
Learning Surrogates via Deep Embedding

Yash Patel, Tomáš Hodaň, Jǐŕı Matas
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Abstract. This paper proposes a technique for training a neural net-
work by minimizing a surrogate loss that approximates the target evalu-
ation metric, which may be non-differentiable. The surrogate is learned
via a deep embedding where the Euclidean distance between the pre-
diction and the ground truth corresponds to the value of the evaluation
metric. The effectiveness of the proposed technique is demonstrated in
a post-tuning setup, where a trained model is tuned using the learned
surrogate. Without a significant computational overhead and any bells
and whistles, improvements are demonstrated on challenging and practi-
cal tasks of scene-text recognition and detection. In the recognition task,
the model is tuned using a surrogate approximating the edit distance
metric and achieves up to 39% relative improvement in the total edit
distance. In the detection task, the surrogate approximates the intersec-
tion over union metric for rotated bounding boxes and yields up to 4.25%
relative improvement in the F1 score.

1 Introduction

Supervised learning of a neural network involves minimizing a differentiable loss
function on annotated data. The differentiable nature of the loss function and
the network architecture allows the model weights to be updated via backprop-
agation [53]. The performance on a wide range of computer vision tasks have
significantly improved thanks to the progress in deep neural network architec-
tures [30, 21, 56] and the introduction of large scale supervised datasets [8, 35].
As designing architectures often demands detailed domain expertise and creating
new datasets is expensive, there has been a substantial effort in automating the
process of designing better task-specific architectures [10, 54, 65] and employ-
ing self-supervised methods of learning to reduce the dependence on human-
annotated data [12, 7, 14]. However, little attention has been paid to automate
the process of designing the loss functions.

For many practical problems in computer vision, models are trained with
simple proxy losses, which may not align with the evaluation metric. The evalu-
ation metric may not always be differentiable, prohibiting its use as a loss func-
tion. An example of a non-differentiable metric is the visible surface discrepancy
(VSD) [23] used to evaluate 6D object pose estimation methods. Another ex-
ample is the edit distance (ED) defined by counting unit operations (addition,
deletion, and substitution) necessary to transform one text string into another
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Fig. 1. For the input x with the corresponding ground-truth y, the model being trained
outputs z = fΘ(x). The learned surrogate provides a differentiable approximation of the
evaluation metric: êΦ(z, y) = L2(hΦ(z), hΦ(y)), where hΦ is a learned deep embedding
model, and hΦ(z) and hΦ(y) are embedding representations for the prediction and the
ground truth, respectively. Model fΘ(x) for the target task (e.g. scene text recognition

or detection) is trained with the gradients from the surrogate: ∂(êΦ(z,y))
∂z

.

and is a common choice for evaluating scene text recognition methods [26, 27, 43].
Since ED is non-differentiable, the methods use either CTC [17] or per-character
cross-entropy [3] as the proxy loss. Yet another popular non-differentiable met-
ric is the intersection over union (IoU) used to compare the predicted and the
ground truth bounding boxes when evaluating object detection methods. Al-
though these methods typically resort to using proxy losses such as smooth-L1

[50] or L2 [49], Rezatofighi et al. [51] demonstrate that there is no strong cor-
relation between Ln objectives and IoU. Further, Yu et al. [62] show that IoU
accounts for a bounding box as a whole whereas regressing using an Ln proxy
loss treats each point independently.

For popular metrics such as IoU, hand-crafted differentiable approximations
have been designed [62, 51]. However, hand-crafting a surrogate is not scalable
as it requires domain expertise and may involve task-specific assumptions and
simplifications. The IoU-loss introduced in [62, 51] allows for optimization on the
evaluation metric directly but makes a strong assumption about the bounding
boxes to be axis-aligned. In numerous practical applications such as aerial image
object detection [60], scene text detection [26] and visual object tracking [29],
the bounding boxes may be rotated and the methods for such tasks revert to
using simple but non-optimal proxy loss functions such as smooth-L1 [40, 6, 2].

