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Abstract. Learning discriminative powerful representations is a crucial
step for machine learning systems. Introducing invariance against arbi-
trary nuisance or sensitive attributes while performing well on specific
tasks is an important problem in representation learning. This is mostly
approached by purging the sensitive information from learned representa-
tions. In this paper, we propose a novel disentanglement approach to in-
variant representation problem. We disentangle the meaningful and sen-
sitive representations by enforcing orthogonality constraints as a proxy
for independence. We explicitly enforce the meaningful representation
to be agnostic to sensitive information by entropy maximization. The
proposed approach is evaluated on five publicly available datasets and
compared with state of the art methods for learning fairness and invari-
ance achieving the state of the art performance on three datasets and
comparable performance on the rest. Further, we perform an ablative
study to evaluate the effect of each component.

Keywords: Representation learning, disentangled representation, fair-
ness in machine learning

1 Introduction

Learning representations that are useful for downstream tasks yet robust against
arbitrary nuisance factors is a challenging problem. Automated systems powered
by machine learning techniques are corner stones for decision support systems
such as granting loans, advertising, and medical diagnostics. Deep neural net-
works learn powerful representations that encapsulate the extracted variations in
the data. Since these networks learn from historical data, they are prone to rep-
resent the past biases and the learnt representations might contain information
that were not intended to be released. This has raised various concerns regard-
ing fairness, bias and discrimination in statistical inference algorithms [17]. The
European union has recently released their ”Ethics guidelines for trustworthy
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AI” report 5 where it is stated that unfairness and biases must be avoided.

Since a few years, the community has been investigating to learn a latent repre-
sentation z that well describes a target observed variable y (e.g. Annual salary)
while being robust against a sensitive attribute s (e.g. Gender or race). This nui-
sance could be independent from the target task which is termed as a domain
adaptation problem. One example is the identification of faces y regardless of the
illumination conditions s. In the other case termed fair representation learning
s and y are not independent. This could be the case with y being the credit
risk of a person while s is age or gender. Such relation between these variables
could be due to past biases that are inherently in the data. This independence
is assumed to hold when building fair classification models. Although this as-
sumption is over-optimistic as these factors are probably not independent, we
wish to find a representation z that is independent from s which justifies the
usage of such a prior belief [18]. This is mostly approached by approximations
of mutual information scores between z and s and force the two variables to
minimize this score either in an adversarial [25, 16] or non-adversarial [14, 18]
manner. These methods while performing well on various datasets, are still lim-
ited by either convergence instability problems in case of adversarial solutions
or hindered performance compared to the adversarial counterpart. Learning dis-
entangled representations has been proven to be beneficial to learning fairer
representations compared to general purpose representations [13]. We use this
concept to disentangle the components of the learned representations. Moreover,
we treat the s and y as separate independent generative factors and decompose
the learned representation in such a way that each representation holds infor-
mation related to the respective generative factor. This is achieved by enforcing
orthogonality between the representations as a relaxation for the independence
constraint. We hypothesize that decomposing the latent code into target code
zT and residual sensitive zS code would be beneficial for limiting the leakage of
sensitive information into zT by redirecting it to zS while keeping it informative
about some target task that we are interested in.

We propose a framework for learning invariant fair representations by de-
composing learned representations into target and residual/sensitive representa-
tions. We impose disentanglement on the components of each code and impose
orthogonality constraint on the two learned representations as a proxy for inde-
pendence. The learned target representation is explicitly enforced to be agnostic
to sensitive information by maximizing the entropy of sensitive information in
zT .

Our contributions are three-folds:

– Decomposition of target and sensitive data into two orthogonal representa-
tions to promote better mitigation of sensitive information leakage.

– Promote disentanglement property to split hidden generative factors of each
learned code.

5 Ethics guidelines for trustworthy AI, https://ec.europa.eu/digital-single-
market/en/news/ethics-guidelines-trustworthy-ai
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– Enforce the target representation to be agnostic of sensitive information by
maximizing the entropy.

