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Abstract. State-of-the-art approaches to video-based action and ges-
ture recognition often employ two key concepts: First, they employ mul-
tistream processing; second, they use an ensemble of convolutional net-
works. We improve and extend both aspects. First, we systematically
yield enhanced receptive fields for complementary feature extraction via
coarse-to-fine decomposition of input imagery along the spatial and tem-
poral dimensions, and adaptively focus on training important feature
pathways using a reparameterized fully connected layer. Second, we de-
velop a ‘use when needed’ scheme with a ‘coarse-exit’ strategy that allows
selective use of expensive high-resolution processing in a data-dependent
fashion to retain accuracy while reducing computation cost. Our C2F
learning approach builds ensemble networks that outperform most com-
peting methods in terms of both reduced computation cost and improved
accuracy on the Something-Something V1, V2, and Jester datasets, while
also remaining competitive on the Kinetics-400 dataset. Uniquely, our
C2F ensemble networks can operate at varying computation budget con-
straints.

Keywords: Action and gesture recognition, spatiotemporal coarse to
fine decomposition, weight reparameterization, budgeted computation

1 Introduction

The human visual system appears to process information across multiple spatial
and temporal scales in a coarse-to-fine (C2F) fashion [22]. A key advantage
of such a strategy is that perception can be achieved without reliance on the
most expensive high resolution processing, as analysis can exit when the needed
level of precision has been achieved. Additionally, if all actions do not require
equal resolutions, there is no reason to use equal input resolutions to identify all
actions.

Although deep learning approaches have achieved enormous success in re-
liably recognizing action/gesture using ConvNets, e.g. [28, 9, 44, 34, 36, 42, 17, 4,
3, 38] and at very low latency, e.g. [17, 36, 13, 44], all of these approaches still
require large computation costs (FLOPs) and energy at runtime. For instance,
one of the most efficient and high performing deep Convolutional neural network
(ConvNets) for action/gesture recognition [17] required 33 GFLOPs of compu-
tations for a single recognition. With this method, if we estimate a 6 GFLOPs
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per Joule [1] energy consumption, then gesture/action recognition at every 0.1
second interval for around 15 minutes will completely deplete a powerful mobile
battery with a capacity of 50,000 Joules. Additionally, such ConvNets cannot
adapt to varying FLOPs constraints (e.g. mobile switching from normal mode
to battery saver mode) - a problem that prior works attempt to address by
retraining a family of ConvNets with the same baseline (e.g. TSM-ResNet50
family [17] - each of the ConvNets in the family operates on different discrete
FLOPs). Overall, there is a need for action/gesture recognizing ConvNets that
can operate efficiently and accurately at continuously varying computational
cost constraints.

Based on this motivation, we present the first C2F cascaded ensemble net-
work for action/gesture (Fig. 1). At inference, the C2F network starts with
attempting to recognize action/gesture using a coarse resolution version of the
input video clip. This coarse stream acts as a fast recognition pathway requiring
a small number of computations. Only when the coarse pathway is not confident
at recognizing an action/gesture, does the next finer resolution pathway gets
invoked in a C2F manner (Fig. 1).

While computation costs can be decreased with a C2F scheme built on a
baseline ConvNet (e.g. baseline TSM [17] used in each of the C2F pathways),
identifying a C2F feature fusion scheme and a multi-pathway loss formulation
that enable the C2F ensemble to have better accuracy than the baseline ConvNet
is challenging. This is likely due to the following two reasons: First, in contrast
to prior multi-scale ConvNets on action/gesture recognition (e.g. SlowFast [4]),
the coarse pathways of the C2F are downsampled input videos containing only
a subset of information compared to the input at finest pathway - so, it is more
difficult to extract complementary information from the coarser inputs; second,
the choices on C2F feature fusion strategy and multi-pathway loss formulation
can cause some pathways dominating over the rest in the C2F ensemble (e.g.
bidirectional feature fusion leading to spatial stream dominating motion stream
in [5]). To address the above challenges, we propose the following:
1. A sub-network that fuses features from the ends of each of the C2F pathways
using a reparameterized fully connected (FC) layer that adaptively excites gra-
dient flow along the more important feature pathways during training.
2. An end-to-end differentiable multi-loss formulation to train the C2F network.
3. Another multi-loss formulation to train the C2F network when the baseline
finest pathway ConvNet is already trained.

