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A Appendix

This supplementary material has eight sections. Section A.1 describes the details
of our dataset collection. Section A.2 describes our implementation details for
each downstream task. Section A.3 provides detailed quantitative comparison
between conditional masking and joint random masking. Section A.5 provides
more results on VCR and NLVR2. Section A.6 provides a direct comparison
to VLBERT and ViLBERT. Section A.7 provides some background on opti-
mal transport (OT) and the IPOT algorithm that is used to calculate the OT
distance. Section A.8 provides additional visualization example.

A.1 Dataset Collection

As introduced, our full dataset is composed of four existing V+L datasets:
COCO, Visual Genome, Conceptual Captions, and SBU Captions. The dataset
collection is not simply combining them, as we need to make sure none of
the downstream evaluation images are seen during pre-training. Among them,
COCO is the most tricky one to clean, as several downstream tasks are built
based on it. Figure 1 lists the splits from VQA, Image-Text Retrieval, COCO
Captioning, RefCOCO/RefCOCO+/RefCOCOg, and the bottom-up top-down
(BUTD) detection [1], all from COCO images.

As observed, the validation and test splits of different tasks are scattered
across the raw COCO splits. Therefore, we exclude all those evaluation images
that appeared in the downstream tasks. In addition, we also exclude all co-
occurring Flickr30K images via URL matching, making sure the zero-shot image-
text retrieval evaluation on Flickr is fair. The remaining images become the
COCO subset within our full dataset, as shown in Figure 1 bottom row. We apply
the same rules to Visual Genome, Conceptual Captions, and SBU Captions.

* Equal contribution.
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MS COCO (raw) | train | val | test |
VQA | train | tain/val | test |
Img-Txt Retrievall train | train | val | test |

Img Captioning | train | train [val[test|  test |
RefCOCO(+/g) | val | test | train

BUTD : train | train | val | test |

UNITER | train | train_|val |

Fig. 1: Different data splits from downstream tasks based on COCO images. Our
UNITER pre-training avoids seeing any downstream evaluation images

Task Datasets Image Src.  #Images #Text Metric

1 VQA VQA COCO 204K  1.1IM VQA-score

2 VCR VCR Movie Clips 110K 290K Accuracy

3 NLVR? NLVR? Web Crawled 214K 107K Accuracy

4 Visual Entailment  SNLI-VE  Flickr30K 31K 507K Accuracy

. COCO COCO 92K 460K

5 Image-Text Retrieval Flickr30K  Flickr30K 39K 160K Recall@1,5,10
RefCOCO 20K 142K

6 RE Comprehension RefCOCO+ COCO 20K 142K Accuracy
RefCOCOg 26K 95K

Table 1: Statistics on the datasets of downstream tasks

A.2 TImplementation Details

Our models are implemented based on PyTorch! [12]. To speed up training,
we use Nvidia Apex? for mixed precision training. All pre-training experiments
are run on Nvidia V100 GPUs (16GB VRAM; PCle connection). Finetuning
experiments are implemented on the same hardware or Titan RTX GPUs (24GB
VRAM). To further speed up training, we implement dynamic sequence length
to reduce padding and batch examples by number of input units (text tokens +
image regions). For large pre-training experiments, we use Horovod® + NCCL*
for multi-node communications (on TCP connections through ethernet) with up
to 4 nodes of 4x V100 server. Gradient accumulation [11] is also applied to reduce
multi-GPU communication overheads.

Visual Question Answering (VQA) We follow [21] to take 3129 most fre-
quent answers as answer candidates, and assign a soft target score to each can-
didate based on its relevancy to the 10 human responses. To finetune on VQA

! https://pytorch.org/

2 https://github.com/NVIDIA /apex

3 https://github.com/horovod/horovod
* https://github.com/NVIDIA /nccl
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dataset, we use a binary cross-entropy loss to train a multi-label classifier using
batch size of 10240 input units over maximum 5K steps. We use AdamW opti-
mizer [9] with a learning rate of 3e — 4 and weight decay of 0.01. At inference
time, the max-probable answer is selected as the predicted answer. For results
on test-dev and test-std splits, both training and validation sets are used for
training, and additional question-answer pairs from Visual Genome are used for
data augmentation as in [21].

