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Abstract. Although recent works have made significant progress in en-
coding meaningful context information for instance segmentation in 2D
images, the works for 3D point cloud counterpart lag far behind. Conven-
tional methods use radius search or other similar methods for aggregating
local information. However, these methods are unaware of the instance
context and fail to realize the boundary and geometric information of an
instance, which are critical to separate adjacent objects. In this work,
we study the influence of instance-aware knowledge by proposing an
Instance-Aware Module (IAM). The proposed IAM learns discriminative
instance embedding features in two-fold: (1) Instance contextual regions,
covering the spatial extension of an instance, are implicitly learned and
propagated in the decoding process. (2) Instance-dependent geometric
knowledge is included in the embedding space, which is informative and
critical to discriminate adjacent instances. Moreover, the proposed IAM
is free from complicated and time-consuming operations, showing supe-
riority in both accuracy and efficiency over the previous methods. To
validate the effectiveness of our proposed method, comprehensive exper-
iments have been conducted on three popular benchmarks for instance
segmentation: ScannetV2, S3DIS, and PartNet and achieve state-of-the-
art performance. The flexibility of our method allows it to handle both
indoor scenes and CAD objects.
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1 Introduction

The task of instance segmentation has recently gained popularity. As an exten-
sion to semantic segmentation, this task needs to separate pixels/points that
have identical categories into individual groups. In the 2D image domain, many
approaches [4, 5, 10, 12, 18] have been proposed and achieve promising results.
With the growth of the availability of 3D sensors, more and more researches
have focused on 3D scene understanding, which is a fundamental necessity for
robotic vision, autonomous driving, and virtual reality. Although instance seg-
mentation in the 3D domain has started to draw attention and has been discussed
in [21, 29, 30, 33, 34], it still lags behind its 2D image counterpart and far from
being solved.
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Fig. 1. Comparison of the instance segmentation results with and without the proposed
Instance-Aware Module (IAM). The proposed IAM successfully encodes instance-aware
information and geometric knowledge, which are critical for separating adjacent in-
stances. Note that different instances can be presented in different colours.

Similar to the tasks of dense prediction in 2D images [2,16,35], context is also
important in 3D domain. For 3D point clouds, PointNet++ [24] is the first work
that captures local structure information and has been successfully utilized in
the task of semantic segmentation. It maintains an encoder-decoder architecture,
which includes several set-abstraction layers and feature-propagation layers for
down-sampling and up-sampling, respectively. Algorithms such as radius search
and k nearest neighbours (K-NN) search are utilized for aggregating local context
knowledge. Building on this powerful network, many methods [21, 29, 30] have
been proposed to tackle the task of instance segmentation on point clouds. To
encode meaningful context information, ASIS [30] is proposed to associate two
tasks together so they can cooperate with each other. JSIS3D [21] applied multi-
value Conditional Random Field (CRF) that formulates a joint optimization for
semantic segmentation and instance segmentation in a unified framework. How-
ever, these methods fail to explicitly encode the instance contextual knowledge
and geometric information, which are extremely critical for separating adja-
cent instances and handling complex situations. For example, two neighbouring
chairs can be easily confused and grouped as one united instance if boundaries
and geometric information are not encoded in the embedding space (e.g., the
second row in Figure 1). In this paper, we address the problem by proposing an
Instance-Aware Module (IAM) to learn the instance level context by locating
representative regions for each input point. Moreover, geometric knowledge is
explicitly encoded in the embedding space, which is an informative indicator to
identify the points belonging to the same instance. The whole framework can be
trained in an end-to-end manner to tackle instance segmentation and semantic
segmentation simultaneously with little computation resource overhead.

Specifically, as shown in Figure 2, our method maintains an encoder-decoder
architecture. Different from previous methods that only maintain an instance
grouping branch and a semantic segmentation branch, we come up with a novel
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light-weight instance-aware module, which localizes representative points within
the same instance for each input point. The information from these representa-
tive points is then aggregated into the decoding process of the instance branch,
generating instance-aware contexts for learning discriminative point-level em-
beddings. Moreover, the normalized geometric centroids of these representative
points (predicted by every input point feature), are directly added to the em-
bedding space, which provides critical geometric knowledge for identifying and
reducing the ambiguity of adjacent instances.