To address the aforementioned issues, this paper proposes to learn a differ-
entiable surrogate that approximates the evaluation metric and use the learned
surrogate to optimize the model for the target task. The metric is approximated
via a deep embedding, where the Euclidean distance between the prediction and
the ground truth corresponds to the value of the metric. The mapping to the
embedding space is realized by a neural network, which is learned using only the
value of the metric. Gradients of this value with respect to the inputs are not
required for learning the surrogate. In fact, the gradients may not even exist, as
is the case of the edit distance metric. Throughout this paper, we refer to the
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proposed method for training with learned surrogates as “LS”. Figure 1 provides
an overview of the proposed method.

In this paper, the focus on a post-tuning setup, where a model that has con-
verged on a proxy loss is tuned with LS. We consider two different optimization
tasks: post-tuning with a learned surrogate for the edit distance (LS-ED) and
the IoU of rotated bounding boxes (LS-IoU). To the best of our knowledge, we
are the first to optimize directly on these evaluation metrics.

The rest of the paper is structured as follows. Related work is reviewed
in Section 2, the technique for learning the surrogate and training with it is
presented in Section 3, experiments are shown in Section 4 and the paper is
concluded in Section 5.

2 Related Work

Training machine learning models by directly minimizing the evaluation met-
ric has been shown effective on various tasks. For example, the state-of-the-art
learned image compression [33, 4] and super-resolution [32, 9] methods directly
optimize the perceptual similarity metrics such as MS-SSIM [59] and the peak
signal-to-noise ratio (PSNR). Certain compression methods optimize on an ap-
proximate of human perceptual similarity, which is learned in a supervised man-
ner using annotated data [44, 45]. Image classification methods [30, 21, 56] are
typically trained with the cross-entropy loss that has been shown to align well
with the misclassification rate, i.e. the evaluation metric, under the assumption
of large scale and clean data [5, 31].

When designing evaluation metrics for practical computer vision tasks, the
primary goal is to fulfil the requirements of potential applications and not to en-
sure the metrics being amenable to an optimization approach. As a consequence,
many evaluation metrics are non-differentiable and cannot be directly minimized
by the currently popular gradient-descent optimization approaches. For exam-
ple, the visible surface discrepancy [23], which is used to evaluate 6D object pose
estimation methods, was designed to be invariant under pose ambiguity. This is
achieved by calculating the error only over the visible part of the object surface,
which requires a visibility test that makes the metric non-differentiable. Another
example is the edit distance metric [26, 15], which is used to evaluate scene text
recognition methods and is calculated via dynamic programming, which makes
it infeasible to obtain the gradients.

There have been efforts towards approximating non-differentiable operations
in a differentiable manner to enable end-to-end training. Kato et al. [28] proposed
a neural network to approximate rasterization, allowing for a direct optimization
on IoU for 3D reconstruction. Agustsson et al. [1] proposed a soft-to-hard vector
quantization mechanism. It is based on soft cluster assignments during backprop-
agation, which allows neural networks to learn tasks involving quantization, e.g.
the image compression. Our work differs as we propose a general approach to ap-
proximate the evaluation metric, instead of approximating task-specific building
blocks of neural networks.
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Another line of research has focused on hand-crafting differentiable approx-
imates of the evaluation metrics, which either align better with the metrics or
enable training on them directly. Prabhavalkar et al. [46] proposed a way of
optimizing attention based speech recognition models directly on word error
rate. As mentioned earlier, [62, 51] proposed ways for directly optimizing on
intersection-over-union (IoU) as the loss for the case of axis-aligned bounding
boxes. Rahman et al. [48] proposed a hand-crafted approximation of IoU for
semantic segmentation.

Learning task-specific surrogates has been attempted. Nagendra et al. [42]
demonstrated that learning the approximate of IoU leads to better performance
in the case of semantic segmentation. However, the method requires custom op-
erations to estimate true and false positives, and false negatives, which makes the
learning approach task-specific. Engilberge et al. [11] proposed a learned surro-
gate for sorting-based tasks such as cross-modal retrieval, multi-label image clas-
sification and visual memorability ranking. Their results on sorting-based tasks
suggest that learning the loss function could outperform hand-crafted losses.