2 Related work

Learning fair and invariant representations has a long history. Earlier strategies
involved changing the examples to ensure fair representation of the all groups.
This relies on the assumption that equalized opportunities in the training set
would generalize to the test set. Such techniques are referred to as data mas-
saging techniques [9, 19]. These approaches may suffer of under-utilization of
data or complications on the logistics of data collection. Later, Zemel et al. [26]
proposed a semi-supervised fair clustering technique to learn a representation
space where data points are clustered such that each cluster contains similar
proportions of the protected groups. One drawback is that the clustering con-
straint limits the power of a distributed representation. To solve this, Louizos et
al. [14] presented the Variational Fair Autoencoder (VFAE) where a model is
trained to learn a representation that is informative enough yet invariant to some
nuisance variables. This invariance is approached through Maximum Mean Dis-
crepancy (MMD) penalty. The learned sensitive-information-free representation
could be later used for any subsequent processing such as classification of a target
task. After the success of Generative Adversarial Networks (GANs) [7], multiple
approaches leveraged this learning paradigm to produce robust invariant repre-
sentations [25, 27, 5, 16]. The problem setup in these approaches is a minimax
game between an encoder that learns a representation for a target task and an
adversary that extracts sensitive information from the learned representation.
In this case, the encoder minimizes the negative log-likelihood of the adversary
while the adversary is forced to extract sensitive information alternatively. While
methods relying on adversarial zeros-sum game of negative log-liklihood mini-
mization and maximization perform well in the literature, they sometimes suffer
from convergence problems and require additional regularization terms to stabi-
lize the training. To overcome these problems, Roy et al. [21] posed the problem
as an adversarial non-zero sum game where the encoder and discriminator have
competing objectives that optimize for different metrics. This is achieved by
adding an entropy loss that forces the discriminator to be un-informed about
sensitive information. It is worth noting that it is argued by [18] that adversar-
ial training for fairness and invariance is unnecessary and sometimes leads to
counter productive results. Hence, they approximated the mutual information
between the latent representation and sensitive information using a variational
upper bound. Lastly, Creager et al. [3] proposed a fair representation learning
model by disentanglement, their model has the advantage of flexibly changing
sensitive information at test time and combine multiple sensitive attributes to
achieve subgroup fairness. In their work, independence is enforced adversarially
by utilizing a discriminator to distinguish simulated independent representations
(fake) from learned representations (real).
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Fig. 1: Left: The graphical model of our proposed method. Right: Our framework
encode the input data to intermediate target and residual (sensitive) represen-
tations, parameterized by µ and σ. Samples from the estimated posteriors are
fed to the discriminators to predict the target and sensitive labels.

3 Methodology

let X be the dataset of individuals from all groups and x ∈ RD be an input
sample. Each input is associated with a target attribute y = {y1, . . . , yn} ∈ Rn
with n classes, and a sensitive attribute s = {s1, . . . , sm} ∈ Rm with m classes.
Our goal is to learn an encoder that maps input x to two low-dimensional repre-
sentations zT ∈ RdT , zS ∈ RdS . Ideally zT must contain information regarding
target attribute while mitigating leakage about the sensitive attribute and zS
contains residual information that is related to the sensitive attribute.

3.1 Fairness definition

One of the common definition of fairness that has been proposed in the litera-
ture [25, 21, 20, 1] is simply requiring the sensitive information to be statistically
independent from the target. Mathematically, the prediction of a classifier p(y|x)
must be independent from the sensitive information, which is expressed as follows

p(y|x) = p(y|x, s) (1)

For example, in the German credit dataset, we need to predict the credit be-
haviour of the bank account holder regardless the sensitive information, such as
gender, age ...etc. In other words, p(y = good credit risk|x, s = male) should be
equal to p(y = good credit risk|x, s = female). The main objective is to learn
fair data representations that are i) informative enough for the downstream task,
and ii) independent from the sensitive information.