Using the above technical contributions, this paper shows the potency of C2F
networks in action/gesture recognition by providing the first set of C2F bench-
marks that considerably improve baseline ConvNet performances (i.e., improved
accuracy and reduced computation cost). Additionally, we implement a coarse-
exit scheme that is controllable by a hyperparameter, and implement a controller
that adjusts the hyperparameter such that the C2F network operates at a com-
putation budget assigned externally. The ability to operate continuously on a
cost-accuracy curve (e.g. Fig 2) has considerable technical benefits - we no longer
need to retrain different models to fit varying computational budget constraints.
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2 Related work

Multi-stream processing in action/gesture recognition: Multi-stream learn-
ing is frequently used in state-of-the-art ConvNets for action/gesture recognition
(e.g. [14, 27, 5, 3, 12]). For example, the first two-stream network architecture [27]
and some of its variants [5, 6, 3] have achieved competitive results by combining
ConvNet activations that are generated from a spatial stream and a temporal
stream. The spatial stream usually has a single crop of the RGB video with
a small number of frames, whereas the temporal stream has the corresponding
optical flow [27, 5, 3] or a large number of RGB frames with low resolution [4]. In
contrast to multiple streams having complementary inputs, a 3D C2F decompo-
sition of the input video results in coarse pathway inputs that are spatiotemporal
downsampled signals of the finest pathway input; therefore, a C2F decomposi-
tion lacks complementary information at different streams compared to other
multi-stream structures [14, 27, 4, 3]. Despite this lack of complementary infor-
mation at multi-stream inputs in a C2F network, we show that C2F schemes can
be very potent in action/gesture recognition by providing a number of benefits:
improved accuracy, reduced computation cost, and budgeted inference.
C2F recognition to increase accuracy and reduce FLOPs: C2F-guided
processing has a long history in spatial visual processing [25, 24, 15, 16] - col-
lecting features from coarser pathways computed at a cheaper cost and fusing
them with finer pathways can increase accuracy without adding much com-
putational burden. These potential improvements in performance come from
extracting features at multiple scales and establishing a hierarchy of structural
features extracted at those multiple scales [15, 16]. In action/gesture recognition,
many research investigated use of multiple temporal and/or spatial resolutions
for increasing accuracy [17, 36, 42, 4, 14]; however, none have looked into the 3D
spatiotemporal decomposition of the input video for C2F feature extraction.
This could be likely due to the lack of complementary information in C2F path-
ways and due to the difficulty in formulating multi-loss joint optimization for
multi-stream pathways consisting of greater than two streams. Also, use of C2F
prediction cascades [35, 29, 39, 11] and dynamic inference approaches [18, 40] to
reduce computational complexity is common in object classification/detection
tasks; however, their use in action/gesture recognition is rare. Overall, the util-
ity of combining considerably cheaper 3D spatio-temporal coarse pathways and
expensive finer scale pathways in a cascade setting and the implementation of
budgeted inference are missing in action/gesture recognition tasks.

3 Technical approach

We begin by documenting the layout for a generic C2F network (Fig. 1). Each of
the streams in the C2F ensemble network can be any ConvNet (e.g. TSM [17],
R3D [33], etc.) that works on a clip of video with either dense sampling [33, 41] or
strided sampling [17, 42, 36] and recognizes actions/gestures. The C2F ensemble
can be composed of an arbitrarily large number of C2F pathways (N). In this
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paper, we use N = 3 and we call the coarsest pathway C, the finer pathway M
and the finest pathway F (Fig. 1). We decompose input video spatiotemporally
that compensates for decaying effective receptive field of convolution kernels [20]
(Sec. 3.1), fuse features for complementary processing between the C2F path-
ways (Sec. 3.2), and formulate two joint optimization schemes for the alternative
scenerio where the baseline ConvNet (i.e. the ConvNet at the finest pathway)
is either pre-trained or not pre-trained for the action/gesture recognition task
at hand (Sec. 3.3 and 3.4). For C2F inference, we implement a C2F coarse-exit
scheme with a controllable hyperparameter and a controller that can operate the
C2F network in a given budget computation cost (Sec. 3.5).