More closely related to our work is the direct loss method by Hazan et al. [20]
where a surrogate loss is minimized by embedding the true loss as a correction
term. Song et al. [57] extended this approach to the training of neural net-
works. However, it assumes that the loss can be disentangled into per-instance
sub-losses, which is not always feasible, e.g. the F1 score [16] involves two non-
decomposable functions (recall and precision). An alternative is to directly learn
the amount of update values that are applied to the parameters of the predic-
tion model. The framework proposed in [34] includes a controller that uses per-
parameter learning curves comprised of the loss values and derivatives of the
loss with respect to each parameter. The method suffers from two drawbacks
that prohibit its direct application to training on evaluation metrics: a) for large
networks, it is computationally infeasible to store the learning curve of every pa-
rameter, and b) no gradient information is available for non-differentiable losses.

Our work is similar to the approach by Grabocka et al. [16], where the evalu-
ation metric is approximated by a neural network. Their approach differs as the
network learning the surrogate takes both the prediction and the ground truth
as the input and directly regresses the value of the metric. Since we formulate
the task as embedding learning and train the surrogate such that the L2 in the
embedded space corresponds to the metric, our method ensures that the gradi-
ents are smaller when the prediction is closer to the ground truth. Furthermore,
as illustrated in Section 3, we learn the surrogate with an additional gradient
penalty term to ensure that the gradients obtained from our learned surrogate
are bounded for stable training.

3 Learning Surrogates via Deep Embedding

Say that the supervised task is being learned from samples drawn uniformly
from a distribution (x, y) ∼ PD. For a given input x and an expected output y,
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a neural network model outputs z = fΘ(x) where Θ are the model parameters
learned via backpropagation as:

Θt+1 ← Θt − η
∂l(z, y)

∂Θt
(1)

where l(z, y) is a differentiable loss function, t is the training iteration, and η is
the learning rate.

The model trained with loss l(z, y) is evaluated using metric e(z, y). When
metric e(z, y) is differentiable, it can be directly used as the loss. The tech-
nique proposed in this paper addresses the cases when metric e(z, y) is non-
differentiable by learning a differentiable surrogate loss denoted as êΦ(z, y). The
learned surrogate is realized by a neural network, which is differentiable and is
used to optimize the model. The weight updates are:

Θt+1 ← Θt − η
∂êΦ(z, y)

∂Θt
(2)

3.1 Definition of the Surrogate

The surrogate is defined via a learned deep embedding hΦ where the Euclidean
distance between the prediction z and the ground truth y corresponds to the
value of the evaluation metric:

êΦ(z, y) = ‖hΦ(z)− hΦ(y)‖2 (3)

3.2 Learning the Surrogate

Learning the surrogate, i.e. approximating the evaluation metric, with a deep
neural network is formulated as a supervised learning task requiring three major
components: a model architecture, a loss function, and a source of training data.

Architecture. In this paper, the architecture is designed manually, such that it
is suitable for the nature of the inputs z and y (details are in Section 4). Modern
approaches for architecture search, e.g. [10, 54, 65], could yield better results but
are computationally expensive.

Training Loss. The surrogate is learned with the following objectives:

1. The learned surrogate corresponds to the value of the evaluation metric:

êΦ(z, y) ≈ e(z, y) (4)

2. The first order derivative of the learned surrogate with respect to the pre-
diction z is close to 1: ∥∥∥∥∂êΦ(z, y)

∂z

∥∥∥∥
2

≈ 1 (5)
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Both objectives are realized and linearly combined in the training loss:

loss(z, y) =
∥∥(êΦ(z, y)− e(z, y)

∥∥2
2

+ λ

(∥∥∥∥∂êΦ(z, y)

∂z

∥∥∥∥
2

− 1

)2

(6)

Bounding the gradients (Equation 5) has shown to enhance the training
stability for Generative Adversarial Networks [18] and has shown to be useful
for learning the surrogate. Parameters Φ of the embedding model hΦ are learned
by minimizing the loss (Equation 6).

Source of Training Data. Source of the training data for learning the surro-
gate determines the quality of the approximation over the domain. The model
fΘ(x) = z for the supervised task is trained on samples obtained from a dataset
D. Let us assume that R is a random data generator providing examples for
the learning of the surrogate, sampled uniformly in the range of the evaluation
metric (see Section 4 for details). Note that R is independent of fΘ(x).