The training of the instance-aware module is regularized jointly by the bound-
ing box and instance segmentation supervision, such that the meaningful seman-
tic regions can be tightly bonded by the spatial extension of the instance and
guided towards representative regions of the instance.

Compared with the conventional representation of an instance by using ver-
texes to represent a bounding box, learning semantically meaningful regions
helps to remove unrelated background and noise information. As it is applied
in the bottleneck layer, very few additional computations are introduced. Com-
pared with ASIS [30], which needs to search neighbours of every input point
exhaustively, our approach shows superiority in both efficiency and effective-
ness.

To validate the effectiveness of our proposed method, extensive experiments
have been conducted on three popular benchmarks. The flexibility of our method
allows it to be applied in not only indoor scenes but objects with fine-grained
part labels. State-of-the-art performances are achieved on these datasets. To
summarize, our main contributions are listed as follows.

– We propose a novel Instance-Aware Module, which successfully encodes
instance-dependent context information for point cloud instance segmen-
tation.

– Our method explicitly encodes instance-related geometric information, which
is informative and helpful to produce discriminative embedding features.

– The proposed framework can be trained in an end-to-end manner and shows
superiority over previous methods on both efficiency and effectiveness. With
the proposed method, state-of-the-art results are achieved on different tasks.

2 Related Works

Instance segmentation on point clouds has just started to be discussed recently.
In this section, we briefly review some existing approaches that are related to
this field.

2.1 Deep Learning on Point Clouds

Deep learning-based methods for 3D feature extraction can be roughly catego-
rized into three classes: voxel-based, multi-view-based, and point-based. Voxel-
based methods [9, 19, 25, 32] utilize 3D convolution neural networks for feature
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extraction on voxelized spatial grids, which can be easily influenced by the den-
sity of the points. Meanwhile, it is highly constrained by the huge memory oc-
cupation and lower running speed because a large proportion of computation
is wasted on vacant voxels. Many approaches have been proposed to address
the problem [9, 25]. Octree [25] tries to modify the convolution operation by
generating average hidden states in empty space. SparseConv [9] is proposed
to process spatially sparse data more efficiently by encoding with a Hash Ta-
ble to avoid unnecessary memory usage in vacant space. The second category
is multi-view-based methods [13, 23, 26], which first project 3D shapes or point
clouds into 2D images and utilize conventional 2D CNN for feature extraction.
Hou et al.proposed 3D-SIS [13] by leveraging both RGB 2D input and 3D geo-
metrical information. 2D features are then back-projected into 3D grids. Unlike
the above methods, directly extracting features on point clouds is more efficient
and straightforward. PointNet [22] is the pioneering work that directly learns a
spatial encoding of each point. A symmetrical function is utilized to process dis-
ordered point sets. To effectively encode local context information to obtain rep-
resentative features, many approaches [14,15,24,27,28] have been proposed. Qi
et al.proposed PointNet++ [24] which applied PointNet recursively on a nested
partitioning of the input point clouds. Thomas et al.came up with KPConv [27]
by designing a continuous weight space through interpolating with several kernel
points. In our experiments, we utilize PointNet++ as the backbone to verify the
effectiveness of our method.