Fig. 1. The layout of our C2F network. Sampled frames of an input video are down-
sampled in both the spatial and temporal domains. A filter kernel at a depth i has a
progressively larger receptive field for coarser pathways relative to the original input
video size. This is demonstrated here with insert graphs that assume the ConvNets
used in F , M and C all have same-sized filter sizes (size>1) and that the size of the
activation maps does not change at different network depth. C2F features are fused
using a reparemterized FC layer. During inference, a coarse-exit scheme encourages
recognition output (O) at coarser scales. Additionally, for a given computation budget
B, a controller modifies the coarse-exit decision criteria such that C2F operates close
to the given budget.
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3.1 Enhanced receptive fields via spatiotemporal decomposition

A recent study showed that using the full image rather than center cropping im-
proves accuracy [17] suggesting that pixels in a frame that are located far away
from the center could provide valuable information as well and that enhanc-
ing receptive field of convolution kernels can be important for action/gesture
recognition. Therefore, we propose to systematically enhance receptive fields
by spatiotemporally downsizing the input video clip in a C2F manner while
compensating for the decreased resolution in the coarser pathways by comple-
mentary processing of higher resolution inputs at the finer pathways (Fig. 1).
This enhanced receptive field also partially compensates for the 1/

√
(i) decaying

effective receptive field in ConvNets [20] where i is the number of layers between
the input and the convolution kernel. An illustration of compensating for the
decaying receptive field is shown in Fig. 1.

3.2 Feature fusion using reparameterized FC layer

We concatenate the pre-softmax outputs from each of the C2F pathways (Fig.
1), and fuse these accumulated features (IC2F ) through a reparameterized FC
layer that adaptively excites gradient flow along the more important features of
IC2F during training. Intuitively, for a particular output node of the C2F en-
semble (e.g. output node representing ‘moving hand from right to left’ gesture),
there are likely some IC2F features that are more important than others (e.g.,
corresponding nodes for ‘moving hand’, ‘right to left’, ‘left to right’ in each of the
C2F pathways more important than the other nodes). Adaptively exciting gra-
dient flow along these important nodes leads to larger gradient backpropagation
along all the learnable ConvNet parameters that contributed to these nodes. We
achieve this by modifying each of the weights (w) of the FC layer such that:

wr = 0.5× [((2− β)× w)◦1 + (β × w)◦3], (1)

Ownew
= 0.5× [(2− β)× Ow) + 2β3(w◦2 × Ow)], (2)

where ◦ denotes Hadamard power, Ow is the backpropagated gradient on w
if the above reparameterization was not applied and β is a hyperparameter.
β ∈ R : β ∈ [0, 2], and Ownew

is the backpropagated gradient of w. For any
β > 0, wr will have relatively larger magnitude values for larger magnitude w
values, and the backpropagated gradient (Ownew) for higher valued weights will
also be higher. Higher values of β will further encourage this asymmetrical gain
in magnitude, and at β = 0 this asymmetrical gain in magnitude disappears.
Notably, since this weight reparameterization is only done during training, no
computation cost is added during inference compared to a normal FC layer.

3.3 Multi-loss paradigm of C2F

The C2F network need to be trained such that each pathway becomes reliable
for action/gesture recognition by itself and also provides complementary features



6 N. Quader et al.

for use by the finer pathways. We do this by formulating a joint optimization
formulation with the multi-loss function,

L =

N∑
n=1

αLn + (1− α)LC2F , (3)

where Ln and LC2F are the softmax cross-entropy losses comparing ground
truth Ô with On and OC2F , respectively, On is the output at pathway n, OC2F

is the output after the reparameterized FC layer, and α ∈ R : α ∈ [0, 1]. A
high value of α will have the C2F ensemble network focus only on optimizing
each of the pathways, whereas a low value of α will have the C2F network focus
more on extracting complementary information for improving OC2F . Since we
are motivated to improve performances of coarser pathways so we can exit early
and save computation costs, we use a high value of α = 0.9. Also, note that eq.
(3) is differentiable, so our joint optimization method is end-to-end differentiable
and can be trained together.

3.4 Multi-loss paradigm of C2F with pre-trained F

With availability of high performing networks that are already trained on large
datasets such as the Kinetics dataset [3], we propose extending the student-
teacher learning paradigm [10] to a classroom learning paradigm - here, F (i.e.
the finest pathway ConvNet) teaches the coarser pathways, and additionally a
classroom (the reparameterized FC layer layer of C2F) learns both from the
students and the teacher to perform better than F . Similar to a student-teacher
learning, the F sub-network is no longer trained and is only used for teaching
the students (i.e., the coarser pathways). To optimize all C pathways and the
reparameterized FC layer, we train the C2F network by minimizing the following
multi-loss function:

Ld =

N∑
n=1

αLn,KLD +

N∑
n=1

(1− α/2)Ln + (1− α/2)LC2F , (4)

where Ln,KLD is the Kullback-Leibler divergence between the distributions of
pn/τ and pF /τ , pn is the softmax output of the nth scale, pF is the softmax
output of F , τ is a temperature parameter that softens the distributions between
pF and pn [10], and α is a hyperparameter [10]. The primary difference in Ld from
the original knowledge distillation scheme [10] is the (1 − α/2)LC2F term that
encourages each of the coarse scales to provide some complementary information
to F that may help in improving overall performance of OC2F .