3.2 Problem Formulation

To promote the independence of the generative factors, i.e. target and sensitive
information, we aim to maximize the log likelihood of the conditional distribution
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log p(y, s|x), given the fairness assumption in Eq. 1

p(y, s|x) =
p(y|x, s)p(x|s)p(s)

p(x)
= p(s|x)p(y|x) (2)

To enforce our aforementioned conditions, we let our model f(·) encode the
observed input data x into target zT and residual zS intermediate representa-
tions on which the independence constraints are applied,

p(y, s|x) = p(y|zT )︸ ︷︷ ︸
LT

p(zT |x)︸ ︷︷ ︸
LzT

p(s|zS)︸ ︷︷ ︸
LS

p(zS |x)︸ ︷︷ ︸
LzS

(3)

losses in Sec. 3.3 correspond to terms in Eq. 3 which are shown in the under
brackets. The log likelihood is maximized given the following constraints; (i)
p(zS |x) is statistically independent from p(zT |x), and (ii) zT is agnostic to
sensitive information s. Our objective function J can be written as

J = − log p(y, s|x) s.t. MI(zT , zS) = 0 and KL(p(s|zT ),U) = 0 (4)

where U(s) is the uniform distribution.

3.3 Fairness by Learning Orthogonal and Disentangled
Representations

As depicted in Fig. 1, our observed data x is fed to a shared encoder f(x; θ), then
projected into two subspaces producing our target, and residual (sensitive) repre-
sentations using the encoders; qθT (zT |x), and qθS (zS |x), respectively, where θ is
shared parameter, i.e. θ = θS ∩θT . Each representation is fed to the correspond-
ing discriminator; target discriminator, qφT

(y|zT ), and sensitive discriminator
qφS

(s|zS). Both discriminators and encoders are trained in supervised fashion
to minimize the following loss,

LT (θT , φT ) = KL(p(y|x) || qφT
(y|zT )), (5)

LS(θ∗S , φS) = KL(p(s|x) || qφS
(s|zS)), (6)

where θ∗S = θS\θ.
To ensure that our target representation does not encode any leakage of the
sensitive information, we follow Roy et al. [21] in maximizing the entropy of the
sensitive discriminator given the target representation qφS

(s|zT ) as

LE(φS , θT ) = KL(qφS
(s|zT ) || U(s)). (7)

We relax the independence assumption by enforcing i) disentanglement property,
and ii) the orthogonality of the corresponding representations.
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To promote the (i) disentanglement property on the target representation,
we first need to estimate the distribution p(zT |x) and enforce some sort of
independence among the latent factors,

p(zT |x) =
p(x|zT )p(zT )

p(x)
, s.t. p(zT ) =

NT∏
i=1

p(ziT ). (8)

Since p(zT |x) is intractable, we employ the Variational Inference, thanks
to the re-paramterization trick [11], and let our model output the distribution
parameters; µT , and σT , and minimize the KL-divergence between posterior
qθT (zT |x) and prior p(zT ) distributions as

LzT (θT ) = KL(qθT (zT |x) || p(zT )), (9)

where p(zT ) =
∏NT

i=1 p(z
i
T ) = N (0, I), and qθT (zT |x) = N (zT ;µT , diag(σT

2)).
Similarly, we enforce the same constraints on the residual (sensitive) representa-
tion zS and minimize the KL-divergence as LzS (θS) = KL(qθS (zS |x) || p(zS)).

To enforce the (ii) orthogonality between the target and residual (sensitive)
representations,i.e. µS ⊥ µT , we hard code the means of the prior distributions
to orthogonal means. In this way, we implicitly enforce the weight parameters
to project the representations into orthogonal subspaces. To illustrate this in
2-dimensional space, we set the prior distributions to p(zS) = N ([0, 1]T , I), and
p(zT ) = N ([1, 0]T , I) (cf. Fig. 1).

To summarize, an additional loss term is introduced to the objective func-
tion promoting both Orthogonality and Disentanglement properties, denoted
Orthogonal-Disentangled loss,

LOD(θT , θS) = LzT (θT ) + LzS (θS). (10)

A variant of this loss without the property of orthogonality, denoted Disentangled
loss, is also introduced for the purpose of ablative study (See Sec. 4.3).

3.4 Overall objective function

To summarize, our overall objective function is

arg min
θT ,θS ,φT ,φS

LT (θT , φT ) + LS(θ∗S , φS) + λELE(φS , θT ) + λODLOD(θT , θS)

(11)

where λE , and λOD are hyper-parameters to weigh the Entropy loss and the
Orthogonal-Disentangled loss, respectively. A sensitivity analysis on the hyper-
parameters is presented in Sec. 4.5.

