architecture
search through hypernetworks. arXiv preprint arXiv:1708.05344 (2017)

5. Cai, H., Zhu, L., Han, S.: Proxylessnas: Direct neural architecture search on target
task and hardware. arXiv preprint arXiv:1812.00332 (2018)

6. Dai, X., Zhang, P., Wu, B., Yin, H., Sun, F., Wang, Y., Dukhan, M., Hu, Y., Wu,
Y., Jia, Y., et al.: Chamnet: Towards efficient network design through platform-
aware model adaptation. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 11398–11407 (2019)

7. Deng, B., Yan, J., Lin, D.: Peephole: Predicting network performance before train-
ing. arXiv preprint arXiv:1712.03351 (2017)

8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248–255. Ieee (2009)

9. Kandasamy, K., Neiswanger, W., Schneider, J., Poczos, B., Xing, E.P.: Neural
architecture search with bayesian optimisation and optimal transport. In: Advances
in neural information processing systems. pp. 2016–2025 (2018)

10. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

11. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images. Tech. rep., Citeseer (2009)

12. Li, L., Talwalkar, A.: Random search and reproducibility for neural architecture
search. arXiv preprint arXiv:1902.07638 (2019)

13. Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.J., Fei-Fei, L., Yuille,
A., Huang, J., Murphy, K.: Progressive neural architecture search. In: Proceedings
of the European Conference on Computer Vision (ECCV). pp. 19–34 (2018)

14. Liu, H., Simonyan, K., Yang, Y.: Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055 (2018)

15. Luo, R., Tian, F., Qin, T., Chen, E., Liu, T.Y.: Neural architecture optimization.
In: Advances in neural information processing systems. pp. 7816–7827 (2018)

16. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture
search via parameter sharing. arXiv preprint arXiv:1802.03268 (2018)

17. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image clas-
sifier architecture search. In: Proceedings of the AAAI Conference on Artificial
Intelligence. vol. 33, pp. 4780–4789 (2019)

18. Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Tan, J., Le, Q.V., Ku-
rakin, A.: Large-scale evolution of image classifiers. In: Proceedings of the 34th
International Conference on Machine Learning-Volume 70. pp. 2902–2911. JMLR.
org (2017)



16 W. Wen, H. Liu, Y. Chen, H. Li, G. Bender, P.-J. Kindermans

19. Tang, Y., Wang, Y., Xu, Y., Chen, H., Shi, B., Xu, C., Xu, C., Tian, Q., Xu, C.:
A semi-supervised assessor of neural architectures. In: IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (June 2020)

20. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

21. Ying, C., Klein, A., Real, E., Christiansen, E., Murphy, K., Hutter, F.: Nas-
bench-101: Towards reproducible neural architecture search. arXiv preprint
arXiv:1902.09635 (2019)

22. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578 (2016)

23. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures
for scalable image recognition. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 8697–8710 (2018)


