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Abstract. We propose a physics-based feature dehazing network for im-
age dehazing. In contrast to most existing end-to-end trainable network-
based dehazing methods, we explicitly consider the physics model of
the haze process in the network design and remove haze in a deep fea-
ture space. We propose an effective feature dehazing unit (FDU), which
is applied to the deep feature space to explore useful features for im-
age dehazing based on the physics model. The FDU is embedded into
an encoder and decoder architecture with residual learning, so that the
proposed network can be trained in an end-to-end fashion and effectively
help haze removal. The encoder and decoder modules are adopted for fea-
ture extraction and clear image reconstruction, respectively. The residual
learning is applied to increase the accuracy and ease the training of deep
neural networks. We analyze the effectiveness of the proposed network
and demonstrate that it can effectively dehaze images with favorable
performance against state-of-the-art methods.

Keywords: Image dehazing, physics model, feature dehazing unit, deep
convolutional neural networks.

1 Introduction

Haze is a common atmospheric phenomenon. Images captured in hazy environ-
ments usually lose the color fidelity and contrast. Restoring clear images from
hazy ones has been an active research effort in the computational photography
and vision community within the last decade. As low-quality hazy images usually
interfere with the subsequent image editing, analysis, and so on, it is of great
interest to remove haze and restore high-quality images.

Mathematically, a hazy image I is usually modeled by [9, 13]

I(x) = T (x)J(x) + (1− T (x))A, (1)

where J , T , and A denote the latent clear image, medium transmission, and
global atmospheric light, respectively, and x denotes the pixel position. This
problem is highly ill-posed as only the hazy image I is available.

To make this problem well-posed, conventional methods usually develop kinds
of priors based on the statistical properties of clear images, transmission, or
atmospheric light to constrain the solution space. The commonly used priors
include dark channel prior [13], color line prior [10], color attenuation prior [42],
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sparse gradient prior [7], non-local prior [5], and so on. The methods based on
these priors generate promising results. However, those aforementioned priors are
manually designed based on specific observations, which do not always model
the inherent properties of clear images, transmission, or atmospheric light. In
addition, those aforementioned priors usually lead to highly non-convex problems
that are difficult to solve.

Motivated by the success of deep learning in high-level vision tasks, the deep
neural networks have been developed to overcome the limitation in image de-
hazing. Several approaches [6, 28] develop deep neural networks to estimate the
transmission and then follow the conventional method [13] to restore clear im-
ages. However, these approaches do not correct the errors of the atmospheric
light. To avoid complex estimations of the transmission and atmospheric light,
end-to-end trainable deep neural networks have been developed [18, 20, 22, 23,
27]. Based on the end-to-end trainable framework, the physics model of the haze
process has been utilized to constrain the networks [26, 38, 39]. Although these
methods achieve decent performance, they mainly consider the physics model
in the raw image space and few of them explicitly utilize the physics model in
the feature space, which does not fully explore the useful feature information for
image dehazing.

To overcome these problems, we propose a physics-based feature dehazing
network for image dehazing. The critical component is the proposed feature de-
hazing unit (FDU), which is derived based on the physics model of the haze
process (i.e., (1)) in the feature space, so that more feature information that
is useful for the clear image reconstruction can be effectively obtained with the
constraint of the physics model. The FDU is then embedded into an encoder and
decoder network architecture with residual learning, where the encoder module
is first adopted to extract features from the hazy image and the decoder is fur-
ther adopted to process the output of the physics-based feature dehazing block
for the clear image reconstruction. The residual learning is used to increase the
accuracy of image dehazing and ease the training of deep neural networks. Both
quantitative and qualitative evaluation results demonstrate that the proposed
approach performs favorably against state-of-the-art methods. The main contri-
butions of this work are summarized as follows:

– We propose an effective feature dehazing unit, which is derived based on
the physics model of the haze process in a feature space. We show that it
can explicitly utilize the physics model in the feature space and learn useful
information that is required in the derived physics model to better remove
the haze.