Visual Commonsense Reasoning (VCR) VCR can be decomposed into
two multiple-choice sub-tasks: question-answering task (Q — A) and answer-
justification task (QA — R). In the holistic setting (Q — AR), a model needs
to first choose an answer from the answer choices, then select a supporting
rationale from rationale choices if the chosen answer is correct. We train our
model in two settings simultaneously. When testing in the holistic setting, we
first apply the model to predict an answer, then obtain the rationale from the
same model based on the given question and the predicted answer. To finetune
on VCR dataset, we concatenate the question (the geustion and the ground
truth answer) and each answer (rationale) choice from the four possible answer
(rationale) candidates. The ‘modality embedding’ is extended to help distinguish
question, answer and rationale. Cross-entropy loss is used to train a classifier over
two classes (¢ ‘right’’ or ‘ ‘wrong’’) for each question-answer pair (question-
answer-rationale triplet) with a batch size of 4096 input units over maximum
5K steps. We use AdamW optimizer with a learning rate of le — 4 and weight
decay of 0.01.

Since the images and text in VCR dataset are very different from our pre-
training dataset, we further pre-train our model on VCR, using MLM, MRFR
and MRC-kI as the pre-training tasks. I'TM is discarded because the text in VCR,
does not explicitly describe the image. The results of both pre-trainings on VCR
are reported in Table 4 (in the main paper) and discussed in the main text. In
conclusion, for downstream tasks that contain new data which is very different
from the pre-training datasets, second-stage pre-training helps further boost the
performance.

In our implementation, the second-stage pre-training is implemented with a
batch size of 4096 intput units, a learning rate of 3e — 4 and a weight decay of
0.01 over maximum 60K steps. After second-stage pre-traing, we finetune our
model with a learning rate of 6e — 5 over maximum 8K steps.

Natural Language for Visual Reasoning for Real (NLVR?) NLVR2 is a
new challenging task for visual reasoning. The goal is to determine whether a
natural language statement is true about the given image pair. Here we discuss
the three architecture variants of NLVR? finetuning in detail. Since UNITER
only handles one image and one text input at pre-training, the ‘modality em-
bedding’ is extended to help distinguish the additional image presented in the
NLVR? task. For the Triplet setup, we concatenate the image regions and then
feed into the UNITER model. An MLP transform is applied on the [CLS] output
for binary classification. For the Pair setup, we treat one input example as two
text-image pairs by repeating the text. The two [CLS] outputs from UNITER
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are then depth concatenated as the joint embedding for the example. Another
MLP further transform this embedding for the final classification. For the Pair-
biattn setup, the input format is the same as the Pair setup. As for the joint
representation, instead of rely on only two [CLS] outputs, we apply a multi-head
attention layer [19] on one sequence of joint image-text embeddings to attend
to the other sequence of embeddings, and vice versa. After this ‘bidirectional’
attention interactions, a simple attentional pooling is applied on each output se-
quences and then a final concat+MLP layer transforms the cross-attended joint
representation for true/false classification.

We finetune UNITER on NLVR? for 8K steps with a batch size of 10K input
units. AdamW optimizer is used with learning rate of le — 4 and weight decay
of 0.01.

Image-Text Retrieval Two datasets are considered for this task: COCO and
Flickr30K. COCO consists of 123K images, each accompanied with five human-
written captions. We follow [6] to split the data into 82K/5K /5K training/ val-
idation/test images. Additional 30K images from MSCOCO validation set are
also included to improve training as in [7]. Flickr30K dataset contains 31K im-
ages collected from the Flickr website, with five textual descriptions per image.
We follow [6] to split the data into 30K/1K/1K training/validation/test splits.
During finetuning, we sample two negative image-text pairs per positive sample
from image and text sides, respectively. For COCO, we use batch size of 60 exam-
ples, learning rate of 2e —5 and finetune our model for 20K steps. For Flickr30K,
we finetune our model with a batch size of 120 examples and a learning rate of
5e — 5 over maximum 16K steps.

