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Abstract. Deep discriminative models (e.g. deep regression forests, deep
neural decision forests) have achieved remarkable success recently to
solve problems such as facial age estimation and head pose estima-
tion. Most existing methods pursue robust and unbiased solutions ei-
ther through learning discriminative features, or reweighting samples.
We argue what is more desirable is learning gradually to discriminate
like our human beings, and hence we resort to self-paced learning (SPL).
Then, a natural question arises: can self-paced regime lead deep discrim-
inative models to achieve more robust and less biased solutions? To this
end, this paper proposes a new deep discriminative model—self-paced
deep regression forests with consideration on underrepresented examples
(SPUDRFs). It tackles the fundamental ranking and selecting problem
in SPL from a new perspective: fairness. This paradigm is fundamental
and could be easily combined with a variety of deep discriminative mod-
els (DDMs). Extensive experiments on two computer vision tasks, i.e.,
facial age estimation and head pose estimation, demonstrate the efficacy
of SPUDRFs, where state-of-the-art performances are achieved.

Keywords: underrepresented examples, self-paced learning, entropy, deep
regression forests.

1 Introduction

Deep discriminative models (e.g. deep regression forests, deep neural decision
forests) have recently been applied to many computer vision problems with re-
markable success. They compute the input to output mapping for regression
or classification by virtue of deep neural networks [23,14,45,44,3,4]. In general,
DDMs probably perform better when large amounts of effective training data
(less noisy and balanced) is available. However, such ideal data is hard to collect,
especially when large amounts of labels are required.

Computer vision literatures are filled with scenarios in which we are required
to learn DDMs, not only robust to confusing and noisy examples, but also capa-
ble to conquer imbalanced data problem [48,37,5,22,24]. One typical approach is
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Fig. 1. The motivation of considering underrepresented examples in DRFs. (a): The
histogram shows the number of face images at different ages, and the average entropy
curve represents the predictive uncertainty. We observe the high entropy values corre-
spond to underrepresented samples. (b): The histogram of the selected face images at
pace 1 in SPL. (c): The proposed new self-paced learning paradigm: easy and under-
represented samples first.

to learn discriminative features through rather deep neural networks, and feed
them into a cost-sensitive discriminative function, often with regularization [28].
The other typical approach reweights training samples according to their cost
values [5,22] or gradient directions [37] (i.e. meta learning). These strategies are
unlike our human beings, who lean things gradually—start with easy concepts
and build up to complex ones, and can exclude extremely hard ones. More im-
portantly, we have a sense of uncertainty for some samples (e.g. seldom seen) and
progressively improve our capability to recognize them. Thus, the main challenge
towards realistic discrimination lies how to mimic our human discrimination sys-
tem might work.

This line of thinking makes us resort to self-paced learning—a gradual learn-
ing regime inspired by the manner of humans [26]. In fact, there are rare studies
on the problem of self-paced DDMs. Then, a natural question arises: can the
self-paced regime lead DDMs to achieve more robust and less biased solutions?

Motivated by this, we propose a new self-paced learning paradigm for DDMs,
which tackles the fundamental ranking and selecting problem in SPL from a new
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perspective: fairness. To the best of our knowledge, this is the first work consid-
ering ranking fairness in SPL. Specifically, we focus on deep regression forests
(DRFs), a typical discriminative method, and propose self-paced deep regression
forests with consideration on underrepresented examples (SPUDRFs). First, by
virtue of SPL, our model distinguishes confusing and noisy examples from regular
ones, and emphasizes more on “good” examples to obtain robust solutions. Sec-
ond, our method considers underrepresented examples, which may incur neglect
in SPL since visual data is often imbalanced, renderring less bisaed solutions.
Third, we build up a new self-paced learning paradigm: ranking samples on the
basis of both likelihood and entropy (predictive uncertainty), as shown in Fig. 1,
which could be easily combined with a variety of DDMs.

For verification, we apply the SPUDRFs framework on two computer vision
problems: (i) facial age estimation, and (ii) head pose estimation. Extensive
experimental results demonstrate the efficacy of our proposed new self-paced
paradigm for DDMs. Moreover, on both aforementioned problems, SPUDRFs
almost achieve the state-of-the-art performances.