– We develop a physics-based feature dehazing network (PFDN) that embeds
the feature dehazing unit into an encoder and decoder network architecture
with residual learning. The encoder module is first adopted for useful feature
extraction and the decoder is adopted for the final clear image reconstruction.

– We analyze the effect of the proposed PFDN on image dehazing and demon-
strate that the proposed approach achieves state-of-the-art performance on
both the dehazing benchmarks and real-world images.
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2 Related Work

Recent years have witnessed significant advances in single image dehazing [4].
Existing methods can be roughly categorized into three kinds: adaptive con-
trast enhancement [11, 33], model-based [5, 7, 9, 10, 13, 42], and data driven-based
methods [8, 18, 20, 22, 23, 26, 27, 34, 37–39, 42].

The adaptive contrast enhancement method (e.g., [33]) removes haze by max-
imizing the local contrast of restored images. These approaches are able to re-
move haze to some extent, but usually suffer from visual artifacts.

The model-based methods rely on the physics model of the haze process
and usually make assumptions on the clear images, transmission, or global at-
mospheric light. For example, Fattal [9] assumes that the transmission and the
surface shading are locally uncorrelated. In [13], He et al. propose a novel dark
channel prior to model the properties of the hazy-free images and use this prior
to estimate the transmission. Fattal [10] observes that the pixels of the image
patches typically exhibit a one-dimensional distribution and proposes a color-line
prior to estimate the transmission. Berman et al. [5] find that pixels in a given
cluster are often non-local and they use this constraint to solve image dehazing.
The priors based on the transmission have been developed by Chen et al. [7].
Although promising results have been achieved, these priors used in image de-
hazing are designed based on some strong assumptions and do not always hold
for some applications.

The data driven-based approaches mainly use some well-known learning
methods to learn the most hazy-relevant features for image dehazing. In [34],
Tang et al. develop a random forest algorithm to learn priors for the transmission
estimation. Zhu et al. [42] formulate the depth estimation using a linear model
and learn the color attenuation prior for haze removal. These approaches are able
to learn more reliable priors but still heavily depend on hand-crafted priors. Re-
cently, the deep convolutional neural network (CNN) as an effective learning
method has been developed to solve image dehazing. In [28, 6], they use deep
CNNs to estimate the transmission and then use the conventional method [13]
to estimate clear images. However, these approaches do not correct the errors
of the atmospheric light. To avoid complex estimations of transmission and at-
mospheric light, several methods [18, 20, 22, 27] develop efficient deep CNNs to
solve image dehazing in an end-to-end fashion. Furthermore, to make the deep
end-to-end trainable CNNs more compact, the physics model of the haze pro-
cess has been used [26, 38, 39]. These deep CNNs-based methods outperform
the adaptive contrast enhancement approaches and model-based approaches by
large margins. However, few of them discriminatively explore the features of
deep CNNs in image dehazing and most of them usually consider the physics
model in the raw image space instead of fully exploring the feature information
in the feature space. Thus, these methods may generate results with some color
distortions and artifacts.

Discriminatively exploring the features of deep CNNs has been demonstrated
to be effective in some applications, such as image classification [35], image
restoration [41], image super-resolution [40], etc. These methods use the gen-
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eral attention mechanism to discriminatively learn useful features. However, we
note that directly applying the attention mechanism in image dehazing does not
effectively remove haze. Different from the attention mechanism used in these
methods, we develop a physics-based feature dehazing network based on the
physics model of the haze process to discriminatively learn useful information in
the feature space for image dehazing.