Three possibilities for the data source are considered:

1. Global approximation: (z, y) ∼ PR.
2. Local approximation: (z, y) ∼ PfΘ(x), where (x, y) ∼ PD.
3. Local-global approximation: (z, y) ∼ PfΘ(x)∪R.

The local-global approximation yields a high quality of both the approxima-
tion and gradients (Section 4.1) and is therefore used in the main experiments.

3.3 Training with the Learned Surrogate

The learned surrogate is used in a post-tuning setup, where model fΘ(x) has
been pre-trained using a proxy loss. This setup ensures that fΘ(x) is not gen-
erating random outputs and thus simplifies post-tuning with the surrogate. The
parameters of the surrogate Φ are initialized randomly.

Learning of the surrogate êΦ and post-tuning of the model fΘ(x) are con-
ducted alternatively. The surrogate parameters Φ are updated first while the
model parameters Θ are fixed. The surrogate is learned by sampling (z, y) jointly
from the model and the random generator. Subsequently, the model parameters
are trained while the surrogate parameters are fixed. Algorithm 1 demonstrates
the overall training procedure.

4 Experiments

The efficacy of LS is demonstrated on two different tasks: post-tuning with a
learned surrogate for the edit distance (Section 4.2) and for the IoU of rotated
bounding boxes (Section 4.3). This section provides details of the models for
these tasks, design choices for learning the surrogates and empirical evidence
showing the efficacy of LS. Unless stated otherwise, the results were obtained
using the local-global approximation setup as elaborated in Algorithm 1.
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Algorithm 1 Training with LS (local-global approximation)

Inputs: Supervised data D, random data generator R, evaluation metric e.
Hyper-parameters: Number of update steps Ia and Ib, learning rates ηa and ηb,
number of epochs E.
Objective: Train the model for a given task that is fΘ(x) and the surrogate ,i.e., eΦ.

1: Initialize Θ ← pre-trained weights, Φ← random weights.
2: for epoch = 1,...,E do
3: for i = 1,...,Ia do
4: sample (x, y) ∼ PD, sample (zr, yr) ∼ PR
5: inference z = fΘepoch−1(x)
6: compute loss lê = loss(z, y)+loss(zr, yr) (Equation 6)
7: Φi ← Φi−1 − ηa ∂lê

∂Φi−1

8: end for
9: Φ← ΦIa

10: for i = 1,...,Ib do
11: sample (x, y) ∼ PD
12: inference z = fΘi−1(x)
13: compute loss lf = êΦepoch(z, y) (Equation 3)

14: Θi ← Θi−1 − ηb
∂(lf )

∂Θi−1

15: end for
16: Θ ← ΘIb

17: end for

4.1 Analysing the Learned Surrogates

The aspects considered for evaluating the surrogates are:

1. The quality of approximation êΦ(z, y).

2. The quality of gradients ∂(êΦ(z,y))
∂z .

Both the quality of the approximation and the gradients depend on three
components: an architecture, a loss function, and a source of training data (Sec-
tion 3.2). Given an architecture, the choices for the loss function to learn the
surrogate and the training data are justified subsequently.

Quality of approximation. The quality of the approximation is judged by
comparing the value of the surrogate with the value of the evaluation metric,
calculated on samples obtained from model fΘ(x). When learning the surrogate,
higher quality of approximation is enforced by the mean squared loss between
e(z, y) and êΦ(z, y) (the first term on the right-hand side of Equation 6). Figure
2 (left) shows the quality of the approximation measured by the L1 distance
between the learned surrogate and the edit distance. It can be seen that the sur-
rogate approximates the edit distance accurately (the L1 distance drops swiftly
below 0.2, which is negligible for the edit distance).