2 Related Work

This section reviews the deep discriminative methods for facial age estimation
and head pose estimation, and SPL methods.
Facial Age Estimation. DDM based facial age estimation methods, for ex-
ample [34,4,8,44,29], employ DNNs to precisely model the mapping from im-
age to age. Ordinal-based approaches [34,4] resort to a set of sequential binary
queries—each query refers to a comparison with a predefined age, to exploit
the inter-relationship (ordinal information) among age labels. Improved deep la-
bel distribution learning (DLDL-v2) [8] explores the underlying age distribution
patterns to effectively accommodates age ambiguity. Besides, deep regression
forests (DRFs) [44] connect random forests to deep neural networks and achieve
promising results. BridgeNet [29] uses local regressors to partition the data space
and gating networks to provide continuity-aware weights. The final age estima-
tion result is the mixture of the weighted regression results. Overall, these DDM
based approaches have enhanced age estimation performance largely; however,
they plausibly ignore one problem: the interference arising from confusing and
noisy examples—facial images with PIE (i.e. pose, illumination and expression)
variation, occlusion, misalignment and so forth.
Head Pose Estimation. For head pose estimation, Riegler [41] et al. utilized
convolutional neural networks (CNNs) to learn patch features of facial images
and achieved better performance. In [16], Huang et al. adopted multi-layer per-
ceptron (MLP) networks for head pose estimation and proposed multi-modal
deep regression networks to fuse RGB and depth information. In [46], Wang et
al. proposed a deep coarse-to-fine network for head pose estimation. In [43], Ruiz
et al. used a large synthetically expanded head pose dataset to train rather deep
multi-loss CNNs for head pose estimation and gained satisfied accuracy. In [25],
Kuhnke et al. proposed domain adaptation for head pose estimation, assuming
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shared and continuous label spaces. Despite seeing much success, these methods
seldom consider the potential problems caused by imbalanced and noisy training
data, which may exactly exist in visual problems.
Self-Paced Learning. The SPL is a gradual learning paradigm, which builds
on the intuition that, rather than considering all training samples simultane-
ously, the algorithm should be presented with the training data from easy to
difficult, which facilitates learning [26,33]. Variants of SPL methods have been
proposed recently with varying degrees of success. For example, in [21], Zhao
et al. generalized the conventional binary (hard) weighting scheme for SPL to
a more effective real valued (soft) weighting manner. In [32], Ma et al. pro-
posed self-paced co-training which applies self-paced learning to multi-view or
multi-modality problems. In [13], Han et al. made some efforts on mixture of
regressions with SPL strategy, to avoid poorly conditioned linear sub-regressors.
In [39,38], Ren et al. introduced soft weighting schemes of SPL to reduce the
negative influence of outliers and noisy samples. In fact, the majority of these
mentioned methods can be cast as the combination of SPL and shallow classifiers,
where SVM and logistic regressors are usually involved. In computer vision, due
to the remarkable performance of DNNs, some authors have realized SPL may
guide DDMs to achieve more robust solutions recently. In [27], Li et al. sought
to enhance the learning robustness of CNNs with SPL, and proposed SP-CNNs.
However, [27] omits one important problem in the discriminative model: the
imbalance of training data. In contrast to SP-CNNs, our SPUDRFs model has
three advantages: (i) it emphasizes ranking fairness (i.e. considering underrepre-
sented examples) in SPL, and hence tends to achieve less biased solutions; (ii) its
learning regime is fundamental and can be easily combined with other DDMs,
especially the ones with predictive uncertainty; (iii) it creatively explores how
SPL can integrate with DMMs with a probabilistic interpretation.

Our work is inspired by the existing works [20,47] which take the class diversi-
ty in the sample selection of SPL into consideration. Jiang et al. [20] encouraged
the class diversity in sample selection at the early paces of self-paced training.
Yang et al. [47] defined a metric, named complexity of image category, to measure
sample number and recognition difficult jointly, and adopted this measure for
sample selection in SPL. In fact, the aforementioned two methods realize the lack
of class diversity in SPL’s sample selection may achieve biased solutions since
visual data is often imbalanced. But what causes lack of class diversity is exactly
the ranking unfairness as underrepresented examples may often have large loss
(particular in DDMs). Not only that, [47,20] are only suitable for classification,
but not regression (with continuous and high dimensional output). In this paper,
we will go further along this direction, aiming to tackle the fundamental problem
in SPL: ranking unfairness.