3 Physics-based Feature Dehazing Network

Most end-to-end trainable deep neural network-based image dehazing methods
take the hazy image I as the input and directly output the dehazed result. To
better constrain the solution space, some image dehazing methods first estimate
the key components (e.g., T and A in (1)) and then compute the final clear
image using the physics model (e.g., (1)). These approaches usually utilize the
physics model in the raw image space, but rarely consider it in the feature space.
To overcome this problem, we develop an effective feature dehazing unit (FDU),
which is able to effectively utilize the physics model of the haze process in a
feature space for better image dehazing. Then the proposed FDU is embedded
into an encoder and decoder architecture with residual learning. Figure 1 shows
the network architecture of the proposed physics-based feature dehazing network
(PFDN). In the following, we present the details of each component in the PFDN.

3.1 Feature dehazing unit

To make full use of the feature information for image dehazing, we develop a
feature dehazing unit (FDU). The proposed FDU is motivated by the physics
model of the haze process (1). We note that the clear image J can be obtained
by

J(x) = I(x)
1

T (x)
+A(1− 1

T (x)
) (2)

according to (1). For simplicity, let k denote a feature extractor, e.g., the filter
kernel in a deep CNN. By applying k to (2), we can get

k ⊗ J = k ⊗ (I � 1

T
) + k ⊗A(1− 1

T
), (3)

where ⊗ denotes the convolution operator and � denotes the element-wise prod-
uct operation. By taking a few algebraic operations using matrix-vector forms,
we can get

KJ = KTdI + KAt, (4)

where K, J, I, and At denote the matrix-vector forms of k, J , I, and A(1− 1
T ),

respectively; Td denotes the diagonal matrix, where the i-th diagonal element
corresponds to the i-th element of the vector form of 1

T . As we can decompose
the matrix KTd into the product of two matrices F1F2, (4) can be rewritten as

KJ = F1(F2I) + KAt, (5)
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Fig. 1. Proposed network architecture for image dehazing. The whole image dehazing
network PFDN in (c) is based on an encoder and decoder architecture with the pro-
posed PFDBs in (a). The proposed PFDB consists of an FDU with a residual learning
architecture, where the proposed FDU can make full use of the physics model in the
feature space for better image dehazing. Please see text for more details.

where F2 can be regarded as the feature extraction operation. The equation (5)
presents the relation between the clear image and the hazy image in a feature
space, and is based on (4), which assumes that k is a linear operator. Note that a
deep CNN with piece-wise linear activation functions (e.g., ReLU) is inherently
locally linear [17, 24]. Due to the strong representation ability of deep neural
networks, we propose a feature dehazing unit and adopt deep CNNs to approxi-
mate the features corresponding to F1 and KAt. Therefore, the discriminatively
useful features can be better estimated for the clear image reconstruction.

To that end, the proposed FDU consists of two parts. The first part is used
to learn the features that mostly approximate the key components F1 and KAt

associated with the haze formation. The second part is then used to estimate
the features KJ for the clear image reconstruction based on (5).

As the transmission map T is related to the scene depth [13] with the piece-
wise constant property and the atmospheric light is usually assumed to be ho-
mogeneous, we use the global average pooling (GAP) to remove redundant in-
formation in the feature space and remain useful values in the approximated
features that correspond to F1 and KAt. Specifically, let Y = {yi}Ni=1 denote
the input of FDU, which has N features with the size of h × w pixels. We first
apply the GAP to Y and obtain Yp = {ypi }Ni=1, each element of which is defined
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as

ypi =
1

h× w

h×w∑
q=1

yi(q), (6)

where q denotes the pixel position and × denotes the product operation. Then,
motivated by the success of the encoder and decoder network architecture in
feature exploration, we apply the similar downsampling and upsampling opera-
tions [40] to the features in Yp by

Ỹ = R(CN (R(C N
16 (Yp)))), (7)

where CN denotes the convolution operation with the filter kernel size of 1 ×
1 pixel and N filters; R denotes the ReLU activation function. With Ỹ, we
further apply the feature upsampling operation C2N with the Sigmoid function
to get the intermediate feature. We respectively use the replication of the first
N features (t̃) and the remaining N features (Ã) to approximate the features
corresponding to F1 and KAt. Note that by extracting and remaining the most
useful information with GAP, the features t̃ and Ã are channel-specific. Thus,
we generate the output of the FDU by

J̃ = Y � t̃ + Ã. (8)

Based on (8), we can discriminatively learn reliable features J̃ from Y for the

clear image reconstruction. In Section 5, we demonstrate that using J̃ instead of
Y is able to help image dehazing. Figure 1(b) shows the network architecture of
the FDU.