Quality of gradients. Judging the quality of gradients is more complicated.
When learning the surrogate, the gradient-penalty term attempts to make the
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Training iteration
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Quality of the approximation with LS-ED
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Fig. 2. Left: The error in approximation for the first 10K training iterations. The
error is obtained by computing the L1 distance between the true edit distance values
and the LS-ED predictions and dividing by the batch size. Note that the edit distance
can only take non-negative integer values, thus the error in the range of 0−0.2 is fairly
low. Right: The gradient penalty term from the optimization of the LS-ED model
(Equation 6).

gradients bounded, i.e. to make the training stable (second term on the right-
hand side of the equation 6). However, this is not sufficient if the gradients do
not optimize fΘ(x) on the evaluation metric. We rely on the improvement or
the decline in the performance of the model fΘ(x) to judge the quality of the
gradients. Table 3 shows that the local-global approximation leads to the largest
improvements when optimizing on IoU for rotated bounding boxes.

Choice of training data. Figure 3 shows the quality of approximation with
different choices of training data for learning the surrogate. These empirical ob-
servations suggest that using global approximation leads to a low quality of the
approximation. This can be accounted to the domain gap between the data ob-
tained from the random generator and the model. Using the local approximation
leads to a higher quality of the approximation, however, the gradients obtained
from the surrogate are not useful to train fΘ(x) (Table. 3), i.e. although the
quality of the approximation is high, the quality of gradients is not. This can
be attributed to surrogate over-fitting on samples obtained from the model and
losing generalization capability on samples outside this distribution. Finally, it
was observed that using the local-global approximation leads to both properties
– high quality of approximation and high quality of gradients.

4.2 Post-Tuning with a Learned Surrogate for ED (LS-ED)

It is experimentally shown that LS can improve scene text recognition models
(STR) on edit distance (ED), which is a popularly used metric to evaluate STR
methods [26, 27, 43]. The empirical evidence shows that post-tuning STR models
with LS-ED lead to improved performance on various metrics such as accuracy,
normalized edit distance, and total edit distance [15].
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Fig. 3. The error in the approximation of the IoU for rotated bounding boxes is shown
for the first 1K iterations of the training with LS-IoU. Error is measured by the L1

distance between IoU and the surrogate. It can be seen that the error is high for the
global and low for the local and global-local approximation variants.

Scene Text Recognition (STR). Given an input image of a cropped word,
the task of STR is to generate the transcription of the word. The state-of-the-art
architectures for scene text recognition can be factorized into four modules [3] (in
this order): (a) transformation, (b) feature extraction, (c) sequence modelling,
and (d) prediction. The feature extraction and prediction are the core modules of
any STR model and are always employed. On the other hand, transformation and
sequence modelling are not essential but have shown to improve the performance
on benchmark datasets. Post-tuning with LS-ED is investigated for two different
configurations of STR models.

The transformation module attempts to rectify the curved or tilted text,
making the task easier for the subsequent modules of the model. It is learned
jointly with the rest of the modules, and a popular choice is thin-plate spline
(TPS) [55, 25, 36]. TPS can be either present or absent in the overall STR model.

The feature extraction module maps the image or its transformed version to
a representation that focuses on the attributes relevant for character recognition,
while the irrelevant features are suppressed. Popular choices include VGG-16 [56]
and ResNet [21]. It is a core module of the STR model and is always present.

The features are the input of the sequence modelling module, which captures
the contextual information within a sequence of characters for the next module
to predict each character more robustly. BiLSTM [22] is a popular choice.

The output character sequence is predicted from the identified features of the
image. The choice of the prediction module depends on the loss function used
for training the STR model. Two popular choices of loss functions are CTC [17]
(sigmoid output) or attention [55] (per-character softmax output).

Baek et al. [3] provides a detailed analysis of STR models and the impact of
different modules on the performance. Following [3], LS-ED is investigated with
the state-of-the-art performing configuration, which is TPS-ResNet-BiLSTM-
Attn. To demonstrate the efficacy of LS-ED, results are also shown with ResNet-
BiLSTM-Attn, i.e., the transformation module is removed. Note that the CTC
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Fig. 4. Training scene text recognition (STR) models with LS-ED. The output of the
STR model z|A|×L and the ground-truth y|A|×L (L is the maximum length of the word
and A is the set of characters) are fed to the Char-CNN embedding model to obtain
embedding vectors, hΦ(z) and hΦ(y) respectively. The approximate edit distance value
is obtained by computing êΦ(z, y) = L2(hΦ(z), hΦ(y)).

based prediction has been shown to consistently perform worse compared to the
attention counter-part [3], and thus the analysis in this paper has been narrowed
down to only the attention-based prediction.