3 Preliminaries

In this section, we review the basic concepts of deep regression forests (DRF-
s) [44].
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Deep Regression Tree. DRFs usually consist of a number of deep regression
trees. A deep regression tree, given input-output pairs {xi, yi}Nn=1, where xi ∈
RDx and yi ∈ R, models the mapping from input to output through DNNs
coupled with a regression tree. A regression tree T consists of split nodes N and
leaf nodes L [44]. More specifically, each split node n ∈ N possesses a split to
determine whether input xi goes to the left or right subtree; each leaf node ` ∈ L
corresponds to a Gaussian distribution p`(yi) with mean µl and variance σ2

l .

Split Node. Split node has a split function, sn(xi;Θ) : xi → [0, 1], which is pa-
rameterized by Θ—the parameters of DNNs. Conventionally, the split function
is formulated as sn(xi;Θ) = σ

(
fϕ(n)(xi;Θ)

)
, where σ(·) is the sigmoid function,

ϕ(·) is an index function to specify the ϕ(n)-th element of f(xi;Θ) in correspon-
dence with a split node n, and f(xi;Θ) denotes the learned deep features. An
example to illustrate the sketch chart of the DRFs is shown in Fig. 1, where ϕ1

and ϕ2 are two index functions for two trees. The probability that xi falls into
the leaf node ` is given by:

ω`(xi|Θ) =
∏
n∈N

sn(xi;Θ)[`∈Lnl
] (1− sn(xi;Θ))

[`∈Lnr ] , (1)

where [H] denotes an indicator function conditioned on the argument H. In
addition, Lnl

and Lnr
correspond to the sets of leaf nodes owned by the subtrees

Tnl
and Tnr

rooted at the left and right children nl and nr of node n, respectively.

Leaf Node. For tree T , given xi, each leaf node ` ∈ L defines a predictive
distribution over age yi, denoted by p`(yi). To be specific, p`(yi) is assumed
to be a Gaussian distribution: N

(
yi|µl, σ2

l

)
. Thus, considering all leaf nodes,

the final distribution of yi conditioned on xi is averaged by the probability of
reaching each leaf:

pT (yi|xi;Θ,π) =
∑
`∈L

ω`(xi|Θ)p`(yi), (2)

where Θ and π represent the parameters of DNNs and the distribution param-
eters

{
µl, σ

2
l

}
, respectively. It can be viewed as a mixture distribution, where

ω`(xi|Θ) denotes mixing coefficients and p`(yi) denotes the Gaussian distribu-
tions associated with the `th leaf node. Note that π varies along with tree Tk,
and thus we rewrite it as πk below.

Forests of Regression Trees. Since a forest comprises a set of deep regression
trees F = {T1, ..., Tk}, the predictive output distribution, given xi, is obtained
by averaging over all trees:

pF (yi|xi,Θ,Π) =
1

K

K∑
k=1

pTk (yi|xi,Θ,πk) , (3)

where K is the number of trees and Π = {π1, ...,πK}. pF (yi|xi,Θ,Π) can be
viewed as the likelihood that the ith sample has output yi.
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4 Self-Paced DRFs with Consideration on
Underrepresented Examples

The problems in training DDMs for visual tasks arise from: (i) the noisy and
confusing examples, and (ii) the imbalance of training data. Intuitively inspired
by the gradual learning manner of humans, we resort to self-paced learning
and explore whether the DDMs, by virtue of SPL, tend to achieve more robust
solutions. Perhaps not easily, in existing SPL, we observe ranking unfairness, as
shown in Fig. 1. Motivated by this observation, we propose SPUDRFs, which
starts learning with easy yet underrepresented examples, and build up to complex
ones. Such a paradigm avoids overlooking the “minority” of training samples,
leading to less biased solutions.

