
On Diverse Asynchronous Activity Anticipation

He Zhao and Richard P. Wildes

York University, Toronto, Ontario, Canada
{zhufl, wildes}@cse.yorku.ca

1 Examination of the regularizer via a toy example

Work that has sought to mitigate mode collapse in the continuous domain (e.g .
[4,5,1,6,2]) typically examines the proposed approach on some simple synthetic
datasets to provide a sanity check. Popular test datasets for such experiments
include a “Gaussian Grid” or “Gaussian Circle”. Consideration of such datasets
allows the effectiveness of the approach to be verified in relative isolation of other
issues and thereby focus on the particular abilities to combat mode collapse.
With the effectiveness demonstrated in these simplified scenarios, the approach is
then applied to more complicated real-life datasets and tasks. To date, however,
no analogous experiment has appeared for the discrete domain, especially not
for discrete GANs.

Ground Truth
8 Modes

Step 1K Step 2K Step 3K Step 4K

Regularized 
Gumbel GAN 
(α = 1)

Vanilla Gumbel 
GAN (α = 1)

Vanilla Gumbel 
GAN (α = 100)

Fig. 1: Simplified demonstration of the quality vs. diversity trade-off with Gumbel softmax relaxation
(3rd and 4th rows) and the improved result provided by the proposed regularizar (1st and 2nd rows).
The first four columns show the evolution of results across training. The far right column shows
ground truth. Each bar chart in the 2nd row displays the numeric distribution of modes after every
1K training steps, which ideally should resemble the ground truth bar chart (uniformly distributed
among 8 modes), last row of the far right column.

Here, we provide a novel experiment setting for verifying mode-collapse mit-
igation in the discrete domain and use it to evaluate our approach. Similar to
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above continuous Gaussian examples, we synthesize a dataset with 8 modes lo-
cated on a (5 × 5) 2D grid at (x, y) positions, namely (1, 1), (1, 2), (1, 3), (2,
1), (2, 3), (3, 1), (3, 2), (3, 3). Each mode is given as a unit impulse shifted to
one of the specified locations. The rightmost column of Fig. 1 “Ground Truth 8
Modes” provides an illustration.

To simulate a stochastic conditional generation environment, we construct a
simple discrete GAN with a two-layer multilayer perceptron (MLP) as generator,
that maps the input, (0.5, 0.5), to two logit vectors, that represent the gener-
ated (x, y) coordinates. In complement, a separate two-layer MLP is used as a
discriminator to provide an adversarial loss for optimization. Standard Gaussian
noise is injected into the model during the generative process to provide stochas-
tic capacity. During training, Gumbel-Softmax relaxation, is used to obtain the
approximated one-hot vector. We compare results for optimization that solely
works under a pure adversarial loss, i.e. using Eq. 15 from the main submission,
vs. results for optimization that augments the advesarial loss with the normal-
ized distance regularizer, i.e. using Eq. 16 from the main submission. Figure 1
shows three sets of experimental results to help understand the quality/diversity
trade-off issue in discrete GANs and especially to demonstrate the effectiveness
of the proposed regularizer in mitigating mode collapse.

Vanilla Gumbel discrete GAN (Gumbel GAN without the normalized dis-
tance regularizer) suffers from low diversity with low temperature (e.g . for α = 1,
only a single mode is preserved) and low quality with high temperature (e.g . for
α = 100, we find the presence of false modes along with the correct ones). Over-
all, either choice leads to undesirable outcomes. In response, the majority of
recent alternative approaches seek to find a reasonable balance between quality
and diversity, which can be expensive and heuristic; see discussion in main text.
Instead, we augment the vanilla approach with the normalized distance regular-
izer and find that it supports both high quality and diversity, while mitigating
mode collapse. This ability is documented in the 4th column of the 1st row of
Fig 1, where all 8 modes are captured much better than when the regularizer is
lacking (even though not all modes are captured equally).

2 Estimation of loglikelihood via importance sampling

In this section, we describe how to obtain loglikelihood (LL) via importance
sampling as mentioned in the protocol 2 evaluation of the main submission by
following previous work [3].

LL estimation via sampling strategy is necessary when the probability den-
sity functions (pdf) of the datasets are unknown. We resort to a Monte-Carlo
approach to repeatly sampling next-action labels from the same input oberva-
tion and sampled random variables. Thus, LL can be derived from computing
log(p(θ; yi) for each individual yi in the test-set and then taking the average.

LL(θ;y |x, z) = log(p(θ;y |xi)) ≈
N∑
i=1

log(p(θ; yi|xi, z) (1)
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where p(·, θ) is our parameterized model for approximating the posterior and N
is the number of data in each test set. The base for log operator is set as e.