3.2 Residual learning

As residual learning [14] has been demonstrated to be effective in lots of vision
tasks, we use it in the PFDB to increase the accuracy of image dehazing and
ease the training of deep neural networks. Specifically, each PFDB has two con-
volutional layers with the filter kernel size of 3× 3 pixels, where the first one is
followed by the ReLU as the activation function and the second one is followed
by the FDU. The detailed network architectures of the residual learning and the
proposed PFDB are shown in Figure 1(a).

3.3 PFDN for image dehazing

Since the proposed PFDB is performed in the feature space, we embed it into the
encoder and decoder network architecture to solve image dehazing. The encoder
module is adopted to extract useful features from the hazy image, which contains
three scale convolutional blocks. Each convolutional block has one convolutional
layer followed by a ReLU layer. The stride value is 1 for the first convolutional
layer and 2 for the remaining two convolutional layers. The decoder module is
adopted to further process the output of the PFDB and reconstruct the final
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clear image. It consists of two transposed convolutional blocks and one convolu-
tional block. Each transposed convolutional block has a transposed convolutional
layer with stride 2 and a ReLU layer. The stride value of the final convolutional
layer is 1. For the parameters in the convolutional and the transposed convo-
lutional layers, we use the same settings as [15]. The network architecture for
the proposed PFDN is shown in Figure 1(c). The detailed parameters of the
proposed network are included in the supplemental material.

3.4 Implementation details

We use the ADAM optimizer [16] with the momentum parameters β1 = 0.5 and
β2 = 0.999. The initial learning rate is set as 2× 10−4 and we follow the decay
strategy as [15]. In the training stage, we use the L1-norm as the loss function to
constrain the network output and the ground truth. We implement our network
based on the PyTorch using a machine with an NVIDIA GTX 2080Ti GPU. Our
un-optimized code takes about 0.09s to dehaze an image of 512× 512 pixels on
average.

4 Experimental Results

We evaluate the proposed approach using the publicly available benchmark
datasets [19, 30, 32] and compare it with the state-of-the-art single image de-
hazing methods.

4.1 Datasets

NYU & Make3D datasets. For fair comparisons, we first follow the standard
protocols adopted by existing methods (e.g., [20, 28, 29, 39]) to generate 2,413
hazy/clear image pairs using the NYU depth v2 dataset [32] and the Make3D
dataset [30]. This synthetic dataset contains hazy/clear image pairs of both
indoor and outdoor scenes. We randomly choose 2,172 images for training and
the remaining 241 images for test, where the training images and test images
do not overlap. The image patch size used in the training process is set to be
512× 512 pixels.

RESIDE dataset. The RESIDE dataset [19] is a large-scale benchmark dataset,
which contains hazy/clear image pairs in both indoor and outdoor scenarios. The
subsets ITS and OTS are used as the training dataset. The subset SOTS is used
for test, which contains 500 indoor hazy images and 500 outdoor hazy ones.

4.2 Comparisons with the state of the art

To evaluate the performance of the proposed approach, we first compare it
against the state-of-the-art methods based on statistical priors [13, 41] and deep
CNNs [6, 20, 22, 26–29, 39] on the synthetic NYU & Make3D test dataset. For
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Table 1. Quantitative evaluations with the state-of-the-art methods on the synthetic
NYU & Make3D test dataset. ↑ and ↓ denote that the better results should achieve
higher and lower values of this metric.