4.1 Underrepresented Examples

Underrepresented examples mean “minority”, as which the examples with similar
or the same labels are scarce. Unsurprisingly, we observe that they may incur
unfairness treatment in the early paces of SPL (see Fig. 1(b)), due to imbalanced
data distribution. The underrepresented level could be measured by predictive
uncertainty. Given the sample xi, its predictive uncertainty is formulated as the
entropy of its predictive output distribution pF (yi|xi,Θ,Π):

H [pF (yi|xi,Θ,Π)] =
1

K

K∑
k=1

H [pTk (yi|xi,Θ,πk)] , (4)

where H [·] denotes entropy, and the entropy corresponds to the kth tree is:

H [pTk (yi|xi,Θ,πk)] = −
∫
pTk (yi|xi,Θ,πk) ln pTk (yi|xi,Θ,πk) dyi, (5)

The large the entropy is, the more uncertain the prediction should be, i.e.,
the more underrepresented the sample is. Considering underrepresented samples
can be interpreted as adequately utilizing the “information” inherent in such
examples in SPL training.

As previously discussed, pTk (yi|xi;Θ,πk) is a mixture distribution, taking
the form

∑
`∈L ω`(xi|Θ)p`(yi), where ω`(xi|Θ) denotes mixing coefficients and

p`(yi) denotes the Gaussian distribution associated with the `th leaf node. In
Eq. (5), the integral of mixture of Gaussians is non-trivial. Monte Carlo sampling
provides a way to calculate it, but incurs large computational cost [17]. Here, we
use the lower bound of this integral to approximate its true value:

H [pTk (yi|xi,Θ,πk)] ≈ 1

2

∑
`∈L

ω`(xi|Θ)
[
ln
(
2πσ2

`

)
+ 1
]
. (6)

The underrepresented examples are often scarce, and have not been treated
fairly, resulting in large prediction uncertainty (i.e. entropy).
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4.2 Objective Function

Rather than considering all the samples simultaneously, our proposed SPUDRFs
are presented with the training data in a meaningful order, that is, easy and
underrepresented examples first. Specifically, we define a latent variable vi that
indicates whether the ith sample is selected (vi = 1) or not (vi = 0) depending
on how easy and underrepresented it is for training. Our objective is to jointly
maximize the log likelihood with respect to DRFs’ parameters Θ and Π, and
learn the latent selecting variables v = (v1, ..., vN )

T
. We prefer to select the

underrepresented examples, which probably have higher predictive uncertainty
(i.e. entropy), particularly in the early paces. It builds on the intuition that the
underrepresented examples may incur neglect since they are the “minority” in
training data. Therefore, we maximize a self-paced term regularized likelihood
function, meanwhile considering predictive uncertainty,

max
Θ,Π,v

N∑
i=1

vi {log pF (yi|xi,Θ,Π) + γHi}+ λ

N∑
i=1

vi, (7)

where λ is a parameter controlling the learning pace, λ > 0, γ is the parame-
ter imposing on entropy, and Hi denotes the predictive uncertainty of the ith

sample, as previously discussed in Sec. 4.1. When γ decays to 0, the objective
function is equivalent to the log likelihood function with respect to DRFs’ pa-
rameters Θ and Π. Eq. (7) indicates each sample is weighted by vi, and whether
log pF (yi|xi,Θ,Π) + γHi > −λ determines the ith sample is selected or not.
That is, the sample with high likelihood value or high predictive uncertainty
may be selected. The optimal v∗i is:

v∗i =

{
1 if log pFi + γHi > −λ
0 otherwise

, (8)

where pF (yi|xi,Θ,Π) is written as pFi for simplicity.
One might argue the noisy and hard examples tend to have high predictive

uncertainty also, rendering being selected in the early paces. In fact, from Eq. (8),
we observe whether one sample is selected is determined by both its predictive
uncertainty and the log likelihood of being predicted correctly. The noisy and
hard examples probably have relatively large loss i.e. low log likelihood, avoiding
being selected at the very start.