The individual p(θ; yi) is also expressed as an empirical mean weighted on
the groundtruth using Monte Carlo procedure:

1. Draw M independent values ϕ1, ϕ2, ..., ϕm from the approximated poste-
rior p(·; θ)

2. Estimate p(θ; yi) with

p(θ; yi|x, z) =
1

M

M∑
m=1

p(yi|ϕm; θ) =
1

M

M∑
m=1

p(yi|ϕm; θ)
p(ϕm|x, z; θ)
q(yi|x, z)

(2)

where q(yi|x, z) represent the corresponding groundtruth label from test set given
input x and z is random variable from standard gaussian distribution.

As a concrete example, for input action take cup and its ground-truth next
action pour milk, we sample M = 16 times by inputting the same input and
sampled random variable, calculate the empirical mean (e.g . 0.45) of the category
pour milk and therefore obtain the LL value (e.g . -0.7985). The overall score
is the average cross the test set.

Finally, we run above procedures 10 times and use the worst LL estimation
as a lower bound for a fair comparison with variational methods [3].

3 l1 distance for activity sequences

In this section, we further document how sample distances are calculated for the
normalized distance regularizer, Eq. 13 in the main submission.

Let <Ân+1:τ T̂n+1:τ> |z1 and <Ân+1:τ T̂n+1:τ> |z2 be two samples generated
by our generator, G, from input <A1:n ,T1:n> with two different latent noise
signals, z1 and z2, resp. Then, Eq. 13 of the main paper is realized by calculating
normalized l1 distances separately between the actions and temporal durations
and then combining through averaging according to

||G(<A1:n ,T1:n>, z1)− G(<A1:n ,T1:n>, z2)||l1
= || <Ân+1:τ , T̂n+1:τ> |z1− <Ân+1:τ , T̂n+1:τ> |z2)||l1

=
1

2

(
||Ân+1:τ |z1 − Ân+1:τ |z2 ||l1 + ||T̂n+1:τ |z1 − T̂n+1:τ |z2 ||l1

)
=

1

2

(
1

τ − n

τ−n∑
i=1

||âi|z1 − âi|z2 ||l1

+
1

τ − n

τ−n∑
i=1

||̂ti|z1 − t̂i|z2 ||l1
)
.
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4 Additional visualization results

In this section, we provide additional visualization results that compare our full
approach vs. our approach lacking normalized distance regularization, analogous
to Figure 5 of the main submission. Figure 2 shows sample sequences generated
from an initial observation of Take cup. For sequences generated without the
regularizer, it is seen that generated samples either lack diversity (e.g . α = 1
always yields the same result) or lack quality (e.g . α = 10 and α = 100 yield
sequences that do not follow naturally from the initial observation). In constrast,
inclusion of the normalized distance regularizer, i.e. our full approach, yields
samples that are both diverse and naturalistic.

Figure 3 shows examples generated from an initial observation (Cut fruit,
Peel fruit), that belongs to a video of preparing salads. This particular category
of activity sequence contains a large portion of action pairs that are repetitive
and interchangable, e.g . (Cut fruit, Peel fruit) and (Peel fruit, Cut fruit). There-
fore, the low temperature model without regularizer (e.g. α = 1) generates sta-
tionery oscillation between Cut fruit and Peel fruit, thus losing important modes
e.g . Put fruit2bowl or Stir fruit. For higher temperature cases e.g . α = 10 and
α = 100, we find generated examples become more random and unrealistic, sim-
ilar to the previous two visualization results in Fig 2 of this supplement as well
as Fig. 5 of the main submission. Again, our full approach generates reasonable
outputs that are close to real samples and includes a wider range of valid modes.
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Fig. 2: Visualization results from the Take cup initial observation. Comparisons include samples from
Gumbel GAN without the normalized distance regularizer while temperature ranges α ∈ {1, 10, 100},
as well as samples from our full approach that includes the regularizer.
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Fig. 3: Results from the (Cut fruit, Peel fruit) initial observation. Comparisons include samples from
Gumbel GAN without Regularizer with temperature permuting α ∈ {1, 10, 100}, as well as samples
from our full approach that includes the regularizer.



6 H. Zhao and R. P. Wildes

References

1. Lin, Z., Khetan, A., Fanti, G., Oh, S.: Pacgan: The power of two samples in gener-
ative adversarial networks. In: NIPS (2018)

2. Liu, S., Zhang, X., Wangni, J., Shi, J.: Normalized diversification. In: CVPR (2019)
3. Mehrasa, N., Jyothi, A.A., Durand, T., He, J., Sigal, L., Mori, G.: A variational

auto-encoder model for stochastic point processes. In: CVPR (2019)
4. Srivastava, A., Valkov, L., Russell, C., Gutmann, M.U., Sutton, C.: Veegan: Reduc-

ing mode collapse in gans using implicit variational learning. In: NIPS (2017)
5. Xiao, C., Zhong, P., Zheng, C.: Bourgan: Generative networks with metric embed-

dings. In: NIPS (2018)
6. Yang, D., Hong, S., Jang, Y., Zhao, T., Lee, H.: Diversity-sensitive conditional

generative adversarial networks. In: ICLR (2019)