Methods DCP [13] Nonlocal [41] MSCNN [28] DehazeNet [6] GFN [29] DCPDN [39] cGAN [20] DualCNN [26] EPDN [27] GDN [22] Ours

PSNR↑ 18.04 16.69 17.73 20.24 20.79 16.71 26.12 21.30 22.97 26.34 27.26
SSIM↑ 0.7852 0.7397 0.7725 0.8176 0.8064 0.7676 0.8831 0.8170 0.8265 0.8816 0.9047
CIEDE2000↓ 10.45 12.80 10.56 7.87 7.65 12.34 4.49 6.85 6.01 4.35 3.87

(a) Hazy image (b) DCP [13] (c) Nonlocal [41] (d) MSCNN [28] (e) DehazeNet [6]

(f) GFN [29] (g) DCPDN [39] (h) EPDN [27] (i) Ours (j) GT

Fig. 2. Image dehazing results from the synthetic NYU & Make3D test dataset. The
parts enclosed in red boxes in (b)-(d) and (f) contain color distortions and artifacts.
The result in (h) contains color distortions, while the results in (e) and (g) still have
haze residual. The proposed method generates a much clearer image that is visually
close to the ground truth image (best viewed on high-resolution display with zoom-in).

fair comparisons with deep learning-based methods, we fine-tune them using
the proposed training dataset to achieve the best performance. We use PSNR,
SSIM [36], and CIEDE2000 [31] to evaluate the quality of each recovered image.

Table 1 summarizes the quantitative results on the synthetic NYU & Make3D
test dataset. The proposed approach performs favorably against state-of-the-art
methods, where the average PSNR by our method is at least 0.92dB higher than
those by other image dehazing methods.

Figure 2 shows the visual comparison results on the synthetic NYU & Make3D
test dataset by the evaluated methods. The results by the statistical priors-based
methods [13, 41] contain artifacts in the regions of the sky. The methods by [6,
28] develop CNNs to estimate the transmission and then use the conventional
method [13] to estimate the clear images. However, these approaches do not cor-
rect the errors that are caused by the imperfect atmospheric light estimation.
In [29], Ren et al. develop a gated neural network for image dehazing. However,
as this method uses hand-crafted features to constrain the network, the quality
of dehazed results is limited by these hand-crafted features. We note that both
DCPDN [39] and EPDN [27] methods develop end-to-end trainable networks for
image dehazing. However, the DCPDN method does not remove the haze from
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Table 2. Quantitative evaluations with state-of-the-art methods on the indoor scenes
of SOTS dataset [19].

DCP [13] Nonlocal [41] MSCNN [28] DehazeNet [6] AOD-Net [18] GFN [29] DCPDN [39] DualCNN [26] EPDN [27] GDN [22] Ours

PSNR↑ 16.61 17.30 19.84 19.82 20.51 24.91 15.85 22.25 25.06 32.16 32.68
SSIM↑ 0.8546 0.7768 0.8327 0.8209 0.8162 0.9186 0.8175 0.8751 0.9232 0.9836 0.9760

(a) Hazy image (b) DCP [13] (c) Nonlocal [41] (d) MSCNN [28] (e) GFN [29]

(f) DCPDN [39] (g) DualCNN [26] (h) EPDN [27] (i) Ours (j) GT

Fig. 3. Image dehazing results from the SOTS dataset. The colors of the dehazed
images in (b), (e), (f), and (h) look darker than those of the ground truth image.
The dehazed images in (c), (d), and (g) contain haze residual. The proposed method
generates a much clearer image that is visually close to the ground truth image (best
viewed on high-resolution display with zoom-in).

the input image, while the EPDN method generates the result with obvious color
distortions. In contrast, the proposed approach explicitly considers the physics
model of the haze process to discriminatively learns the useful information in
the feature space, which accordingly generates high-quality images.

