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Fig. 1. Oscar pipeline.
The model takes a triplet
as input sequence, is pre-
trained with two objec-
tives (a masked token loss
over words & tags, and
a contrastive loss between
tags and others), and fine-
tuned for 5 understand-
ing and 2 generation tasks
(detailed in Section 4).

2 Background

In many vision-and-language tasks, the training data often consists of image-
text pairs; one example is shown in Fig. 2(a). For a dataset of size N , we denote
D = {(Ii, wi)}N

i=1
, with image I and text sequence w. The goal of pre-training is

to learn the joint representations of image-text pairs in a self-supervised manner,
which can be universally generalized to various down-stream tasks for further
adaptation.

VLP typically employs multi-layer self-attention Transformers [38] to learn a
cross-modality contextualized representation, based on the singular embedding of
each modality. Hence, the success of VLP fundamentally relies on quality of the
input singular embedding. Existing VLP methods take the visual regions of the
image v = {v1, · · · , vK} and textual tokens of the sentence w = {w1, · · · , wT } as
the input, and relies on the self-attention mechanism to produce more grounded
features.

Though intuitive and e↵ective, we argue that such single domain embed-
dings can be sub-optimal in constructing inputs. It su↵ers from two issues: (i)
Ambiguity. The visual region feature are usually extracted via RCNN object
detectors [28], which inevitably result in overlaps among image regions at dif-
ferent positions. This renders ambiguities for the extracted visual embeddings.
For example in Fig. 2(a), the region features for dog and couch are not highly
distinguishable, as it is impossible for RCNN to provide representative features
for couch due to heavy occlusions. (ii) Lack of grounding. VL is naturally a
weakly-supervised problem, and there is no specification on the correspondence
between image regions and word tokens, leaving much valuable semantics un-
used. For example, we can see that objects such as dog and couch are clearly
shared between the image and sentence in Fig. 2(a). The lack of semantic align-
ment undoubtedly increases the learning burden, rendering ine�ciency for the
VLP training.

3 Oscar Pre-training

Humans perceive the world through many channels, each individual channel is
complex or incomplete, but important factors tend to be shared among channels