Iteratively increasing λ and decreasing γ, samples are dynamically involved
in the training of DRFs, starting with easy and underrepresented examples and
ending up with all samples. Note every time we retrain DRFs, that is, maximizing
Eq. (7), our model is initialized to the result of the last iteration. As such, our
model is initialized progressively by the result of the previous pace—adaptively
calibrated by “good” examples. This also means we place more emphasis on easy
and underrepresented examples rather than confusing and noisy ones. Thus,
SPUDRFs are prone to have more robust and less biased solutions since we
adequately consider the underrepresented examples.
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Mixture Weighting. In the previous section, we adopt a hard weighting scheme
to assign data points to paces, in which one sample is either selected (vi = 1)
or not (vi = 0). Such a weighting scheme appears to be less accurate as it omits
the importance of samples. Hence, we adopt a mixture weighting scheme [19],
where the selected samples are weighted by its importance, ling in the range
0 ≤ vi ≤ 1. The objective function with mixture weighting is defined as:

max
Θ,Π,v

N∑
i=1

vi {log pF (yi|xi,Θ,Π) + γHi}+ ζ

N∑
i=1

log (vi + ζ/λ) , (9)

where ζ is a parameter controlling the learning pace. We set ζ =
(

1
λ′ − 1

λ

)−1
,

and λ > λ′ > 0 to construct a reasonable soft weighting formulation. The self-
paced regularizer in Eq. (9) is convex with respect to v ∈ [0, 1]. Then, setting the
partial gradient of Eq. (9) with respect to vi as zero will lead to the following:

log pF (yi|xi,Θ,Π) + γHi +
ζ

vi + ζ/λ
= 0. (10)

Then, the optimal solution of vi is given by:

v∗i =


1 if log pFi + γHi ≥ −λ′
0 if log pFi + γHi ≤ −λ

−ζ
log pFi+γHi

− ζ/λ otherwise
(11)

If either the log likelihood or the predictive uncertainty is too large, v∗i equals to
1. In addition, if the likelihood and the predictive uncertainty are both too small,
v∗i equals to 0. Except the above two situations, the soft weighting calculation
(i.e., the last line of Eq. (11)) is adopted.
Curriculum Reconstruction. The underrepresented examples play an impor-
tant role in our SPUDRFs algorithm. As previously mentioned, the proposed new
self-paced regime coupled with a mixture weighting scheme emphasizes more on
underrepresented examples, rendering better solutions. Since the intrinsic rea-
son that causes predictive uncertainty is plausibly the imbalanced training data,
we further re-balance data distribution via a curriculum reconstruction strate-
gy. More specifically, we distinguish the underrepresented examples (whose Hi

is lager than β) from regular ones at each pace, and augment them into the
training data.

4.3 Optimization

We propose a two-step alternative search strategy (ASS) algorithm to solve
SPUDRFs: (i) update v for sample selection with fixed Θ and Π, and (ii)
update Θ and Π with current fixed sample weights v.
Optimizing Θ and Π. The parameters {Θ,Π} and weights v are optimized
alternatively. With fixed v, our DRFs is learned by alternatively updating Θ
and Π. In [44], the parameters Θ for split nodes (i.e. parameters for VGG) are
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updated through gradient descent since the loss is differentiable with respect to
Θ. While the parameters Π for leaf nodes are updated by virtue of variational
bounding [44] when fixing Θ.
Optimizing v. As previously discussed, vi is a binary variable or real variable
ranged in [0, 1]. It indicates how to weight the ith sample during training. The
parameter λ could be initialized to obtain 50% samples to train the model,
and is then progressively increased to involve 10% more data in each pace. The
parameter γ could be initialized empirically and is progressively decayed to zero.
The training stops when all the samples are selected, at γ = 0. Along with
increasing λ and decreasing γ, DRFs are trained to be more “mature”. This
learning process is like how our human beings learn one thing from easy and
uncertain to complex.

5 Experimental Results

5.1 Tasks and Benchmark Datasets

Age Estimation. The Morph II [40] dataset contains 55,134 unique face images
of 13618 individuals with unbalanced gender and ethnicity distributions, and is
the most popular publicly available real age dataset. The FG-NET [35] dataset
includes 1,002 color or gray images of 82 people with each subject almost ac-
companied by more than 10 photos at different ages. Since all images were taken
in a totally uncontrolled environment, there exists a large deviation on lighting,
pose and expression (i.e. PIE) of faces inside the dataset.
Head Pose Estimation. The BIWI dataset [7] contains 20 subjects, of which 10
are male and 6 are female, besides, 4 males have been chosen twice with wearing
glasses or not. It includes 15678 images collected by a Kinect sensor device for
different persons and head poses with pitch, yaw and roll angles mainly ranging
within ±60◦, ±75◦ and ±50◦.