Similar to [3], the STR models are trained on the union of the synthetic
data obtained from MJSynth [24] and SynthText [19] resulting in a total of 14.4
million training examples. Furthermore, following the standard setup of [3], there
is no fine-tuning performed in a dataset-specific manner before the final testing.
Let us say that the STR model is fΘ(x), such that fΘ : R100×32×1 −→ R|A|×L. The
dimensions of the input cropped word image x is fixed to 100×32×1 (gray-scale).
The output for attention based prediction module is a per-character softmax over
the set of characters. Here L is the maximum length of characters in the word
and |A| is the number of characters. During inference, argmax is performed at
each character location to output the predicted text string. The ground truth y
is represented as a per-character one-hot vector.

The STR models are first trained with the proxy loss, i.e., cross-entropy
for 300K iterations with a mini-batch size of 192. The models are optimized
using ADADELTA [63] (same setup as [3]). Once the training is completed these
models are tuned with LS-ED on the same set of 14.4 million training examples
for another 20K iterations. The models trained purely on the synthetic datasets
are tested on a collection of real datasets - IIIT-5K [41], SVT [58], ICDAR’03
[38], ICDAR’13 [27], ICDAR’15 [26], SVTP [47] and CUTE [52] datasets.

LS-ED architecture. Char-CNN architecture [64] is used for learning the
deep embedding hΦ. It consists of five 1D convolution layers equipped with
LeakyReLU activation [61] followed by two fully connected layers. The embed-
ding hΦ maps the input such that hΦ : R|A|×L −→ R1024. Note that since hΦ con-
stitutes of convolution and fully-connected layers, it is differentiable and allows
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for backpropagation to the STR model. In feed-forward, the two embeddings for
the ground-truth y (one-hot) and the model prediction z (softmax) are obtained
by performing feed-forward through hΦ and an approximate of edit distance is
computed by measuring the L2 between the two vectors (Figure 4).

Post-tuning with LS-ED. A random generator is designed for this task, which
generates a pair of words (zr, yr) and ensures uniform sampling in the range of
the true error. It was observed that the uniform sampling is essential to avert
over-fitting of the learned surrogate on a certain range of the true metric. For the
edit distance metric e(z, y) ∈ {0, ..., b} (b being the maximum possible value), the
generator samples a word randomly from a text corpus and distorts the words
by performing random addition, deletion, and substitution operations.

The post-tuning of the STR model fΘ(x) with LS-ED follows Algorithm 1.
For the case of the edit distance, there is a significant domain gap between the
samples obtained from the STR model (z) and the random generator (zr). This
is because the random generator operates directly on the text string, i.e., zr is
one-hot representation. Thus, using the global approximation setting yields a low
quality of the approximation. Further, it was observed that training the surrogate
purely with the data generated from the STR model, i.e., local approximation,
leads to a good approximation but does not lead to an improvement in the
performance of the STR model, which indicates a low quality of gradients.

Finally as described in Algorithm 1, the local-global approximation is used.
The quality of approximation and the gradient penalty from post-tuning with
LS-ED are shown in Figure 2. Note that the edit distance value is a whole number
and the surrogate attempts to approximate it, thus the error in approximation as
shown in Figure 2 is low. The quality of the gradients can be seen by improvement
in the performance of the STR models. Thus the local-global approximation
guides to a high quality of both the approximation and gradients.

The results for the two configurations of STR models, i.e., ResNet-BiLSTM-
Attn and TPS-ResNet-BiLSTM-Attn, are shown in Table 1 and Table 2, respec-
tively. It can be observed that LS-ED improves the performance of the STR
models on all metrics. The most significant gains are observed on total-edit dis-
tance (TED) as the surrogate attempts to minimize its approximation.