4 Experiments

In this section, the performance of the learned representations using our method
will be evaluated and compared against various state of the art methods in the
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Algorithm 1 Learning Orthogonal Disentangled Fair Representations

Require: Maximum Epochs Emax, Step size ts, λOD, λE , γOD, γE , p(zT ), p(zS)
Ensure: zS ⊥ zT

Initialize: θT , θS , φT , φS ← θ
(0)
T , θ

(0)
S , φ

(0)
T , φ

(0)
S

for t = 1, 2, . . . , Emax do
[µT ,σT ] = qθT (zT |x)
[µS ,σS ] = qθS (zS |x)
sample zT ∼ N (µT , diag(σT

2))
sample zS ∼ N (µS , diag(σS

2))
compute LzT (θT ) = KL(qθT (zT |x) || p(zT ))
compute LzS (θS) = KL(qθS (zS |x) || p(zS))
compute LT (θT , φT ) = −

∑
p(y|x) log[qφT (y|zT )]

compute LS(θ∗S , φS) = −
∑
p(s|x) log[qφS (s|zS)]

compute LE(φS , θT ) =
∑
qφS (s|zT ) log[qφS (s|zT )]

update λOD ← λODγ
t/ts
OD

update λE ← λEγ
t/ts
E

LOD(θT , θS) = LzT (θT ) + LzS (θS)
J(θT , θS , φT , φS) = LT (θT , φT ) + LS(θ∗S , φS) + λELE(φS , θT ) + λODLOD(θT , θS)
update θT , θS , φT , φS ← argmin J(θT , θS , φT , φS)

end for
return θT , θS , φT , φS

domain. First, we present the experimental setup by describing the five datasets
used for validation, the model implementation details for each dataset, and de-
sign of the experiments. We then compare the model performance with state
of the art fair representation models on the datasets. We perform an ablative
study to monitor the effect of each added component on the overall performance.
We then evaluate the models qualitatively by showing t-SNE projections of the
learned representations. Lastly, we perform a sensitivity analysis to study the
effect of hyper-parameters on the training.

4.1 Experimental Setup

Tabular data: For evaluating fair classification, we use two datasets from the
UCI repository [4], namely, the German and the Adult datasets. The German
credit dataset consists of 1000 samples each with 20 attributes, and the target
task is to classify a bank account holder having good or bad credit risk. The
sensitive attribute is the gender of the bank account holder. The adult dataset
contains 45,222 samples each with 14 attributes. The target task is a binary
classification of annual income being more or less than $50, 000 and again gender
is the sensitive attribute.

Visual data: To examine the model learned invariance on visual data, we have
used the application of illumination invariant face classification. Ideally, we want
the representation to contain information about the subject’s identity without
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holding information regarding illumination direction. For this purpose, the ex-
tended YaleB dataset is used [6]. The dataset contains the face images of 38
subjects under five different light source direction conditions (upper right, lower
right, lower left, upper left, and front). The target task is the identification of
the subject while the light source condition is considered the sensitive attribute.

CIFAR data: Following Roy et al. [21], we have created a binary target task
from CIFAR-10 dataset [12]. The original dataset contains 10 classes we refer to
as fine classes, we divide the 10 classes into two categories living and non-living
classes and refer to this split as coarse classes. It is expected that living objects
have common visual proprieties that differ from non-living ones. The target task
is the classification of the coarse classes while not revealing information about the
fine classes. With a similar concept, we divide the 100 fine classes of CIFAR-100
dataset into 20 coarse classes that cluster similar concepts into one category. For
example, the coarse class ’aquatic mammals’ contains the fine classes ’beaver’,
’dolphin’, ’otter’, ’seal’, and ’whale’. For the full details of the split, the reader
is referred to [21] or the supplementary materials of this manuscript. The target
task for CIFAR-100 is the classification of the coarse classes while mitigating
information leakage regarding the sensitive fine classes.