5.2 Experimental Setup

Dataset Setting. The settings of different datasets are given below.

– Morph II. Following the recent relevant work [44], the images in Morph II
were divided into two sets: 80% for training and the rest 20% for testing.
The random division was repeated 5 times and the reported performance
was averaged over these 5 times. The VGG-Face [36] networks were chosen
as the pre-trained model.

– FG-NET. The leave-one-person-out scheme [44] was adopted, where the
images of one person were selected for testing and the remains for training.
The VGG-16 networks were pre-trained on the IMDB-WIKI [42] dataset.

– BIWI. Similarly, 80% of the whole data was randomly chosen for train-
ing and the rest 20% for testing, and this operation was repeated 5 times.
Moreover, the VGG-FACE networks were the pre-trained model.
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Evaluation Metrics. The first evaluation metric is the mean absolute error
(MAE), which is defined as the average absolute error between the ground truth

and the predicted output:
∑N
i=1 |ŷi − yi| /N , ŷi represents the estimated output

of the ith sample, and N is the total number of testing images. The other eval-
uation metric is cumulative score (CS), which denotes the percentage of images

sorted in the range of [yi − L, yi + L]: CS(L) =
∑N
i=1 [|ŷi − yi| ≤ L] /N · 100%,

where [·] denotes an indicator function and L is the error range.

Preprocessing and Data Augmentation. On the Morph II and FG-NET
datasets, MTCNN [49] was used for joint face detection and alignment. Further-
more, following [44], we augmented training images in three ways: (i) random
cropping (5 times); (ii) adding Gaussian white noise with variance of 0.0001 (2
times); (iii) random horizontal flipping (2 times). The whole number of samples
was increased by 20 times after augmentation. On the BIWI dataset, we utilized
the depth images for training and did not augment training images.

Parameters Setting. The VGG-16 [45] was employed as the fundamental back-
bone networks of SPUDRFs. The hyper-parameters of VGG-16 were: training
batch size (32 on Morph II and BIWI, 8 on FG-NET), drop out ratio (0.5), max
iterations of each pace (80k on Morph II, 20k on FG-NET, and 40k on BIWI),
stochastic gradient descent (SGD), initial learning rate (0.2 on Morph II, 0.1
on BIWI, 0.02 on FG-NET) by reducing the learning rate (×0.5) per 10k iter-
ations. The hyper-parameters of SPUDRFs were: tree number (5), tree depth
(6), output unit number of feature learning (128), iterations to update leaf node
predictions (20), number of mini-batches used to update leaf node predictions
(50). In the first pace, 50% samples which are easy or underrepresented were
selected for training. Here, λ was set to guarantee the first 50% samples with
large log pFi + γHi values involved. λ′ was set to ensure 10% of selected sam-
ples with soft weighting. γ was initialized to be 15 on the Morph II and BIWI
datasets, and 5 on the FG-NET dataset. β was set to select 1180 and 2000 sam-
ples as the ones needed to be augmented twice at each pace on the Morph II and
BIWI datasets. The number of paces was empirically set to be 10, 3 and 6 on
the Morph II, FG-NET, and BIWI datasets, and except the first pace, an equal
proportion of the rest data was gradually involved at each pace.

5.3 Validity of Our Proposed Method

Self-paced Learning Strategy. The validity of self-paced strategy in training
DDMs is mainly demonstrated by the following experiments on the MorphII
dataset. We first used all training images in the Morph II datasets to train
DRFs so as to rank samples at the beginning pace. Retraining proceeded with
progressively increasing λ such that every 1/9 of the rest data was gradually
involved at each pace, where γ was decreased to the half of its previous value
every time. In the last pace, the value γ was constrainedly set to be 0. The
visualization of this process can be found in Fig. 2.