2.2 Instance Segmentation on Point Cloud

Although the task of instance segmentation on 2D images has made huge progress
since Mask-RCNN [10] was proposed, its 3D point cloud counterpart lags far be-
hind. SGPN [29] is the first deep-learning-based method developed in this field. It
tried to generate point cloud groups by predicting three objectives: the similarity
matrix, the confidence map, and the semantic prediction map. Due to the pair-
wise term, the method occupies a large amount of GPU memories and suffers
from slow running speed and small batch size for training. On the other hand,
generating instance groups from three matrices requires many hyper-parameters,
making it less stable for different scenarios. Wang et al.proposed ASIS [30] to
address the problem by removing the pair-wise prediction and introducing a dis-
criminative loss for instance embedding. The loss pulls the embeddings of the
same instance towards the cluster center and pushes the cluster centers away
from each other. However, the method fails to utilize the geometrical informa-
tion and is unaware of the spatial distribution of the instances. GSPN [34],
proposed by Yi et al., generates shape proposals using a generative model for
instance segmentation. Due to its emphasis on geometric understanding for ob-
ject proposal, it achieved promising performance on both indoor dataset and
part instances dataset. Due to the large requirement of GPU memory and a
two-step training procedure, it is ineffective with limited computation resources.
MPNet [11] proposed a memory-based module to deal with the imbalance of the
point cloud data. In this work, we propose an Instance-Aware Module (IAM) to
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encode instance context knowledge and geometric information. The state-of-the-
art performance on three large open benchmarks shows superiority over previous
methods in both effectiveness and efficiency.

3 Method
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Fig. 2. The whole framework of our proposed one-stage method, which is a simple and
clear encoder-decoder architecture. The input point clouds first go through a shared
encoder network, and two parallel decoders are followed: one for semantic segmenta-
tion, one for instance grouping. A novel instance aware module (IAM) is proposed
to generate representative points for instance segmentation. We use the coordinates
of representative points to select argument features for instance segmentation module
and the geometric information of the coordinates to extend the instance embedding.
The whole framework is end-to-end trainable.

In this section, we describe our proposed Instance-Aware Module (IAM),
which can encode both instance-aware context and instance-related geometric
information. Details of the approach are presented below.

3.1 Network Framework

As shown in Figure 2, we apply an encoder-decoder architecture. The encoder is
shared by two tasks and takes point sets P ∈ RN×D as input, where N denotes
the total number of the points and D refers to the input feature dimension.
The input features can consist of colour and position information, e.g., X, Y,
Z, R, G, and B. The decoder contains two parallel branches: one for semantic
segmentation, one for instance embedding. The semantic segmentation branch
generates per-point classification results S ∈ RN×Dc , where Dc is the category
number. Focal loss [17] Lfl is applied to address the category imbalance during
the training process. Besides, the instance branch outputs per-point embedding
features E ∈ RN×De for learning a distance metric, where De is the embedding
dimension. The embeddings belonging to the same instance should end up close
together, and the embeddings belonging to the different instances should end up
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far apart. During the inference, a clustering algorithm is applied to obtain the
final grouping results. A novel IAM for producing instance aware knowledge is
achieved by detecting the spatial extension of an instance. Through IAM, repre-
sentative points locating on the corresponding instance provide instance-aware
knowledge, which contains two parts: (1) instance-related contextual informa-
tion via detection a set of regions that are tightly covering the spatial extension
of an instance. (2) instance geometric knowledge that is critical for separating
adjacent objects.

3.2 Instance-Aware Module

We propose an instance-aware module (IAM) mainly for selecting representative
points that capture spatial instance context. For point pi with position xi, yi
and zi, point-level offsets are predicted by the contextual detection branch to
represent the spatial extension of the instance, denoted as {∆xki , ∆yki , ∆zki }Kk=1.
Representative regions of the instance predicted by pi is Ri, which can be simply
represented as:

Ri = {(xi +∆xki , yi +∆yki , zi +∆zki )}Kk=1, (1)

where K is the number of representative points and i represent the i-th point.
The axis-aligned bounding box predicted by every point can be formulated as
Bi through a min-max function F : Bi = F (Ri)

Learning these representative regions is jointly driven by both the spatial
bounding boxes and the instance grouping labels, such that Ri can tightly com-
pass the instance. To achieve this, three losses are provided: Lbnd, Lcen and Lins

(the last two will be discussed in the next section). Lbnd is to maximize the
overlaps of the bounding boxes between the prediction and the ground truth.
3D IoU loss is utilized in our paper:

Lbnd =
1

N

N∑
i=1

1− IoU(GTi,Bi), (2)

where N is the total number of points, Bi is the predicted bounding box of the
i-th point, and GTi is the 3D axis-aligned bounding box ground truth of the i-th
point. To have a better understanding of the detection branch, we visualize Ri

in Figure 3. Green points are selected pi, and red points are the predicted Ri.
We choose the number of representative points as 18, which empirically works
well in our experiments. Employing more points will have limited improvements.
Therefore, in terms of efficiency, we choose K = 18. Instance related regions are
located and successfully cover the spatial extension. In the next section, we
provide details of how to incorporate these instance contextual information.

3.3 Instance Branch

Conventionally, the inputs of the instance decoder are down-sampled bottleneck
points Pb ⊆ P , and the corresponding features are denoted as Fb. These features
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(a) (b) (c)

Fig. 3. Visualization of detected representative points. The green point is randomly
selected, and red points are the corresponding meaningful regions output by the IAM.
Due to the encoded instance context information, our method can separate adjacent
objects. (Figure best viewed in color)

are gradually propagated to the full set of points through several up-sampling
layers. To encode the instance context during the propagation process, we utilize
the meaningful semantic regions of Rb for the bottleneck points.

Encode Instance-Aware Context. Representations of Fb are augmented by
aggregating information fromRb that covers the instance spatial extent. As these
detected points are not necessarily located on the input points, the features of
Rb are interpolated by using K-NN. The interpolated features are then added
to the original Fb, generating features containing both local representation and
instance context. Compared with ASIS [30], which has to search neighbours for
every input point, our method, on the other hand, is more efficient. As K-NN
is applied in the bottleneck layer, the searching space in Pb is much smaller
than that in P , introducing very limited computation overhead. The combined
features are gradually upsampled during the decoding process, propagating the
instance-aware context through all points.

Encode Geometric Information. Geometric information is critical for identi-
fying two close objects. To learn a discriminative embedding feature, we directly
concatenate the normalized centroids of coordinates to the embedding space.
Considering the centroid C(Bi) predicted by point pi, where C(·) is the function
for computing geometric centroids of a given bounding box, the final per-point
embedding feature can be represented as Êi = Concat(Ei, C(Bi)), where Ei is
the embedding feature produced from the instance branch. Besides, to force the
geometric information to be consistent for the points that have identical instance
label, we pull the predicted geometric centroids from the same instance towards
the cluster center by:

Lcen =
1

M

M∑
m=1

1

Nm

Nm∑
i=1

[‖C(Bi)− µm‖ − σv]2+, (3)

where M is the total number of instances, and Nm is the point number for
m-th instance. µm refers to the average predicted geometric centroids of m-th
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instance. [x]+ is defined as[x]+ = max(0, x) and σv is the loose margin. The
Lcen is designed for forcing the additional geometric information to have less
variation and to be informative for separating adjacent objects.

The informative per-point embedding {Ê}Nn=1 is applied for learning a dis-
tance metric that could pull intra-instance embedding toward the cluster center
and push instances centers away from each other. The loss function is formulated
as:

Lins =
1

M(M − 1)

M∑
a=1

M∑
b=1
b 6=a

[2σd − ‖µa − µb‖]2+

︸ ︷︷ ︸
inter−instance

+
1

M

M∑
i=1

1

Nm

Nm∑
m=1

[‖µm − Êm‖ − σv]2+︸ ︷︷ ︸
intra−instance

,

(4)

where M is the total instance number, Nm is the point number of the m-th
instance. σd and σv are relaxation margins. During the training process, the
first term pushes instance clusters away from each other and the second term
pulls the embedding towards the cluster center. During the inference process,
a fast mean-shift algorithm is applied for clustering different instances in the
embedding spaces.

To summarize, our method is end-to-end trainable and supervised by four
losses. The loss weights for the four losses are all set to 1 in all our experiments.