3.5 Coarse-exit and budgeted inference

For fast inference, C2F includes a coarse-exit decision stage that encourages
using low average computation costs while retaining high accuracy. Inference
starts with forward propagation along the coarsest stream (Fig. 1). To ensure
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that recognition at this coarsest stream is performed accurately, action/gesture
recognition is done only when the softmax output sN > T , where sN is the
maximum value in pN and T is a hyper-parameter controlled externally. However,
since softmax outputs tend to be too confident in their predictions and since they
are not well-calibrated for uncertainty measures [8], we adjust sN using a global
training accuracy context as follows:

sCN = 1− (1− sN )× eN/e1, (5)

where eN is the training misclassification rate for the coarsest scale and e1 is the
training misclassification rate at the end of the C2F ensemble. This coarse-exit
strategy is repeated and finer streams in the ensemble are only invoked when
the coarse-exit in the coarser stream fails (Fig. 1).

Inference stage C2F can also have a budget FLOPs (B ∈ R : B ∈ [fC , fC2F ])
as input, where fC is the FLOPs of C pathway and fC2F is the computation
cost of the C2F ensemble for a single recognition. We implement a controller
that continuously modifies T as:

T = Tav + (B − fav) ∗ (fav − fC2F )/(Tav − 1.0), (6)

where fav is the running average FLOPs and Tav is the average of previous r
recognitions (default r=100). Only when C2F is operating at desired budget (i.e.
B − fav = 0), T does not update from Tav.

3.6 Protocols

Our C2F architecture is generic and can be applied to different baseline Con-
vNets. In this work, we use C2F with TSM [17] as its baseline ConvNet. We chose
TSM since it has been dominating the leaderboard in the Something-Something
V1 and V2 datasets [31, 32], and is considerably more efficient compared to
most competitive ConvNets for action/gesture recognition [17]. We investigate
improvements achieved by extending TSM baseline to a C2F architecture on
four standard action/gesture recognition datasets, and compare them against
the improvements achieved by applying the popular non-local blocks (NL) [37]
with TSM baseline. Additionally, we compare C2F-extended TSM with other
competitive ConvNets on Jester and Something-Something V1, V2 datasets.
Datasets: For gesture recognition, we evaluate C2F ensemble networks on the
Jester dataset [30], which is currently the largest publicly available dataset for
gesture recognition. It has ∼119K training videos, ∼15K validation videos, and
a total of 27 different gesture and no-gesture classes. For action recognition,
we train and evaluate C2F on the Something-Something V1 and V2 datasets
[7], and the Kinetics-400 dataset [3]. The Something-Something V1 dataset has
∼86K training videos and ∼12K validation videos of humans interacting with
everyday objects in some pre-defined action-sets (e.g. pushing some object from
left to right, etc.). The V2 dataset expands on the V1 dataset with a total of
∼169K training videos and ∼25K validation videos. Activity recognition in these
videos is challenging since it requires identifying objects as well as the sets of
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movements resulting in a particular interaction. We also evaluate C2F on the
Kinetics-400 [3], which is another large-scale dataset with 400 classes of actions
that are less sensitive to temporal movements of objects [17].

Training and testing: F in our C2F ensemble networks are instantiated with
TSM-ResNet50 [17]. We denote a trained C2F that has not used action-pretrained
F (i.e., not pretrained on the action recognition task at hand) at initializa-
tion as C2FA, and we denote a trained C2F that used action-pretrained F
and trained using the classroom learning paradigm as C2FC . For the latter,
F is initialized with ImageNet pretraining using only 224 × 224 resolution. All
other pathways also use the same ImageNet pretraining, so multiple ImageNet
pretraining at different scales is not necessary. Coarse pathways cause small
FLOPs and memory burden on the overall C2FC architecture (see Table 1).
Additionally, instantiating a coarse pathway with a heavier network causes less
computational overhead compared to instantiating F with a heavier network.
Due to this relatively smaller computation overhead, we also investigate heavier
networks (TSM-ResNet101) at the coarser pathways while still using the pre-
trained TSM-ResNet50 as F in our C2FC architecture. For convenience, we will
call this modified architecture C2FC+. For all ConvNet results we report in this
section and subsequent sections, we use subscript En to denote use of the entire
ensemble network during inference and we use subscript Ex to denote use of
coarse-exit scheme during inference.