Implementation details: For the Adult and German datasets, we follow the setup
appeared in [21] by having a 1-hidden-layer neural network as encoder, the dis-
criminator has two hidden layer and the target predictor is a logistic regression
layer. Each hidden layer contains 64 units. The size of the representation is 2.
The learning rate for all components is 10−3 and weight decay is 5× 10−4.
For the Extended YaleB dataset, we use an experimental setup similar to Xie et
al. [25] and Louizos et al. [14] by using the same train/test split strategy. We
used 38 × 5 = 190 samples for training and 1096 for testing. The model setup
is similar to [25, 21], the encoder consisted of one layer, target predictor is one
linear layer and the discriminator is neural network with two hidden layers each
contains 100 units. The parameters are trained using Adam optimizer with a
learning rate of 10−4 and weight decay of 5× 10−2.
Similar to [21], we employed ResNet-18 [8] architecture for training the encoder
on the two CIFAR datasets. For the discriminator and target classifiers, we em-
ployed a neural network with two hidden layers (256 and 128 neurons). For the
encoder, we set the learning rate to 10−4 and weight decay to 10−2. For the
target and discriminator networks, the learning rate and weight decay were set
to 10−2 and 10−3,respectively. Adam optimizer [10] is used in all experiments.

Experiments design: We address two questions in the experiments. First, is how
much information about the sensitive attributes is retained in the learned rep-
resentation zT ?. Ideally, zT would not contain any sensitive attribute informa-
tion. This is evaluated by training a classifier with the same architecture as the
discriminator network on sensitive attributes classification task. The closer the
accuracy to a naive majority label predictor, the better the model is. This classi-
fier is trained with zT as input after the encoder, target, and discriminator had
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Table 1: Results on CIFAR-10 and CIFAR-100 datasets.
CIFAR-10 CIFAR-100

Target Acc. ↑ Sensitive Acc. ↓ Target Acc. ↑ Sensitive Acc. ↓
Baseline 0.9775 0.2344 0.7199 0.3069

Xie et al. [25] (trade-off #1) 0.9752 0.2083 0.7132 0.1543
Roy et al. [21] (trade-off #1) 0.9778 0.2344 0.7117 0.1688
Xie et al. [25] (trade-off #2) 0.9735 0.2064 0.7040 0.1484
Roy et al. [21] (trade-off #2) 0.9679 0.2114 0.7050 0.1643

Ours 0.9725 0.1907 0.7074 0.1447

been trained and freezed. Second, is how well the learned representation zT per-
forms in identifying target attributes?. To this end, we train a classifier similar to
the target on the learned representation zT to detect the target attributes. We
also visualize the representations zT and zS by using their t-SNE projections
to show how the learned representations describe target attributes while being
agnostic to the sensitive information.

4.2 Comparison with state of the art

We compare the proposed approach against various state of the art methods
on the five presented datasets. We first train the model with Algorithm 1 while
changing hyper-parameters between runs.We choose the best performing model
in terms of the trade-off between target and sensitive classification accuracy
based on zT . We then compare it with various state of the art methods for sen-
sitive information leakage and retaining target information.

CIFAR datasets: We compare the proposed approach with two other state of the
art methods on the CIFAR-10 and CIFAR-100 datasets, namely Xie et al. [25]
and Roy et al. [21]. We examine two different trade-off points of both approaches.
The first trade-off point is the one with best target accuracy reported by the
model while the second trade-off point is the one with the target accuracy closest
to ours for a more fair comparison. The lower the target accuracy in the trade-
off the better (lower) the sensitive accuracy is. We can see when the target
accuracies are comparable, our model performs better in preventing sensitive
information leakage to the representation zT . Hence, the proposed method has
a better trade-off on the target and sensitive accuracy for both CIFAR-10 and
CIFAR-100 datasets. However, the peak target performance is comparable but
lower than the peak target performance of the studied methods.

Extended YaleB dataset: For the illumination invariant classification task on
the extended YaleB dataset, the proposed method is compared with the logistic
regression baseline (LR), variational fair autoencoder VFAE [14], Xie et al. [25]
and Roy et al. [21]. The results are shown in Fig. 2 on the right hand side. The
proposed model performs best on the target attribute classification while having
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(a) Target attribute classification accuracy.

(b) Sensitive attribute classification accuracy.

