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This supplementary material contains three appendixes. Appendix A pro-
vides the proof of Eq. 6 omitted from the main text. Appendix B shows the
implementation of the 2nd order differential modulation and compares it with
1st order. Appendix C gives more experimental results on HEVC Class C and
Class D data with some extra discussions.

A Proof of the Gradients Computing (Eq. 6)

We use same notations as main text. According to Algorithm 1, the updating
equalities of 1st order differential modulation are divided in two steps (Eq. A.1
and A.2),

yt[i] = yt[i− 1] + ct[i]− bt[i− 1] (1st order differential modulation) (A.1)

bt[i] = Qb(yt[i]) = B(tanh(yt[i])) (trainable quantizer) (A.2)

where B(x) is the defined binary function which has derivative 1. So the gradients
of bt[i] according to yt[i] can be computed as,

∂bt[i]

∂yt[i]
= 1− tanh2(yt[i]) (A.3)

According to A.1, ct[i] is independent with yt[i−1], so we can firstly compute
the gradients of yt[i] to yt[i− 1] as

∂yt[i]

∂yt[i− 1]
= 1− ∂bt[i− 1]

∂yt[i− 1]

= tanh2(yt[i− 1]) (by A.3)

(A.4)

According to A.3 and A.4, we firstly the gradients of bt[m] to yt[m− k],

∂bt[m]

∂yt[m− k]
=
∂bt[m]

∂yt[m]
· ∂yt[m]

∂yt[m− 1]
· ∂yt[m− 1]

∂yt[m− 2]
· ... · ∂yt[m− k + 1]

∂yt[m− k]

= (1− tanh2(yt[m]))×
k∏

i=1

tanh2(yt[m− i])
(A.5)

Moreover, we can compute the gradients of yt[i] to ct[i] from A.1 as,

∂yt[i]

∂ct[i]
= 1 (A.6)

Finally, we can get,

∂bt[m]

∂ct[m− k]
=

∂bt[m]

∂yt[m− k]
· ∂yt[m− k]

∂ct[m− k]
=

∂bt[m]

∂yt[m− k]

= (1− tanh2(yt[m]))×
k∏

i=1

tanh2(yt[m− i])
(A.7)
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B 2nd Order Differential Quantizer

The 2nd order differential quantizer has the same framework with 1st order. We
just need to replace line 3 of Algorithm 1 with B.1. Note that the modulated
yt[i] is computed from previous two step i− 1 and i− 2, which is 2nd order.

yt[i] = ct[i] + 2(yt[i− 1]− bt[i− 1])− (yt[i− 2]− b[i− 2]) (mod.) (B.1)

bt[i] = yt[i] + e[i] (additive noise model.) (B.2)

From B.1 and B.2, we can compute the final quantized output bt[i] as B.3.
Transforming B.3 into Z domain, we can get B.4. The noise transfer function
(NTF) is NTF2nd = (1−Z−1)2, which is a 2nd order shaping. In fact, from the
computing flow in Fig. 1, the 2nd order is twice recurrent of the 1st order. Since
NTF1st = 1 − Z−1, it’s clear that the NTF2nd is the square of NTF1st. From
this point of view, the 2nd order modulation should have better performance
due to the better noise shaping to alleviate the effect of quantization noise.

bt[i] = ct[i] + et[i]− 2et[i− 1] + et[i− 2] (B.3)

⇒bt(Z) = ct(Z) + (1−Z−1)2et(Z) (Z domain.) (B.4)
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Fig. 1. Computing flow of the 1st and 2nd order differential modulations.

However, it’s hard to see the improvement when 2nd order modulation is
applied in deep learning. We compare the 1st and 2nd order differential modula-
tions with experiments. The loss and evaluating results during training are given
in Fig. 2. It can be observed that 2nd order modulation cannot achieve better
performance than 1st. In fact, they have a similar performance in final, but 2nd
order converges slower. As analyzed in the main text, the ∆Σ theory cannot
be directly adopted into the proposed method. Our algorithm can back propa-
gate the gradients, which is different. Regardless of the modulation order, the
gradients’ path are the same and the learning method should achieve a similar
performance.
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Fig. 2. Training loss and evaluating results for the 1st and 2nd order differential mod-
ulations.

C Performance on the HEVC Class C and Class D

The experimental results on the HEVC Class C and Class D datasets are given
in Fig. 3. The proposed method performs not very well in these two datasets,
especially at high BPP region. We find that our model performs not well on some
videos with fast moving and motion blurs (BasketballDrill, BasketballDrive,
RaceHorses , etc.). Fig. 4 gives a real example. In case of slow moving video,
Fig. 4 (a) shows that although with extreme low 0.125 BPP, our method can
reconstruct the detailed information from multiple frames, while H.265 has low
quality. However, H.265 is better in case of fast moving video. We find fast mo-
tion between frames can cause two main problems. First, the fast movement can
cause regional fuzzy image patch, and the motion blurs make the model difficult
to extract features for reconstruction. Second, some scenes that are not covered
in previous multiple frames may come out. This region is more difficult to recon-
struct than others in our method (Fig. 4 (b) is a good example). In our current
model, the optical flow and motion vectors are not adopted in the prediction
network. We believe that our model can be further improved by state-of-art mo-
tion estimation methods. Nevertheless, our model still achieves high compressing
quality in most videos with the novel differential modulation.
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Fig. 3. Comparison of our method with H.254 and H.265 on the HEVC Class B and
Class C datasets.
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(a) Frames with slow moving objects.
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Fig. 4. Performance comparison in different kinds of videos. Our current model has
better performance on the videos without fast moving objects.