Then, we evaluate the proposed approach against state-of-the-art methods
on the SOTS dataset [19]. For fair comparisons, we retrain the proposed method
on the training dataset by [19] according to their protocols. Table 2 shows the
evaluation results on the indoor scenes of the SOTS dataset, where the proposed
approach performs favorably against state-of-the-art methods in terms of PSNR
and SSIM.

Figure 3 shows the dehazed results of the outdoor scene on the SOTS dataset
by the evaluated methods. The results by [13, 41] have severe color distortions in
the sky. The dehazed images generated by [26, 28] still have significant haze resid-
uals. The results obtained by [29, 39] look too dark. In contrast, the proposed
method recovers a clearer image than state-of-the-art methods. More experimen-
tal results on the datasets [1–3, 19] are included in the supplemental material.

Real examples. We further evaluate the proposed approach using real images in
Figure 4. The state-of-the-art methods [20, 27, 29] tend to over-estimate the col-
ors of the restored images as shown in Figure 4(b), (c), and (h). The method [26]
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(a) Hazy image (b) GFN [29] (c) cGAN [20] (d) DualCNN [26] (e) Ours

(f) Hazy image (g) DCPDN [39] (h) EPDN [27] (i) GDN [22] (j) Ours

Fig. 4. Image dehazing results on real examples. The colors of the dehazed images in
(b), (c), and (h) look darker. The part enclosed in the red box of (d) contains significant
artifacts, e.g., the coat. The result in (g) has severe color distortions as shown in the
red box. The image in (i) still contains some haze residuals. The proposed approach
generates much clearer images (best viewed on high-resolution display with zoom-in).

generates the result with significant artifacts as shown in Figure 4(d). The re-
sult by the method [22] still contains the haze residual. In contrast, our approach
generates much clearer and brighter images than those by the state-of-the-art
methods as shown in Figure 4 (e) and (j). More visual comparisons on real-world
images are included in the supplemental material.

5 Analysis and Discussions

We have shown that using PFDB is able to remove haze and outperforms state-
of-the-art methods. To better understand the proposed approach, we perform
further analysis and compare with related methods.

Effectiveness of FDU. As the proposed PFDB consists of an FDU and residual
learning architecture, one may wonder whether the performance gains merely
come from the use of residual learning architecture [14]. To answer this question,
we remove the FDU from our network architecture and train this baseline method
using the same settings for fair comparisons. We note that the proposed method
without using FDU reduces to the one that directly uses the features Y for the
clear image reconstruction in (8) (i.e., “w/o FDU & w/ 9RBs” in Table 3). The
comparisons in Table 3 demonstrate that it is more effective to explicitly consider
the physics model in the feature space and use the FDU to discriminatively learn
useful features from Y, which generates higher-quality images than directly using
the features Y.

In addition, as each FDU contains three convolutional layers, one may also
wonder whether using more ResBlocks [14] instead of FDU can generate better
results. To answer this question, we remove the FDU from our network archi-
tecture and adopt more ResBlocks to train the baseline method using the same
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Table 3. Effectiveness of FDU on image dehazing on the synthetic NYU & Make3D
test dataset. RBs denotes ResBlocks.

Methods w/o FDU & w/ 9RBs w/o FDU & w/ 12RBs w/o FDU & w/ 15RBs Ours

Avg. PSNRs 26.33 26.49 26.75 27.26
Avg. SSIMs 0.8851 0.8897 0.8956 0.9047

(a) (b) (c) (d) (e)

Fig. 5. Effectiveness of FDU on image dehazing. (a) Hazy image. (b)-(d) denote the
results by the baseline methods w/o FDU & w/ 9RBs, w/o FDU & w/ 12RBs, and
w/o FDU & w/ 15RBs, respectively. (e) Our result. The methods without using FDU
generate the results with obvious haze residual as shown in (b)-(d). In contrast, the
proposed approach with the FDU generates a much clearer image in (e).

settings for fair comparisons. Specifically, the baseline models contain 9, 12, and
15 ResBlocks, respectively, which are denoted as “w/o FDU & w/9 RBs”, “w/o
FDU & w/12 RBs”, and “w/o FDU & w/15 RBs” in Table 3. Table 3 shows
that using more ResBlocks does not significantly improve the performance. In
contrast, the proposed method with FDU performs better than purely stacking
ResBlocks due to the discriminatively learned features by the FDU.