L = Lfl + Lbnd + Lcen + Lins, (5)

4 Experiments

In this section, we evaluate the effectiveness of our proposed method. Both qual-
itative and quantitative experiments are conducted and reported.

4.1 Datasets

We introduce three popular datasets that have instance annotations: Stanford 3D
Indoor Semantic Dataset (S3DIS) [1], ScanNetV2 [3], and PartNet [20]. S3DIS
is collected in 6 large-scale indoor areas, covering 272 rooms. The whole dataset
contains more than 215 million points and is consisted of 13 common semantic
categories. ScanNetV2 [3] is an RGB-D video dataset. It contains more than 1500
scans, which is split into 1201, 300, and 100 scans for training, validation, and
testing, respectively. The dataset contains 40 classes in total, and 13 categories
are evaluated. Different from the above two datasets, PartNet [20] is a consistent
large-scale dataset with fine-grained object annotations. It consists of more than
570k part instances covering 24 object categories. Each object contains 10000
points. Similar to GSPN [34], we select five categories that have the largest
number of training examples.
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4.2 Evaluation Metrics

On the S3DIS dataset, we conduct 6-fold cross-validation. Similar to SGPN [29]
and ASIS [30], the performance on Area-5 is also reported. On ScanNetV2 [3],
we report our results on the validation set, which contains more instances and
has more stable results. On the PartNet [20] dataset, five selected categories
are Chair, Storage, Table, Lamp, and Vase. Both coarse and fine-grained results
are included. Different levels of different categories are trained separately and
independently. The evaluation metrics for semantic segmentation are the overall
pixel-wise accuracy (mAcc), category-wise mean accuracy (oAcc) and average
intersection-over-union (mIoU). The instance segmentation is evaluated by the
average instance-wise coverage (mCov), mean weighted instance-wise coverage
(mWCov), mean instance precision (mPrec) and recall (mRec) with IoU thresh-

old of 0.5. The weights for mWCov is calculated by wi = |Ni|∑
k |Nk| , where i is the

i-th instance and Nk is the point number of k-th ground truth instance.

4.3 Implementation Details

For the S3DIS [1] and ScanNetV2 [3], each scan contains millions of points,
making it hard to process all data at one time. In our experiments, we split
each scene into 1m×1m overlapped blocks with 0.5m stride. Then, 4,096 points
are randomly sampled across each block. Similar to SGPN [29], every point is
represented by a 9-D feature (X,Y, Z,R,G,B, and normalized positions in blocks
NX , NY , NZ). PartNet [20], on the other hand, is proposed for shape analysis
which contains 10,000 points for each instance. We randomly select 8,000 for
training and 10,000 for testing.

Although our method is not restricted to any specific network, all experiments
are conducted with vanilla PointNet++ [24] as the backbone (without multi-scale
grouping) and leave the other choices for future study. One single GTX1080Ti
GPU card is used for training with the batch size set to 16. The initial learning
rate is set to 0.01 (0.001 for S3DIS) and divided by 2 in every 300k iterations. We
use Adam optimizer with momentum set to 0.9, and the whole network is trained
for 100 epochs. The hyper-parameters for discriminative loss are identical with
original setting in [30]: σv = 0.5, σd = 1.5. Besides, for testing the whole scene on
S3DIS and ScanNetV2, a method named BlockMerging [29] is used for grouping
blocks according to the segmentation information of the overlapped areas.

4.4 Ablation Studies

We first build a strong baseline that contains two decoder branches: one is the
semantic segmentation, and the other is the instance embedding branch. Two
losses are used for supervising the two branches: the cross-entropy loss for the
segmentation task and the discriminative loss for instance grouping. The dis-
criminative loss forces points belonging to the same instance to lie close together
in the embedding space and keep a large margin for points belonging to different
instances. The loss weights are set to 1.0. We conduct our experiments on the
ScanNetV2 validation set.
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Table 1. Ablation study on ScanNetV2 dataset. Both AP50 and AP25 are reported on
the validation set. FL refers to focal loss. InsContext refers to instance-aware context.
Lcen refers to centroid constrain loss in Eq. 3. GE refers to geometric embedding.