We sample 16 strided frames for the Something-Something and Jester datasets,
and use 8 densely sampled frames for the Kinetics dataset similar to [17]. For
the coarser pathways we use 8 frames. We do not decompose the spatiotemporal
video to less than 8 frames, since we found empirically that using 4 frames or less
can deteriorate C pathway performances. We used data augmentation similar to
[36], used a batch size of 64, and optimized with stochastic gradient descent [23]
having momentum 0.9 and a weight decay of 5e-4. For the classroom learning,
F is not trained any further from its pretrained form. Training was done for 50
epochs - here, learning rate was initialized at 0.02 and reduced thrice with a fac-
tor of 10−1 after 20th, 40th and 45th epochs. To prevent overfitting, we also added
extra dropout layers with dropout rate of 0.5 before each of the final FC layers
in On. To compare with TSM baseline (Table 1), we use the single center-crop
evaluation followed in [17] - here, the center crop has 224/256 of the shorter side
of a frame. To compare with other methods (Table 2), we follow [37, 13] where
the center-crop has the entire shorter side which is then resize to 224×224 for
Something-Something V1/V2 and Kinetics datasets and resized to 128×128 for
the Jester dataset. We note that single center-crop action/gesture recognition
accuracy are likely to approximate accuracy in practical settings that will likely
not use multiple crops to ensure efficiency. We also report multi-crop evalua-
tions using settings used in [17] for each of the datasets. On all experiments,
we use β = 1.0 for the reparameterized FC layer, and α = 0.1 and τ = 6.0 for
the classroom learning paradigm based on empirical observations on the Jester
dataset.
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Table 1. Effect of extending TSM baseline with NL [37] or our C2F architectures.
Memory usage was computed based on a inference batch size of 1. The C2F ensembles
perform better than TSM with NL, except on the Kinetics dataset where using C2F
with TSM-NL has the highest accuracy.

Method Inference costs and accuracy

Baseline Module added Param. Memory FLOPs Top-1
Acc.(%)

Top-5
Acc.(%)

4Top-1

Something-Something V1

TSM-ResNet50 None 1.0× 1.0× 1.0× 47.0 76.9 +0.0
(16F-224) [17] NL [37] 1.3× 1.24× 1.2× 41.3 72.1 -5.7

C2FA,En 3.0× 1.19× 1.16× 47.9 77.5 0.8
C2FC,En 2.0× 1.12× 1.08× 48.4 78.4 +1.4
C2FC,Ex (T=.65) 2.0× 1.12× 0.8× 47.4 77.7 +0.4

Something-Something V2

TSM-ResNet50 None 1.0× 1.0× 1.0× 61.5 87.5 +0.0
(16F-224) [17] NL [37] 1.3× 1.24× 1.2× 57.2 84.0 -4.3

C2FA,En 3.0× 1.19× 1.16× 62.1 88.1 +0.6
C2FC,En 2.0× 1.12× 1.08× 62.4 88.0 +0.9
C2FC,Ex (T=.80) 2.0× 1.12× 0.7× 61.8 87.6 +0.3

Kinetics

TSM-ResNet50 None 1.0× 1.0× 1.0× 69.8 88.3 +0.0
(Dense 8F-224) NL [37] 1.3× 1.24× 1.2× 70.9 89.3 +1.1
[17] C2FC,En 2.0× 1.12× 1.08× 70.5 88.9 +0.7

C2FC,En + NL 2.3× 1.39× 1.28× 71.4 90.0 +1.6
C2FC,Ex + NL (T=.0.5) 2.3× 1.39× 0.8× 70.1 89.0 +0.3

TSM-ResNet50 None 1.0× 1.0× 1.0× 72.4 90.8 +0.0
(Strided 16F-224) C2FC,En 2.0× 1.12× 1.28× 73.5 91.4 +1.1
[17] C2FC,Ex (T=.0.7) 2.0× 1.12× 0.8× 72.6 90.9 +0.2

Jester

TSM-ResNet50 None 1.0× 1.0× 1.0× 96.3 99.7 +0.0
(16F-128) [17] NL [37] 1.3× 1.24× 1.2× 96.4 99.8 +0.1

C2FA,En 3.0× 1.19× 1.16× 96.5 99.8 +0.2
C2FC,En 2.0× 1.12× 1.08× 96.5 99.8 +0.2
C2FC,Ex (T=.99) 2.0× 1.12× 0.5× 96.4 99.8 +0.1