The visual comparison results in Figure 5(b)-(e) further demonstrate the
benefit of using the FDU in generating clearer images. We note that the proposed
method without using FDU does not effectively remove haze. The generated
results still contain significant haze residual (Figure 5(b)-(d)). In contrast, the
proposed method with FDU generates a much clearer image in Figure 5(e).

As the proposed FDU performs image dehazing in the feature space, one may
also wonder how it generates useful features for haze removal. To better demon-
strate the effect of the proposed FDU intuitively, we show some intermediate
features from the proposed approach. As the feature space is more complex than
the RGB space, we map the principal components of the intermediate features
to the principal components of the RGB space according to the visualization
method [21]. Figure 6 shows that the features learned after FDU (i.e., J̃ in (8))
have a better color contrast than those learned before FDU, suggesting that
the proposed FDU is able to remove haze and thus facilitates the clear image
restoration. All the above results demonstrate that the proposed FDU is able to
help image dehazing.
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(a) (b) (c) (d) (e)

Fig. 6. Visualizations of the features from the proposed approach. (a) Hazy images.
(b) and (c) denote the visualization of the features learned before and after FDU.
(d) Our dehazed results. (e) Ground truth images. The principal components of the
features are mapped to the principal components of the RGB space for visualization.
The features learned after FDU (i.e., J̃) have a better color contrast than those before
FDU, indicating that the proposed FDU is able to help haze removal (best viewed on
high-resolution display with zoom-in).

Effectiveness of residual learning in PFDB. As stated in Section 3.2, we
use residual learning in PFDB to increase the accuracy of image dehazing and
ease the training of the deep CNNs. To illustrate the effect of residual learn-
ing, we compare with the proposed methods without using residual learning in
PFDB. We retrain this baseline method and use the same settings as the pro-
posed approach for fair comparisons. Both Table 4 and Figure 7 show that using
residual learning in PFDB is able to generate high-quality images.

Effectiveness of GAP in PFDB. As stated in Section 3.1, the proposed
FDU uses the GAP operation to maintain the most important information for
the features that are related to F1 and KAt. To demonstrate the effectiveness
of the GAP, we compare with the proposed network without using the GAP
operation and evaluate this baseline method on the synthetic NYU & Make3D
test dataset. Table 4 indicates that using the GAP operation is able to maintain
useful information and thus facilitates image dehazing. Although the method
without using GAP can also estimate these features, it does not significantly
improve the performance. In addition, the comparisons in Figure 7(c) and (e)
demonstrate that using GAP is able to remove artifacts.

Relations with attention-based methods. Recently, the attention mecha-
nism has been used to solve image super-resolution [40]. This method develops
the channel attention strategy to learn useful features for image super-resolution.
In contrast, our approach learns the features using FDU which is based on the
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Table 4. Effectiveness of residual learning and GAP on image dehazing on the synthetic
NYU & Make3D test dataset.

w/o residual learning w/o GAP Attention-based method [40] Ours

Avg. PSNRs 23.55 26.56 26.64 27.26
Avg. SSIMs 0.7935 0.8973 0.8846 0.9047

(a) (b) (c) (d) (e)

Fig. 7. Effectiveness of the proposed PFDB for discriminatively learning features on
image dehazing. (a) Hazy image. (b)-(d) denote the results generated by the proposed
method without using residual learning, the proposed method without using GAP,
and the feature learning method based on the attention mechanism [40], respectively.
(e) Our result. The parts enclosed in red boxes in (b)-(c) contain significant artifacts,
while the part enclosed in the red box in (d) still contains some haze residual. In
contrast, the proposed approach generates a much clearer image in (e) (best viewed on
high-resolution display with zoom-in).