4.3 Post-Tuning with a Learned Surrogate for IoU (LS-IoU)

It is experimentally demonstrated that LS can optimize scene text detection
models on intersection-over-union (IoU) for rotated bounding boxes. IoU is a
popular metric used to evaluate the object detection [49, 50] and scene text
detection models [40, 6, 37, 26, 15]. Gradients for IoU can be hand-crafted for the
case of axis-aligned bounding boxes [62, 51], however, it is complex to design
the gradients for rotated bounding boxes. The learned surrogate of IoU allows
backpropagation for rotated bounding boxes. For the task of rotated scene text
detection on ICDAR’15 [26], it is shown that post-tuning the text detection
model with LS-IoU leads to improvement on recall, precision, and F1 score.
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Test
Data

Loss
Function

↑ Acc. ↑ NED ↓ TED

IIIT-5K Cross-Entropy 84.300 0.954 945
IIIT-5K LS-ED 86.300 +2.37% 0.953 −0.10% 837 +11.42%

SVT Cross-Entropy 84.699 0.940 229
SVT LS-ED 86.399 +2.00% 0.947 +0.74% 196 +14.41%

ICDAR’03 Cross-Entropy 92.558 0.972 151
ICDAR’03 LS-ED 94.070 +1.63% 0.977 +0.51% 119 +26.89%

ICDAR’13 Cross-Entropy 89.754 0.949 260
ICDAR’13 LS-ED 91.133 +1.53% 0.960 +1.15% 157 +39.61%

ICDAR’15 Cross-Entropy 71.452 0.889 1135
ICDAR’15 LS-ED 74.655 +4.48% 0.899 +1.12% 1013 +10.74%

SVTP Cross-Entropy 74.109 0.891 424
SVTP LS-ED 77.519 +4.60% 0.901 +1.22% 381 +10.14%

CUTE Cross-Entropy 68.293 0.838 285
CUTE LS-ED 71.777 +5.10% 0.868 +3.57% 234 +17.89%

Table 1. ResNet-BiLSTM-Attn: The models are evaluated on IIIT-5K [41], SVT [58],
ICDAR’03 [38], ICDAR’13 [27], ICDAR’15 [26], SVTP [47] and CUTE [52] datasets.
The results are reported using accuracy Acc. (higher is better), normalized edit dis-
tance NED (higher is better) and total edit distance TED (lower is better). Relative
gains are shown in green and relative declines in red.

Scene Text Detection. Given a natural scene image, the objective is to ob-
tain precise word-level rotated bounding boxes. The method proposed by Ma et
al. [40] is used for the task. It extends Faster-RCNN [50] based object detector
to incorporate rotations. This is achieved by adding angle priors in anchor boxes
to enable rotated region proposals. A sampling strategy using IoU compares
these proposals with the ground truth and filter the positive and the negative
proposals. Only the filtered proposals are used for the loss computation.

The positive proposals are regressed to fit precisely with the ground truth.
Through rotated region-of-interest (RROI) pooling, the features corresponding
to the proposals are obtained and used for text/no-text binary classification.
The overall loss function for training in [40] is defined as a linear combination
of classification loss (negative log-likelihood) and regression loss (smooth-L1).

The publicly available implementation of [40, 39] is used with the original
hyper-parameter settings – the model is trained for 140K iterations using the
SGD optimizer and batch-size of 1. The model is trained on a union of ICDAR’15
[26] and ICDAR-MLT [43] datasets, providing 6295 training images.

LS-IoU architecture. The embedding model for LS-IoU consists of five fully-
connected layers with ReLU activation [13]. A rotated bounding box is repre-
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Test
Data

Loss
Function

↑ Acc. ↑ NED ↓ TED

IIIT-5K Cross-Entropy 87.500 0.961 722
IIIT-5K LS-ED 87.933 +0.49% 0.963 +0.20% 645 +10.66%

SVT Cross-Entropy 87.172 0.952 180
SVT LS-ED 86.708 −0.53 0.954 +0.21% 163 +9.44%

ICDAR’03 Cross-Entropy 94.302 0.979 110
ICDAR’03 LS-ED 94.535 +0.24% 0.981 +0.20% 99 +10.00%

ICDAR’13 Cross-Entropy 92.020 0.966 137
ICDAR’13 LS-ED 92.299 +0.30% 0.979 +1.34% 108 +21.16%

