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A Modality View: Contrastive Loss. The output on the special token [CLS]
indicates the fused representation of both modalities. We apply an FC layer
on top of the encoder output of [CLS]. During training, for an image-text pair,
we replace its object tags q with probability 50%, using a di↵erent image from
the dataset D at each iteration. We then apply a cross-entropy loss to predict
whether the object tags q and the sentence w in the discrete token sequence
h = [w, q] is matched (y = 1) or not (y = 0), conditioned on the region feature
v:

LC = �E(v,h)⇠D log p(y|h[CLS],v). (3)

Our contrastive loss is performed on the linguistic semantic space only. During
the cross-modal pre-training, it utilizes objects as the proxy of images to adjust
the word embedding space of BERT, where a sentence is similar to its paired
image, and dissimilar to others.

The full pre-training objective of Oscar is:

LPre-training = LMTL + LC. (4)

Discussion. Other loss designs can be considered for the pre-training objectives.
We perform experiments with these two losses for two reasons: (i) Each loss
provides a representative learning signal from its own perspective. We deliber-
ately keep a clear and simple form for the joint loss to study the e↵ectiveness
of the proposed dictionary view. (ii) Though our joint loss is much simpler than
existing VLP, it yields superior performance in the experiments.

Pre-training Corpus. We build the pre-training corpus based on the existing
V+L datasets, including COCO [20], Conceptual Captions (CC) [29], SBU cap-
tions [24], flicker30k [42], GQA [12] etc. As shown in Table 1, the number of
unique images is 4.1 millions. In total, we build a corpus with 6.5 millions text-
label-image triples.

Table 1. Statistics of the pre-training corpus.

Source
COCO CC SBU Flicker30k VQA GQA VG-QA Total

(train) (all) (all) (train) (train) (bal-train) (train)

Image/Text 113k/609k 3.0M/3.0M 980k/980k 29k/29k 83k/444k 82k/946k 48k/484k 4.1M/6.5M

Implementation Details. We pretrain two model variants, denoted as OscarB

and OscarL, initialized with parameters ✓BERT of BERT base (H = 768) and
large (H = 1024), where H is the hidden size. We concatenate v and z to
implement the position-sensitive region features v0 2 R2054, which is further
transformed into v0 = Wv0 2 RH to ensure the same input embedding size with