physics model of the haze process in a feature space. To further demonstrate the
effectiveness of the proposed method, we retain the attention-based method [40]
using the proposed training dataset in the same settings for fair comparisons.
We evaluate the proposed method against this method on the synthetic NYU
& Make3D test dataset. Table 4 shows that directly using the attention mecha-
nism does not always facilitate haze removal. In contrast, explicitly considering
the physics model of the haze process in the feature space is able to gener-
ate high-quality images. The comparison results in Figure 7(d) and (e) further
demonstrate that the proposed approach is more effective for haze removal than
directly using the attention mechanism.

Relations with deep physics model-based methods. We note that sev-
eral notable methods [12, 18, 25, 26, 38, 39] use the physics model of the haze
process to constrain the deep neural network for image dehazing. The DualCNN
method [26] develops a network based on two branches to estimate the transmis-
sion and atmospheric light. In [38], Yang et al. develop a disentangled dehazing
network based on the physics model of the haze process to solve image dehazing
using unpaired images. Zhang et al. [39] develop a new dense network for image
dehazing based on the physics model (1). This method first uses the deep CNNs
to estimate the transmission and atmospheric light and then reconstructs clear
images based on (1). Similar to [39], Li et al. [18] estimate the clear image based
on a re-formulated atmospheric scattering model. Guo et al. [12] use different
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Table 5. Ablation study on the number of PFDBs using the synthetic NYU & Make3D
test dataset.

Number of PFDBs 7 PFDBs 9 PFDBs 13 PFDBs 15 PFDBs 17 PFDBs

Avg. PSNRs 27.17 27.26 27.32 27.58 27.33
Avg. SSIMs 0.9050 0.9047 0.9068 0.9082 0.9080

Table 6. Comparisons of model sizes against the state-of-the-art methods.

Methods DCPDN [39] cGAN [20] GDN [22] EPDN [27] Ours

Model size 134M 140M 1M 17M 12M

CNN models to separately estimate the transmission map, atmospheric light, and
the latent clear image. Then the final results are generated based on the physics
model. As these methods mainly consider the physics model in the raw image
space and do not fully explore the physics information in the feature space, the
final estimated dehazed images contain haze residual and artifacts as shown in
Figures 2-4. In contrast, the proposed approach develops the FDU to explicitly
consider the physics model in a feature space, which is able to effectively learn
the useful features for image dehazing. Thus, the haze can be well removed and
textures of the images are well recovered (see both quantitative and qualitative
evaluations in Tables 1-2 and Figures 2-4).

Analysis on the number of PFDBs. The proposed network contains several
PFDBs. We further evaluate the effect of the number of PFDBs by setting the
number of PFDBs from 7 to 17. Table 5 shows that using more PFDBs does
not significantly improve the performance. We empirically use 9 PFDBs as a
trade-off between accuracy and efficiency.

Model size. We evaluate the model size of the proposed approach against state-
of-the-art methods. Table 6 shows that the proposed approach has competitive
model parameters against state-of-the-art methods.

6 Conclusions

We have presented an effective PFDN for image dehazing. The critical com-
ponent PFDB consists of an FDU with a residual learning architecture. The
FDU is developed to fully explore the useful features for image dehazing based
on the physics model of the haze process. The residual learning architecture is
applied to the FDU to increase the accuracy and ease the training of deep neu-
ral networks. The proposed PFDB is embedded as a backbone into an encoder
and decoder network architecture in an end-to-end fashion for image dehazing.
We have analyzed the effect of the proposed PFDN on image dehazing. Both
quantitative and qualitative results show that the proposed approach performs
favorably against state-of-the-art methods.
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