ICDAR’15 Cross-Entropy 78.520 0.915 868
ICDAR’15 LS-ED 78.410 −0.14% 0.915 ±0.00% 837 +3.57%

SVTP Cross-Entropy 78.605 0.912 346
SVTP LS-ED 79.225 +0.78% 0.913 +0.10% 333 +3.75%

CUTE Cross-Entropy 73.171 0.871 224
CUTE LS-ED 74.216 +1.42% 0.875 +0.45% 219 +2.23%

Table 2. TPS-ResNet-BiLSTM-Attn: The models are evaluated on IIIT-5K [41],
SVT [58], ICDAR’03 [38], ICDAR’13 [27], ICDAR’15 [26], SVTP [47] and CUTE [52]
datasets. The results are reported using accuracy Acc. (higher is better), normalized
edit distance NED (higher is better) and total edit distance TED (lower is better).
Relative gains are shown in green and relative declines in red.

sented with six parameters, two for the coordinates of the centre of the box, two
for the height and the width and two for cosine and sine of the rotation angle.
The centre coordinates and the dimensions of the box are normalized with image
dimensions to make the representation invariant to the image resolution.

The embedding model maps the representation of a positive box proposal and
the matching ground-truth into a vector as hΦ : R6 −→ R16. The approximation
of the IoU between two bounding boxes is computed by the L2 distance between
the two vector representations.

Post-tuning with LS-IoU. The random generator for LS-IoU samples rotated
bounding boxes from the set of training labels and modifies the boxes by chang-
ing the centre locations, dimensions, and rotation angle within certain bounds
to create a distorted variant. Since uniform sampling over the range of IoU is
difficult, we store roughly 3 million such examples along with the IoU values and
sample from this collection.

Note that since the overall loss for training [40] is a combination of a regres-
sion loss and a classification loss, LS-IoU only replaces the regression component
(smooth-L1) with the learned surrogate for IoU. For post-tuning with LS-IoU,
the results are shown for all three setups, that is, global approximation, local



14 Y. Patel et al.

Loss
Function

↑ Recall ↑ Precision ↑ F1 score

Smooth-L1 71.21% 84.71% 77.37%
LS-IoU (global) 66.97% −5.95% 84.71% ±0.00% 74.81% −3.30%
LS-IoU (local) 70.92% −0.40% 86.60% +2.23% 77.98% +0.78%
LS-IoU (local-global) 76.79% +7.83% 84.93% +0.25% 80.66% +4.25%

Table 3. RRPN-ResNet-50 [40, 39]: Evaluations on Incidental Scene Text ICDAR’15
[26]. Relative gains are shown in green and relative declines in red.

approximation and global-local approximation (Algorithm 1). For each of these,
the model trained with proxy losses is post-tuned with LS-IoU for 20K iterations.
The quality of the approximations for the first 1K iterations of the training is
shown in Figure 3. Since the range of IoU is in [0, 1], it can be seen that the error
is high for the global approximation. For both local and global-local, the quality
of the approximation is significantly better (roughly 10 times lower error).

As mentioned earlier, the quality of gradients is judged by the improvement
or deterioration of the model (fΘ(x)) post-tuned with LS-IoU. The results for
scene text detection on the ICDAR’15 [26] dataset are shown in Table 3. It is
observed that post-tuning the detection model with LS-IoU (global) leads to
deterioration. Post-tuning with LS-IoU (local) improves the precision but makes
recall worse. Finally, LS-IoU (local-global) from Algorithm 1 improves both the
precision and recall, boosting the F1 score by relative 4.25%.

5 Conclusions

A technique is proposed for training neural networks by minimizing learned
surrogates that approximate the target evaluation metric. The effectiveness of
the proposed technique has been demonstrated in a post-tuning setup, where
a trained model is tuned on the learned surrogate. Improvements have been
achieved on the challenging tasks of scene-text recognition and detection. By
post-tuning, the model with LS-ED, relative improvements of up to 39% on the
total edit distance has been achieved. On detection, post-tuning with LS-IoU
has shown to provide a relative gain of 4.25% on the F1 score.
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