To obtain the final results in Table 3 in the main text, we further sample hard
negatives to facilitate the finetuning. For every N steps, we randomly sample 128
negative images per text input and obtain a sparse scoring matrix for the whole
training set. For each image, we choose the top 20 ranked negative sentences
as hard negative samples. Similarly, we get 20 hard negative images for each
sentence according to their scores. The hard negatives are sent to the model as
additional negative samples. In the end, we have two randomly sampled negatives
and two hard negative samples per positive sample. N is set to 4000 for COCO
and 2500 for Flickr30K.

Visual Entailment (SNLI-VE) Visual Entailment is a task derived from
Flickr30K images and Stanford Natural Language Inference (SNLI) dataset,
where the goal is to determine the logical relationship between a natural lan-
guage statement and an image. Similar to BERT for Natural Language Infer-
ence (NLI), we treat SNLI-VE as a three-way classification problem and apply
an MLP Transform on [CLS] output. The UNITER model is finetuned using
cross-entropy loss. The batch size is set to 10K input units and we use AdamW
with learning rate of 8¢ — 5 to train for 3K steps.

Referring Expression Comprehension We use three referring expression
datasets: RefCOCO, RefCOCO+, and RefCOCOg for the evaluation, all col-
lected on COCO images. To finetune UNITER, on this task, we add a MLP layer
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on top of the region outputs from Transformer, to compute the alignment score
between the query phrase/sentence and each region. Since only one object is
paired with the query phrase/sentence, we apply cross-entropy loss on the nor-
malized alignment scores. The finetuning is efficient - we train the model with
a batch size of 64 examples and a learning rate of 5e — 5 for only 5 epochs, and
achieve state-of-the-art performance.

Note all works including ours use off-the-shelf object detectors trained on
COCO (and Visual Genome) to extract the visual features. While this does
not affect other downstream tasks, it raises an issue for RE comprehension, as
the val/test images of RefCOCO, RefCOCO+, and RefCOCOg are a subset of
COCQ’s training split. Strictly, our object detector is not allowed to train with
these val/test images. However, just for a “fair” comparison with concurrent
works, we ignore this issue and use the same features [I] as the others. We
also update the results of MAttNet using this ”contaminated” features, whose
accuracy is 1.5% higher than the original one. As aforementioned, the interaction
between sentence and image could start from tokens and pixels instead of the
extracted features. We leave this study and RE comprehension with strictly
correct features to future work.

(a) Conditional Masking (b) Joint Random Masking

a man with his <MASK> and cat sitting on the sofa

Fig. 2: Example showing difference between conditional masking and joint ran-
dom masking

A.3 Conditional Masking vs. Joint Random Masking

We further discuss the advantage of our proposed conditional masking over joint
random masking used in [18,10]. Intuitively, our conditional masking learns bet-
ter latent alignment of entities (regions and words) across two modalities. Fig. 2
shows an example image with “man with his dog and cat sitting on a sofa”. With
conditional masking, when the region of “dog” is masked, our model should be
able to infer that the region is “dog”, based on the context of both surrounding
regions and the full sentence (Fig. 2(a)), and vice versa. However, for the joint
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Fig. 3: Comparison of MLM and MRC-kl validation accuracy using joint masking and
our proposed conditional masking

masking implementation, it could happen when both the region of “dog” and
the word “dog” are masked (Fig. 2(b)). In such case, the model has to make the
prediction blindly, which might lead to mis-alignment.

To verify this intuition, we show the validation curves during pre-training
of MLM and MRC-kl in Fig. 3. Each sub-figure shows a comparison between
applying conditional masking and joint random masking during the pre-training
of UNITER. The MLM accuracy measures how well UNITER can reconstruct the
masked words, and MRC-kl accuracy® measures how well UNITER can classify
the masked regions. In both cases, as shown in Fig. 3, our conditional masking
converges faster and achieves higher final accuracy than joint random masking.
In addition, Table 2 (row 10 & 11) in the main paper shows our conditional
masking also performs better on fine-tuned downstream tasks.