Fig. 2: Results on Adult, German, and extended YaleB datasets. The dashed
black line represent a naive majority classifier that predicts the majority label.

the closest performance to the majority classification line (dashed line in Fig. 2).
The majority line is the trivial baseline of predicting the majority label. The
closer the sensitive accuracy to the majority line the better the model is in hiding
sensitive information from zT . This means the learned representation is powerful
at identifying subject in the images regardless of illumination conditions. To
assess this visually, refer to Sec. 4.4 for qualitative analysis.

Tabular datasets: On the Adult and German datasets, we compare with LFR [26],
vanilla VAE [11], variational fair autoencoder [14], Xie et al. [25] and Roy et
al. [21]. The results of these comparisons are shown in Fig. 2. On the German
dataset, we observe a very good performance in hiding sensitive information with
71% accuracy compared to 72.7% in [21]. On the target task, the model performs
well compared to other models except for [21] which does marginally better than
the rest. On the Adult dataset, our proposed model performs better than the
aforementioned models on the target task while leaking slightly more informa-
tion compared to other methods and the majority line at 67%. Our method
has 68.26% sensitive accuracy while LFR, VAE, vFAE, Xie et al. , and Roy et
al. have 67%, 66%, 67%, 67.7%, and 65.5% sensitive accuracy, respectively.

Generally, we observe that the proposed model performs well on all datasets
with state of the art performance on visual datasets (CIFAR-10, CIFAR-100,
YaleB). This suggests that such a model could lead to more fair/invariant rep-
resentation without large sacrifices on downstream tasks.
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4.3 Ablative study

In this section, we evaluate the contributions provided in the paper by elimi-
nating parts of the loss function and study how each part affects the training
in terms of target and sensitive accuracy. To this end, we used the best per-
forming models after hyper-parameter search when training for all contributions
for each dataset. The models are trained with the same settings and architec-
tures described in Sec. 4.1. We compare five different variations for each model
alongside the baseline classifier:

1. Baseline: Training a deterministic classifier for the target task and evaluate
the information leakage about the sensitive attribute.

2. Entropy w/o KL: Entropy loss LE is incorporated (Equation 7) in the loss
while LOD is not included (Equation 10).

3. KL Orth. w/o Entropy: Entropy loss LE is not used (Equation 7) while
LOD is used for target and sensitive representations with orthogonal means
(Equation 10).

4. w/o Entropy w/o KL: Neither entropy loss nor KL divergence are used
in the loss. This case is similar ti multi-task learning with the tasks being
the classification of target and sensitive attributes.

5. Entropy + KL w/o Orth.: Entropy loss LE is used and disentangled loss
is used with similar means. Hence, there might be some disentanglement of
generative factors in the components of each latent code but no constraints
are applied to force disentanglement of the two representations.

6. Entropy + KL Orth.: All contributions are included.

The results of the ablative study are shown in Figure 3.

– For the sensitive class accuracy, it is desirable to have a lower accuracy
in distinguishing sensitive attributes. Compared to the baseline, we observe
that adding entropy loss and orthogonality constraints on the representations
lowers the discriminative power of the learned representation regarding sen-
sitive information. This is valid on all studied datasets except for CIFAR-10
where orthogonality constraint without entropy produced better represen-
tations for hiding sensitive information with a small drop (0.26%) on the
target task performance. In the rest of the cases, having either entropy loss
or KL loss only does not bring noticeable performance gains compared to
a multi-task learning paradigm. This could be attributed to the fact that
orthogonality on its own does not enforce independence of random variables
and another constraint is needed to encourage independent latent variables
(i.e. entropy loss).

– Comparing baseline with w/o Entropy w/o KL case answers the impor-
tant question ”Does multi-task learning with no constraints on representa-
tions bring any added value in mitigating sensitive information leakage?”. In
three out of the five studied datasets, it is the case. We can see lower accuracy
in identifying sensitive information by using the learned target representa-
tion as input to a classifier while having no constraints on the relationship
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Fig. 3: Ablative study. Dark gray and light gray dashed lines represent the ac-
curacy results on the target and sensitive task respectively for the ”Entropy +
KL Orth.” model.

between the sensitive and target representations during the training process
of the encoder. Simply, adding an auxiliary classifier to the target classi-
fier and force it to learn information about sensitive attributes hides some
sensitive data from the target classifier.