Method FL InsContext Lcen GE AP50 AP25

Baseline 22.0 45.2
X 24.0 45.5
X X 27.6 48.2
X X X 28.9 48.9

Ours X X X X 31.5 50.4

Focal Loss. Focal loss [17] is first proposed in the object detection task to
address the problem of data imbalance between positive and negative samples.
Due to the imbalance of categories introduced in the point cloud, we apply focal
loss in the segmentation branch with default parameters identical to [17]. The
results are shown in Table 1, and the focal loss can improve the results by 2.0
for AP50, from 22.0 to 24.0.

Instance Aware Module. We study the influence of the proposed instance-
aware module, which first finds out representative points of the instance, and
then features from these sampled points are aggregated. Encoding the spatial
extension knowledge helps to separate and distinguish close instances. As shown
in Table 1, the instance aware decoder boosts the performance by a large margin,
improving AP50 from 24.0 to 27.6 and AP25 from 45.5 to 48.2. Besides, simply
enlarging the dimension of the embedding space can not bring further improve-
ment in performance (presented in ASIS [30]). The proposed geometric embed-
ding provides informative knowledge, which brings about 2.6% improvement in
AP50, demonstrating the effectiveness of our proposed method. Qualitative re-
sults are shown in Figure 4. Our method shows robustness to the intensive scenes,
which require more discriminative features to separate different instances.

Input Point Cloud Instance GT Prediction without IAM Prediction with IAM

Fig. 4. Comparison of the results with and without the Instance-Aware Module. Due
to the successfully encoded instance context and geometric information, our method
generates discriminative results, especially for nearby objects.
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Table 2. Instance segmentation results on the S3DIS dataset. Both Area-5 and 6-
fold performance are reported. mCov: mean instance-wise IoU coverage. mWCov:
mean size-weighted IoU coverage. mPrec: mean precision with IoU threshold 0.5.
mRec: mean recall with IoU threshold of 0.5. All our results are achieved on a vanilla
PointNet++ [24] backbone without multi-scale grouping for fair comparison.

Method Year mCov mWCov mPrec mRec

Test on Area 5

SGPN [29] 2018 32.7 35.5 36.0 28.7
ASIS [30] 2019 44.6 47.8 55.3 42.4

3D-BoNet [33] 2019 - - 57.5 40.2
JSNet [36] 2020 48.7 51.5 62.1 46.9

Ours - 49.9 53.2 61.3 48.5

Test on 6-fold

SGPN [29] 2018 37.9 40.8 31.2 38.2
MT-PNet [21] 2019 - - 24.9 -
MV-CRF [21] 2019 - - 36.3 -

ASIS [30] 2019 51.2 55.1 63.6 47.5
3D-BoNet [33] 2019 - - 65.6 47.6
PartNet [20] 2019 - - 56.4 43.4

Ours - 54.5 58.0 67.2 51.8

Table 3. Comparison per-class performance of our proposed method with state-of-the-
arts on the S3DIS semantic segmentation task, tested on all areas (6-fold). Our result
utilize the vanilla PointNet++ [24] without multi-scale group. Even with a simple
baseline, the proposed method surpassed the complex graph-based methods. mA: mean
pixel-wise accuracy. mI: mean category-wise IoU.

mA mI cei. flo. wall beam col. win. door tab. cha. sofa boo. boa. clu.