3.7 Results

Performance improvements over baseline: We find consistent improve-
ments with our C2F ensemble networks (C2FA,En and C2FC,En (Table 1), and
C2FC+,En (Table 2)) over TSM baseline (Table 1). The accuracy improvements
achieved over baseline (4Top1) with C2FC,En are larger compared to 4Top1
achieved by adding NL [37] to baseline TSM (except for the Kinetics dataset, see
Table 1), and the improvements come at less FLOPs and memory usage over-
head. When ‘TSM-ResNet50 with NL added’ is used as F in the C2FC learning
on the Kinetics dataset, the accuracy of the ensemble output (i.e., C2FC,En with
NL added in F ) improves further, suggesting that the beneficial effects of adding
the NL block is complementary to extending a base network to C2F. We also
find that the smallest 4Top1 is on the Jester dataset (with the highest base-
line TSM accuracy) and the largest 4Top1 is on the Something-Something V1
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Table 2. Comparison of C2FC+,En with competitive approaches that use single-crop
RGB for evaluation on the Something-Something and Jester datasets. Our C2FC+,En

and its coarse-exit scheme outperforms all competitive methods that are at FLOPs<
50G and at FLOPs> 50G. For methods with *, we use our training settings on official
implementations of the methods.

Jester Something V1 Something V2

Model FLOP Val1
(%)

FLOP Val1
(%)

Val5
(%)

FLOP Val1
(%)

Val5
(%)

FLOPS<50G

TRN-Multiscale-BNInception [42] - - 16 34.4 - 16 48.8 77.6

TSN-ResNet50 [36] - - 33 19.7 46.6 33 30.0 60.5

ECO [44] - - 32 39.6 - - - -

C2FC+,Ex 25 96.8 15 42.1 72.0 11 54.2 82.0

FLOPS>50G

GST-ResNet50 [19] - - 59 48.6 77.9 59 62.6 87.9

TSM-ResNet50* [17] 65 96.4 65 47.1 77.0 65 61.6 87.7

STM-ResNet50 [13] - - 67 49.2 79.3 - - -

S3D-BNInception-G [41] - - 71 48.2 78.7 - - -

TSM-ResNet50En* [17] - - 98 49.0 78.9 - -

ABM-AC-inEn-ResNet50[43] - - 106 46.8 - 61.2 -

TSN-STD-ResNet50[21] - - - 50.1 - - -

C2FC+,Ex - - 59 49.3 79.1 56 62.8 88.0

C2FC+,En - - 85 50.2 79.9 85 63.8 88.8

dataset (with the lowest baseline TSM accuracy) - this suggests that extending a
baseline network to C2F may provide more accuracy improvements for difficult
datasets.

Extra FLOPs and memory usage: The extra FLOPs of our ensemble net-
works are considerably reduced when our coarse-exit (Ex) scheme is invoked
- e.g. using C2FC,Ex with T = 0.8 on the Something-Something V2 dataset
reduces FLOPs of C2FC,Ex 30% below the baseline TSM while still retaining
a non-trivial accuracy improvement (Table 1). Interestingly, in contrast to the
trend in accuracy improvement vs. base accuracy, we see an opposite trend for
computation cost reduction - easier datasets enjoy larger computation cost re-
ductions (Table 1). Finally, the small additional memory usage of C2F networks
are justifiable considering their ability to flexibly and continuously operate on
the cost-accuracy curve, and their ability to operate at very low FLOPs when
availability of computational resources are limited (Fig. 2). The flexibility to op-
erate continuously on the cost-accuracy curve has enormous technical benefits.
We no longer need to retrain different models to fit varying computational bud-
get constraints - we are now able to flexibly control the C2F network to operate
in varying cost constraints by simply modifying the parameter T (Fig. 2).

Single-crop RGB performances: Table 2 shows single-crop RGB perfor-
mance of C2F networks compared to competitive ConvNets on Jester and Something-
Something V1, V2 datasets. While TSM [17] does not exhibit the best single-crop
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Fig. 2. (a) FLOPs of C2FC network at inference (dotted blue, green and red lines)
follows closely the randomly defined budget FLOPs B that is assigned randomly at
every 2500th videos for Jester and Something-Something V1 and V2 datasets (solid
blue, green and red lines). The dotted black line represents the modified T values for
Something-Something V2 dataset to enable the C2FC network to operate close to B.
(b) C2FC network’s cost-accuracy curve for Jester dataset has considerably better cost-
accuracy tradeoff compared to baseline TSM and the more efficient TRN family. The
various cost-accuracy operating points on the C2FC are obtained simply by adjusting
the T values (T ∈ R : T ∈ [1− eN/e1, 1]) without retraining the entire model.

results among competitive methods, C2FC+,En built on TSM baseline consid-
erably outperforms the rest (Table 2); thus, a different baseline to our C2F
could bring even higher accuracy. The extra computation costs of C2FC+,En

can be flexibly reduced using the coarse-exit scheme (C2FC+,Ex). Controlling
the hyperparameter T in C2FC+,Ex yields considerably higher performances
than competing methods at various FLOPs constraints (e.g. FLOPs<50G and
FLOPs>50G in Table 2). On the Jester dataset, C2F uses inputs having spatial
dimension of 128 × 128 in contrast to 224 × 224 used in other methods - this
makes C2F considerably more efficient for Jester dataset.