– Regarding target accuracy, the proposed model does not suffer from large
drops in target performance when disentangling target from sensitive in-
formation. This could be seen by comparing target accuracy between the
baseline and Entropy+KL Orth. columns. The largest drop in target per-
formance compared to no privacy baseline is seen on the German dataset.
This could be because of the very high dependence between gender and grant-
ing good or bad credit to a subject in the dataset and the small amount of
subjects in the dataset.

4.4 Qualitative analysis

We visualize the learned embeddings using t-SNE [15] projections for the ex-
tended YaleB and CIFAR-10 datasets (cf. Fig. 4. We use the image space, zT ,
zS as inputs to the projection to visualize what type of information is held
within each representation. We also show the label of each image with regards
to the target task to make it easier to investigate the clusters. For the extended
YaleB, we see that, using the image space x, the images are clustered mostly
depending on their illumination conditions. However, when using zT , the images
are not clustered according lighting conditions but rather, mostly based on the
subject identity. Moreover, the visualization of representation zS shows that the
representation contains information about the sensitive class. For the CIFAR-10
dataset, using the image space basically clusters the images on the dominant
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(a) t-SNE on x (b) t-SNE on zT (c) t-SNE on zS

(d) t-SNE on x (e) t-SNE on zT (f) t-SNE on zS

Fig. 4: t-SNE visualization of the extended YaleB faces (top) and CIFAR-10
(bottom) images. Figure is better seen in color and high resolution.

Fig. 5: Sensitivity analysis on the Adult dataset

color. When using zT , it is clear that the target information is separated where
the right side represent the non-living objects, and the left to inside part rep-
resents the living objects. What should be observed in zT , is that within each
target class, the fine classes are mixed and indistinguishable as we see cars, boats
and trucks mixed in the right hand side of the figure, for example. The represen-
tation zS has some information about the target class and also has the residual
information about the fine classes as we see in the annotated red rectangle. A
group of horses images are clustered together, then few dogs’ images are clus-
tered under it, then followed by birds. This shows that zS has captured some
sensitive information while zT is more agnostic to the sensitive fine classes.

4.5 Sensitivity analysis

To analyze the effect of hyper-parameters choices on the sensitive and target
accuracy, we show heatmaps of how the performance changes when the stud-
ied hyper-parameters are changed. The investigated hyper-parameters are KL
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weight (λOD), Entropy Weight (λE), KL gamma (γOD), and Entropy gamma
(γE). We show the results on the Adult dataset. We can see that the sensitive
accuracy is sensitive to λOD more than λE as changes in λE do not induce much
change on the sensitive accuracy. A similar trend is not visible on the target ac-
curacy. Regarding the choice of γOD and γE , we can see that the sensitive leakage
is highly affected by these hyper-parameters and the results vary when changed.
However, a more robust performance is observed on the target classification task.

5 Conclusions and future work

In this work, we have proposed a novel model for learning invariant representa-
tions by decomposing the learned codes into sensitive and target representation.
We imposed orthogonality and disentanglement constraints on the representa-
tions and forced the target representation to be uninformative of the sensitive
information by maximizing sensitive entropy. The proposed approach is evalu-
ated on five datasets and compared with the state of the art models. The results
show that our proposed model performs better than state of the art models on
three datasets and performed comparably on the other two. We observe better
hiding of sensitive information while affecting the target accuracy minimally.
This goes in line with our hypothesis that decomposing the two representa-
tions and enforcing orthogonality could solve the information leakage problem
by redirecting the information into the sensitive representation. One current
limitation of this work is that it requires a target task to learn the disentan-
glement which could be avoided by learning the reconstruction as an auxiliary
task similar to other privacy-preserving applications [24]. A direction worth in-
vestigating is replacing the pre-definition of the orthogonal sub-spaces priory
by learning orthogonality intrinsically with low-rank constraints on the learned
representations [22]. Another direction for future work could be focusing on the
disentanglement part of the framework. The current disentanglement of factors
of generation in the learned representations could be improved by using other
disentanglement frameworks [2, 23] that are capable of better disentanglement.
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