[22] 78.5 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 54.1 42.0 9.6 38.2 29.4 35.2
[7] 79.2 47.8 88.6 95.8 67.3 36.9 24.9 48.6 52.3 51.9 45.1 10.6 36.8 24.7 37.5
[7] 81.1 49.7 90.3 92.1 67.9 44.7 24.2 52.3 51.2 58.1 47.4 6.9 39.0 30.0 41.9
[24] - 53.2 90.2 91.7 73.1 42.7 21.2 49.7 42.3 62.7 59.0 19.6 45.8 48.2 45.6
[8] - 58.3 92.1 90.4 78.5 37.8 35.7 51.2 65.4 64.0 61.6 25.6 51.6 49.9 53.7
[31] 84.1 56.1 - - - - - - - - - - - - -
[14] 85.9 60.0 93.1 95.3 78.2 33.9 37.4 56.1 68.2 64.9 61.0 34.6 51.5 51.1 54.4

Ours 86.5 60.2 94.0 94.1 76.6 53.4 33.6 54.2 62.7 70.2 60.2 36.6 53.4 54.3 53.5

Centroid Constrain Loss. The centroid constraint loss Lcen is designed for
maintaining consistency for points belonging to the same instance. The loss
function serves as a regularizer to constrain the embedding features from the
same instance to have a small variance. Moreover, it also helps stabilize the
centroids when concatenated to the embedding space. As can be inferred from
Table 1, the utilization of Lcen improves the AP50 from 27.6 to 28.9. By further
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combing the geometric embeddings with the per-point features, we achieve an
improvement on the AP50 from 28.9 to 31.5.

Table 4. Instance segmentation results on ScanNetV2 benchmark (validation set).
The metric of mAP@0.25 is reported. All methods except [8] are based on PointNet or
PointNet++. (Categories of Table, Toilet, and Window are not presented in the table.)

mAP bat bed she cab cha cou cur des doo oth pic ref shc sin sof

[10] 26.1 33.3 0.2 0.0 5.3 0.2 0.2 2.1 0.0 4.5 2.4 23.8 6.5 0.0 1.4 10.7
[6] - 66.7 56.6 7.6 3.5 39.4 2.7 3.5 9.8 9.9 3.0 2.5 9.8 37.5 12.6 60.4
[29] 35.1 20.8 39.0 16.9 6.5 27.5 2.9 6.9 0.0 8.7 4.3 1.4 2.7 0.0 11.2 35.1
[30] 47.4 57.3 52.1 1.4 18.5 46.1 19.2 20.3 13.3 13.8 18.8 6.6 17.6 33.1 8.8 32.1

Ours 50.4 63.0 60.9 0.2 22.9 67.2 10.2 18.6 10.5 15.5 22.7 9.5 16.5 55.2 13.6 34.3

4.5 Comparison with State-of-the-art Methods

In this section, we make a comprehensive comparison with other state-of-the-art
methods on three popular benchmarks. Our method can not only be applied to
indoor scenes but also achieved promising results on the hierarchical 3D part
dataset. The results on S3DIS [1], ScanNetV2 [3], and PartNet [20] show the
superiority of our method on both efficiency and effectiveness.

Training and Testing Efficiency. As the first method to solve instance seg-
mentation on the point cloud, SGPN [29] needs to predict a pair-wise similarity
matrix, which requires a lot of memory. Each sample requires about 2.7G for
training. GSPN [34] needs two training stages, and each sample has to take about
6G memory for training due to the generative network. ASIS [30] addresses the
problem by removing the memory consuming parts and learning a discriminative
embedding. However, due to the massive usage of K-NN for every point, training
ASIS requires a memory of more than 700M for every sample and the inference
time for the network requires 60ms for each block. As we only utilize K-NN in
the bottleneck layer, training IAM needs only about 400M for each sample and
reduces the running time to 42ms for each block, showing the superiority in both
the effectiveness and efficiency of our method.