Multi-crop RGB performances: We find similar accuracy improvements with
C2FC,En implementation on multi-crop evaluations over TSM baseline (improve-
ment from 63.1% to 64.1% on Something-Something V2 and improvement from
75.6% to 76.0% on Kinetics). Compared to the competitive multi-resolution ap-
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proach SlowFast [4], C2FC,En has better accuracy at lower computation cost on
Kinetics - 75.6% accuracy with SlowFast4× 16R50 at computation cost of 1083
GFLOPs/video vs. 76.0% accuracy with C2FC,En,NL at less than half the com-
putation cost (460GFLOPs/video). Finally, C2FC+,En on a 30-crops softmax-
averaged evaluation on the Jester dataset yields a top-1 test accuracy of 97.09%,
beating the closest competitor [26] with a misclassification rate reduction by
around 14%.

3.8 Ablation studies:

We performed a series of ablation studies, and compare results of all experiments
using single-crop validation accuracy. First, we compare performances of the
baseline ConvNet (TSM) with alternative multi-stream fusion schemes - (i) late
fusion with ensemble of classification scores similar to [27, 4, 17, 36, 14], (ii) slow
fusion with lateral connections similar to [4]. Next, we separately investigate
effectiveness of - (i) the C2F decomposition compared to all fine pathways, (ii)
the reparameterized FC layer compared to a vanilla FC layer, (iii) the class-
learning method compared to the student-teacher [10] learning method, and (iv)
the effectiveness of our generic C2F on other popular baseline ConvNets for
action/gesture recognition.
Effectiveness of multi-loss schemes: To investigate effectiveness of multi-
loss schemes we compare C2F results against simple late fusion schemes with
ensemble of classification scores. We investigate three simple C2F ensembling
schemes: First, summing up softmax scores of each C2F pathway; second, mul-
tiplying softmax scores with training accuracy of each pathway separately and
then summing up the weighted scores; third, using a product of softmax scores
of each C2F pathway. On the Jester dataset, all of the above results in poorer
accuracy (95.3% with additive ensemble, 96.0% with weighted additive ensemble
and 95.3% with multiplicative ensemble) compared to baseline TSM with accu-
racy 96.3% - this could be because softmax outputs tend to be too confident in
their predictions [8] such that misclassifications from coarser pathways start dis-
abling correct recognitions at finest pathway. Additionally, end-to-end learning
with multi-stream loss added and backpropagated does not improve accuracy
over baseline (96.2% with such multi-loss optimization vs. 96.3% with baseline
TSM).
Slow fusion with lateral connections: To encourage feature reuse of each
convolutional kernel, we experiment with lateral connections between adjacent
C2F streams. We only investigate lateral connections sourced at coarser streams
and ending at finer streams, so we can still enable coarse-exit at inference. We
laterally connect activation maps from the coarse pathway (AC) to the activation
maps in the adjacent finer pathway (AF ) in a manner similar to [5], but find
deteriorating accuracy by 0.05% on the Jester dataset. This failure in improving
performance is perhaps due to incorporation of noisy activation maps from the
coarser pathways to the finer pathways, which outweights the benefits of lateral
connections. This could perhaps be resolved with concatenation of activation
maps rather than naive arithmetic lateral connections; however, since we are
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more concerned with keeping overall network computation efficient, we defer
that experiment for later.

C2F decomposition vs. all-fine pathways: When the coarser pathways of
C2FC are fed with non-downsampled input rather than downsampled coarse
input, the improvement in accuracy compared to baseline TSM (4Top1 = 1.1)
was slightly lower than with the original C2FC (4Top1 = 1.4), suggesting that
a C2F architecture not only reduces computation burden compared to a non-
downsampled scheme, but also provides beneficial complementary information
for the C2F ensemble.