Fig. 2 illustrates the representative face images in each learning pace of SPU-
DRFs, along with increasing λ and decreasing γ. The two numbers below each
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Fig. 2. The gradual learning process of SP-DRFs and SPUDRFs. Left: The typical
worst cases at each iteration become more confusing and noisy along with iteratively
increasing λ and decreasing γ. The two numbers below each image are the real age
(left) and predicted age (right). Right: The MAEs of SP-DRFs and SPUDRFs at
each pace descend gradually. The SPUDRFs show its superiority of taking predictive
uncertainty into consideration, when compared with SP-DRFs.

image are the real age (left) and predicted age (right). We observe that the
training images in the latter paces are obviously more confusing and noisy than
the ones in the early paces. Since our model is initialized by the results of the
previous retraining pace, meaning adaptively calibrated by “good” examples. As
a result, it has improved performance than DRFs, where the MAE is improved
from 2.17 to 1.91, and the CS is promoted from 92.79% to 93.31% (see Fig. 4(a)).

Fig. 2 also shows the comparison between SP-DRFs and SPUDRFs on the
Morph II datasets. The yellow bar denotes the MAE of SP-DRFs, while the
orange bar denotes for SPUDRFs. We find the MAE of SPUDRFs is lower
than SP-DRFs at each pace, particularly the last pace (1.91 against 2.02). As
we discussed previously, as in Fig. 1, SPUDRFs are prone to reach less biased
solutions due to the wider covering range of leaf nodes, owing to considering
underrepresented examples. This experiment could be regarded as an ablation
study of considering ranking fairness in SPL.

Considering Underrepresented Examples. On the BIWI dataset, the ne-
cessity of considering ranking fairness in SPUDRFs is further demonstrated. In
SP-DRFs, DRFs was first trained on the basis of all data, and the samples were
ranked and selected for the first pace according to this result. Subsequently, ev-
ery 10% of the rest samples were progressively involved for retraining. λ was
progressively increased while γ was progressively decreased until zero. In SP-
DRFs, the same self-paced strategy was adopted as in SPUDRFs, but without
considering ranking fairness (i.e. underrepresented examples).

Fig. 3 visualizes the leaf node distributions of SP-DRFs and SPUDRFs in the
progressive learning process. The Gaussian means µl associated with the 160 leaf
nodes, where each 32 leaf nodes are defined for 5 trees, are plotted in each sub-
figures. Three paces, i.e. pace 1, 3, and 6, are randomly chosen for visualization.
Only pitch and yaw angles are shown for clarity. Besides, the distribution of
angle labels (i.e. pitch and yaw) are also shown, where the imbalance problem
of data distribution is obvious.
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Fig. 3. The leaf node distribution of SP-DRFs and SPUDRFs in gradual learning
process. Three paces, i.e. pace 1, 3, and 6, are randomly chosen for visualization. For
SP-DRFs, the Gaussian means of leaf nodes (the red points in the second row) are
concentrated in a small range, incurring seriously biased solutions. For SPUDRFs, the
Gaussian means of leaf nodes (the orange points in the third row) distribute widely,
leading to much better MAE performance.

In Fig. 3, the comparison results between SP-DRFs and SPUDRFs demon-
strate the efficacy of considering ranking fairness in SPL. For SP-DRFs, the
Gaussian means of leaf nodes (red points in the second row) are concentrated in
a small range, incurring seriously biased solutions. That means the underrepre-
sented examples have been neglected in SPL training. The poor MAEs are the
evidence for this, which are even inferior to DRFs (see Fig. 6(a)). SPUDRFs
rank samples by log likelihood coupled with entropy, and are prone to achieve
less biased solutions, as shown in the third rows of Fig. 3. Such an experiment
could be also regard as an ablation study of the proposed ranking algorithm.

5.4 Comparison with State-of-the-art Methods

We compared our SPUDRFs with other state-of-the-art methods on the Morph
II, FG-NET and BIWI datasets.
Results on Morph II. Fig. 4(a) compares SPUDRFs with other baseline meth-
ods: LSVR [11], RCCA [18], OHRank [2], OR-CNN [34], Ranking-CNN [4], DRF-
s [44], and DLDL-v2 [8]. Firstly, owing to the effective feature learning ability
of DNNs, the SPUDRFs method is much superior to the shallow model based
approaches, such as LSVR [11] and OHRank [2]. Secondly, duing to the valid
self-paced regime, our SPUDRFs outperform other DDMs, and lead to more ro-
bust and less biased solutions. Thirdly, SPUDRFs outperform SP-DRFs on both
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Method MAE↓ CS↑
LSVR [11] 4.31 66.2%
RCCA [18] 4.25 71.2%
OHRank [2] 3.82 N/A
OR-CNN [34] 3.27 73.0%
Ranking-CNN [4] 2.96 85.0%
DRFs [44] 2.17 91.3%
DLDL-v2 [8] 1.97 N/A
SP-DRFs 2.02 92.79%
SPUDRFs 1.91 93.31%
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Fig. 4. The comparison results on the Morph II dataset. (a) The MAE comparison
with the state-of-the-art methods, (b) the CS curves of the comparison methods.