Quantitative Results on S3DIS. Instance segmentation performance on
Area-5 and k-fold cross validation results are reported in Table 2. We compare
our method with other start-of-the-art results. Equipped with instance-aware
knowledge, 2.4%, and 7.7% improvement are achieved with metric mPrec and
mRec for instance segmentation. Although employing a simple backbone, our
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Input Points Instance GT Ours Instance Pred ASIS Instance Pred

Fig. 5. Visualization of the instance segmentation results on the S3DIS indoor scenes.
From left to right are: input point cloud, the ground truth of instance segmentation, the
results of our proposed method, and the results of ASIS [30]. As shown in the figure, our
methods have discriminative embedding features for distinguishing adjacent objects.
We should note that: different instances are presented with different colors, and the
same instances in different methods are not necessarily sharing the same color.

method surpasses previous methods, which need more complex operations and
more memories for training. Moreover, we also report the performance on the
semantic segmentation task in Table 3. The results are evaluated with 6-fold
cross-validation. Our method is built upon vanilla PointNet++ [24] and achieves
better results compared with methods that applied multi-view [7] or even graph
CNN [14, 31]. Qualitative instance grouping results are shown in Figure 5. We
compare the performance of our method with ASIS [30], showing the effective-
ness of the encoded instance-aware knowledge.

Table 5. Instance segmentation results on PartNet. We report part-category mAP (%)
under IoU threshold 0.5. There are three different levels for evaluation: coarse-grained
level, middle-grained level, and fine-grained level. We select five categories with the
most data amount for training and evaluation.

Level1 Level 2 Level 3
Cha Sto Tab Lam Vas Cha Sto Tab Lam Vas Cha Sto Tab Lam Vas

[29] 72.4 32.9 49.2 32.7 46.6 25.4 30.5 18.9 21.7 - 19.4 21.5 14.6 14.4 36.5
[20] 74.4 45.2 54.2 37.2 49.8 35.5 35.0 31.0 26.9 - 29.0 27.5 23.9 18.7 52.0
[34] - - - - - - - - - - 26.8 26.7 21.9 18.3 -
[34] 77.1 43.2 55.0 34.1 48.5 36.0 35.5 31.3 24.8 - 26.8 26.7 21.9 18.3 51.9

Ours 79.5 44.2 56.1 36.1 49.9 38.6 37.1 33.0 26.9 - 31.2 28.9 25.5 19.4 53.1

Quantitative Results on ScanNetV2. The quantitative performance on
ScanNetV2 is presented in Table 4. It is evaluated on the validation set. Both
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mAP@0.25 and mAP@0.5 are reported. The results of [30] and [34] are re-
produced via the open source code. For fair comparison, methods based on
PointNet [22] or PointNet++ [24] are reported. Compared with state-of-the-
art ASIS [30], our method achieves promising results and boosts mAP@0.25
and mAP@0.5 with a significant improvement, by 8.4% and 6.5%, respectively.
Figure 6(a) shows qualitative results of instance segmentation on ScanNetV2.

Quantitative Results on PartNet. The performance on PartNet [20] is
shown in Table 5. Different from indoor scenes, PartNet provides fine-grained
and hierarchical object parts annotations. Level-1 contains the coarsest anno-
tations and level-3 contains the finest annotations. Similar to GSPN [34], we
report the performance of the five categories that have the largest number of
training samples: Chair, Storage, Table, Lamp, and Vase. mAP@0.5 is reported.
Each category of different levels is trained separately. Our method achieved
state-of-the-art results on most categories and levels, substantially improving
the performance. Figure 6(b) shows qualitative results of instance segmentation
on PartNet. Different categories and fine-grained levels are provided.

Input Point Cloud Segmentation GT Segmentation Pred Instance GT Instance Pred

(a) Visualization of ScanNetV2

Seg GT Seg Pred Ins GT Ins Pred

(b) Visualization of Partnet

Fig. 6. Visualization of the instance segmentation results on (a) ScanNetV2 and (b)
Partnet. Our method successfully discriminates adjacent objects that are difficult to
separate. Noting: different instances are presented with different colors, and the same
instance in different methods are not necessarily sharing the same color.

5 Conclusion

In this paper, we present a novel method for solving point cloud instance seg-
mentation and semantic segmentation simultaneously. An instance-aware mod-
ule (IAM) is proposed to encode both instance-aware context and geometric
information. Extensive experimental results show that our method has achieved
state-of-the-art performance on several benchmarks and shown superiority in
both effectiveness and efficiency.
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