Utility of the reparameterized FC layer: Replacing our reparameterized
FC layer with a regular FC layer in the C2FC ensemble networks deteriorates
accuracy - the reduction in top-1 accuracy(%) is around 0.1 for Jester, around
0.3 for both Something-Something V1 and V2 datasets, and a larger 0.6 for the
Kinetics dataset. Since the Kinetics dataset has the highest number of classes
among the datasets we used (400 compared to 174 of Something-Something and
27 of Jester), the number of connections in the FC layer are much larger for a
C2FC instantiation on Kinetics. The reparameterized FC layer is particularly
effective in such instances of large numbers of FC connections since it is able to
focus more on the important FC connections. For datasets with higher number
of classes (e.g. Kinetics-700 [2]), the reparameterized FC layer or a variant of the
reparameterized FC layer that focuses on important FC connections will likely
be crucial for a successful C2F implementation.

Comparison with student-teacher [10] learning method: In contrast to a
student-teacher learning method [10], our classroom learning approach enables
C2FC,En to perform significantly better than the teacher network F (Table 1).
In terms of utility in teaching the student networks (i.e., the coarser networks
of C2FC), we find no significant difference in the coarsest pathway accuracy
when trained with the student-teacher method (using α = 0.1 and τ = 6.0) [10]
and our classroom learning method on the Jester dataset (90.4% with student-
teacher vs. 90.5% with C2FC) and Something-Something V1 dataset (31.0%
with student-teacher vs. 30.7% with C2FC). Both the classroom learning and the
student-teacher learning outperforms a coarsest pathway trained separately (e.g.
90.4% with student-teacher and 90.5% with C2FC vs. 87.8% with no knowledge-
distillation).

C2F effectiveness on baseline other than TSM: Our C2F architectures are
generic and can be easily implemented with different baseline ConvNets. While
TSM uses 2D convolution-based networks with shift operations added to infuse
temporal information, many ConvNets for action/gesture recognition rely on 3D
convolution-based networks [34, 3, 41, 4]. Therefore, we investigate effectiveness
of C2F extension on the 3D convolution-based R3D-ResNet18 and R2plus1D-
ResNet18 ConvNets [34]. C2FC with these baseline ConvNets instantiated on
all three pathways outperforms the baseline ConvNets (94.2% with C2FC-R3D-
ResNet18 vs. 93.6% with R3D-ResNet18, 94.6% with C2FC-R2plus1D-ResNet18
vs. 93.9% with R2plus1D-ResNet18).
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4 Discussion

Our ablation studies showed that much of the prior popular multi-stream tech-
niques (e.g. slow fusion with lateral connection [4], late fusion using ensemble
of classification scores or end-to-end learning with multi-stream loss added and
backpropagated) fail to work on C2F multi-stream ConvNets for action/gesture
recognition. We conjecture that this ineffectiveness of prior multi-stream tech-
niques primarily arise from the relative lack of complementary information at
inputs of the C2F pathways compared to prior multi-stream ConvNets (e.g.
complementary spatial and temporal stream in [27]). With much of the prior
techniques being ineffective for C2F ConvNets on action/gesture recognition,
our proposed baseline C2F ConvNet along with its effective training strategies
are significant for future C2F ConvNet research on action/gesture recognition.

To discuss the importance of future C2F ConvNet research on action/gesture
recognition, we review the technical benefits achieved with our proposed C2FC

ConvNet. C2FC on TSM baseline can operate at unprecedented low FLOPs
(< 1% GFLOPs) and remain competitive with methods such as [42]. In fact,
some classes of action (e.g. ‘Playing squash or racquetball’ in the Kinetics dataset
[3]) can be recognized at near-perfect accuracy at such low FLOPs (more details
in the supplementary document). When varying FLOPs constraints are imposed,
rather than re-designing and training different ConvNets, our proposed C2FC

can operate flexibly at the desired FLOPs, and at a better cost-accuracy trade-
off than its baseline ConvNet. Finally, C2FC is generic and can be built on
different ConvNets, so the benefits of C2FC remain complementary to emerging
standalone ConvNets for action/gesture recognition. For all of these advantages,
C2F extension approaches on action/gesture recognition are likely to become
valuable techniques.

5 Conclusion

‘Use when needed’ is an extremely effective philosophy for improving efficiency.
We introduce this philosophy in the field of action recognition using C2F Con-
vNets. We demonstrate that fusing complementary feature in a C2F approach
with a coarse-exit scheme can significantly improve ConvNet performances. While
our C2F ensembles can outperform previous competing methods in terms of
both increased accuracy and reduced computation costs, the C2F ensembles are
particularly potent in improving accuracy for difficult datasets, in reducing com-
putational costs for easier datasets and in operating efficiently and flexibly at a
large range of computational cost constraints.
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