A.4 More Ablation Studies on Pre-training Settings

MRC-only Pre-training In addition to ablations shown in Table 2 in the
main paper, we include results from UNITER-base when pre-trained with MRC

5 When validating on MRC-kl accuracy, we simply pick the most confident category
from the predicted probability and measure its correctness.
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.. .. IR TR 52 Ref-
Pre-training Data Pre-training Tasks Meta-Sum VQA (Flickr) (Flickr) NLVR COCO+
test-dev  val val dev val?
fn-domain MRC 350.97  66.23 77.17 8457 52.31  70.69
(COCO+VG)

Table 2: Additional ablation results of MRC-only pre-training for UNITER-base with

in-domain data.

ZS IR ZS TR Ref- Ref- Ref-
(flickr) (flickr) COCO COCO+ COCOg

test-std  test test val  val testB? testB  test
N 73.40  79.50 78.98 65.82 T7.50 74.17 78.89 87.73
Y 74.02 79.98 79.38 68.74 83.60 74.98 79.75 88.47
Table 3: A direct ablation on WRA pre-training task using UNITER-large, all pre-
trained on both In-domain + Out-of-domain data, with MLM + ITM + MRC-kl +
MRFR (+ WRA). For simplicity, only R@1 is reported for ZS IR and ZS TR.

WRA pre-train  VQA NLVR? SNLI-VE

only on in-domain data. Table 2 shows that MRC-only pre-training leads to a
similar downstream performance to MRFR-only prer-training, which is a weak
baseline compared with all other pre-training settings with in-domain data (line
4 - 12 in Table 2).

Significance of WRA In Table 2 of the main paper, we show that adding
WRA significantly improves model performance on VQA and RefCOCO+, while
achieves comparable results on Flickr and NLVR?2. By design, WRA encourages
local alignment between each image region and each word in a sentence. There-
fore, WRA mostly benefits downstream tasks relying on region-level recognition
and reasoning such as VQA, while Flickr and NLVR? focus more on global rather
than local alignments. We add additional ablation results for WRA of UNITER-
large when pre-trained with both In-domain and Out-of-domain data in Table 3.
We observe large performance gains in zero-shot setup for image/text retrieval
and consistent gains across all other tasks.

A.5 More Results on VCR and NLVR2

Following the VCR setup in Table 4 of the main paper, we further construct an
ensemble model using 10 UNITER-large. Table 4 shows the comparison between
VLBERT, ViLBERT and UNITER on VCR. The Q@ — AR accuracy of our
ensemble model outperforms VILBERT [10] ensemble by a large margin of 7.0%.
Note even single UNITER-large already outperforms ViLBERT ensemble and
VLBERT-large by 3.0%.

Besides, we also compare our UNITER-large with LXMERT [18] and Vi-
sualBERT [%] on an additional testing split of NLVR? in Table 5. Our results
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Model Q—A QA— R Q — AR
VLBERT-large (single) 75.8  78.4 59.7
ViLBERT (10 ensemble) 764 780  59.8
UNITER-large (single) 77.3  80.8 62.8
UNITER-large (10 ensemble)| 79.8 83.4 66.8

Table 4: VCR results from VLBERT [16], VILBERT [10], and UNITER

Model Balanced Unbalanced Overall Consistency
Visual BERT 67.3 68.2 67.3 26.9
LXMERT 76.6 76.5 76.2 42.1
UNITER-large| 80.0 81.2 80.4 50.8
Table 5: NLVR? results on test-U split from VisualBERT [8], LXMERT [18], and
UNITER
Model VQA RefCOCO+ (det)
test-dev val testA testB
ViLBERT 70.55 72.34 78.52 62.61

VLBERT-base 71.16 71.60 77.72 60.99

UNITER-base 71.22 72.49 79.36 63.65
Table 6: A direct comparison between VILBERT [10], VLBERT [16], and our UNITER,
all trained on Conceptual Captions [15] only

consistently outperform the previous SOTA on all metrics® by a large margin of
~4.0%.