MAE and CS, and achieve state-of-the-art performance. Fig. 4(b) shows the CS
comparison on this dataset. We observe that the CS of SPUDRFs reachs 93.31%
at error level L = 5, which is significantly better than DRFs and obtained 2.01%
increment.

Method MAE↓ CS↑
IIS-LDL [9] 5.77 N/A
LARR [10] 5.07 68.9%
MTWGP [50] 4.83 72.3%
DIF [12] 4.80 74.3%
OHRank [2] 4.48 74.4%
CAM [31] 4.12 73.5%
DRFs [44] 3.06 83.33%
SP-DRFs 2.84 84.73%
SPUDRFs 2.77 85.53%
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Fig. 5. The comparison results on the FGNET dataset. (a) The MAE comparison with
the state-of-the-art methods, (b) the CS curves of the comparison methods.

Results on FG-NET. Fig. 5(a) shows the comparison results of SPUDRFs
with the state-of-the-art approaches on FG-NET dataset. As can be seen, SPU-
DRFs reach an MAE of 2.77 years, which reduces the MAE of DRFs by 0.29
years. Besides, the CS comparison is shown in Fig. 5(b), SPUDRFs consistently
outperform other recent proposed methods at different error levels, proving that
our method is effective in enhancing the robustness of facial age estimation.

Results on BIWI. Fig. 6(a) shows the comparison results of our method with
several state-of-the-art approaches. The experimental results reveal the proposed
SPUDRFs method achieves the best performance with an MAE of 1.18, which
is state-of-the-art. Besides, we observe one important phenomenon: the MAE of
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Method MAE↓
HF [41] 4.95
SVR [6] 3.14
RRF [30] 3.06
KPLS [1] 2.88
SAE [15] 1.94
MoDRN [16] 1.62
DRFs [44] 1.44
SP-DRFs 2.08
SPUDRFs 1.18
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Fig. 6. The comparison results on the BIWI dataset. (a) The MAE comparison with
the state-of-the-art methods, (b) the CS curves the comparison methods.

SP-DRFs is even much worse than DRFs. This further demonstrates the obvi-
ous drawback of the ranking and selecting algorithm in original SPL—incurring
seriously biased solutions. In the first pace of the original SPL, as illustrated
in Fig. 3, the Gaussian means of leaf nodes are concentrated in a small range,
leading biased solutions. Incorporating underrepresented examples in the early
pace of SPUDRFs renders to more reasonable distributions of the leaf nodes.
Fig. 6(b) plots only three CS curves for brevity, i.e., DRFs, SP-DRFs and SPU-
DRFs, which is the average of the three angles. SPUDRFs also outperform DRFs
and SP-DRFs at different error levels.

6 Conclusion and Future Work

This paper explored how self-paced regime leads deep discriminative models (D-
DMs) to achieve more robust and less biased solutions on different computer
vision tasks (e.g. facial age estimation and head pose estimation). Specifically, a
novel self-paced paradigm, which considers ranking fairness, was proposed. The
new ranking scheme jointly considers loss and predictive uncertainty. Such a
paradigm was combined with deep regression forests (DRFs), and led to a new
model, namely self-paced deep regression forests with consideration on under-
represented examples (SPUDRFs). Extensive experiments on two well-known
computer vision tasks demonstrated the efficacy of the proposed paradigm.

We are currently applying self-paced DDMs for other computer vision tasks,
e.g. viewpoint estimation, indoor scene classification, where the ability to handle
ranking unfairness is fundamental to the success. Thus, investigating the causes
of algorithm unfairness in DDMs is a worthy direction. Obviously, except data
imbalance, there exist some other causing factors. In addition to this, exploring
how to combine the new self-paced paradigm with other DDMs, including deep
regressors and classifiers, will also be our future work.
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