A.6 Direct Comparison to VLBERT and ViLBERT

To further demonstrate our idea, we conduct a direct comparison to VILBERT [10]
and VLBERT [10], trained on Conceptual Captions [15]. We pre-train UNITER
on Conceptual Captions only using our proposed conditional masking and the
best pre-training tasks. Table 6 shows that UNITER still consistently outper-
forms the other models by a visible margin on VQA and RefCOCO+.

A.7 Review of Optimal Transport and the IPOT Algorithm

Optimal Transport We first provide a brief review of optimal transport, which
defines distances between probability measures on a domain X (the sequence
space in our setting). The optimal transport distance for two probability measures
w and v is defined as [13]:

De(pv) = inf  Beey)ny [ y)], (1)

5 The balanced and unbalanced evaluations were introduced in [17].
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Algorithm 1 TPOT algorithm

1: Input: Feature vectors S = {w;}7;, S’ = {v;}72; and generalized stepsize 1/8,

20=21, TV = 1,1, "
Cij

3: Cij = C(Wi,Vj), Aij =e B

4: fort=1,2,3... do

5: Q=A06T"Y //® is Hadamard product

6: for k=1,...K do // K =1 in practice

7 1

8

9

0

1

8= igs
end for
T = diag(8)Qdiag(o)
: end for
: Return (T, C)

y T = mQT§

where IT(u,v) denotes the set of all joint distributions v(x,y) with marginals
w(x) and v(y); ¢(x,y) : X x X — R is the cost function for moving x to y, e.g.,
the Euclidean or cosine distance. Intuitively, the optimal transport distance is
the minimum cost that - induces in order to transport from p to v. When ¢(x,y)
is a metric on X, D.(u,v) induces a proper metric on the space of probability
distributions supported on X, commonly known as the Wasserstein distance. One
of the most popular choices is the 2—Wasserstein distance W3 (u,v) where the
squared Euclidean distance c(x,y) = ||x — y||? is used as cost.

The TPOT algorithm Unfortunately, the exact minimization over T is in
general computational intractable [2,5,141]. To overcome such intractability, we
consider an efficient iterative approach to approximate the OT distance. We
propose to use the recently introduced Inexact Proximal point method for Op-
timal Transport (IPOT) algorithm to compute the OT matrix T*, thus also the
OT distance [20]. Specifically, IPOT iteratively solves the following optimization
problem using the proximal point method [3]:

T = argmin < (T + 6 -B(T, T 2
(D = argmin {(T,C) + 8- B(T, T")} , (2)
TeEll(a,b)

where the proximity metric term B(T7T(t)) penalizes solutions that are too
distant from the latest approximation, and % is understood as the generalized
stepsize. This renders a tractable iterative scheme towards the exact OT solution.
In this work, we employ the generalized KL Bregman divergence B(T,T®)) =

>, Tijlog % =2 T+ 22 TE;) as the proximity metric. Algorithm 1

describes the i;nplementation details for IPOT.

Note that the Sinkhorn algorithm [1] can also be used to compute the OT
matrix. Specifically, the Sinkhorn algorithm tries to solve the entropy regular-
ized optimization problem: Lo (p,v) = minrerap) (T,C) — LH(T), where
H(T) = -3, ; Tij(log(T;;) — 1) is the entropy regularization term and € > 0 is
the regularization strength. However, in our experiments, we empirically found
that the numerical stability and performance of the Sinkhorn algorithm is quite
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sensitive to the choice of the hyper-parameter €, thus only IPOT is considered
in our model training.

A.8 Additional Visualization

\7 ’i A man and child working on a puzzle

child puzzle

Fig. 4: Additional text-to-image attention visualization example
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