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Abstract. Surface registration plays a fundamental role in shape anal-
ysis and geometric processing. Generally, there are three criteria in eval-
uating a surface mapping result: diffeomorphism, small distortion, and
feature alignment. To fulfill these requirements, this work proposes a
novel model of the space of point landmark constrained diffeomorphisms.
Based on Teichmüller theory, this mapping space is generated by the Bel-
trami coefficients, which are infinitesimally Teichmüller equivalent to 0.
These Beltrami coefficients are the solutions to a linear equation group.
By using this theoretic model, optimal registrations can be achieved by it-
erative optimization with linear constraints in the diffeomorphism space,
such as harmonic maps and Teichmüller maps, which minimize different
types of distortion. The theoretical model is rigorous and has practical
value. Our experimental results demonstrate the efficiency and efficacy
of the proposed method.

Keywords: Teichmüller Map, Conformal Geometry, Point Landmark
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1 Introduction

3D surface registration serves as a fundamental process in shape analysis and
geometric processing tasks. In computer vision areas, such as human face regis-
tration and tracking [54, 55], human body registration and tracking [16, 3], and
general surface registration [34], high-quality surface mappings are desirable. In
medical imaging areas, such as brain morphometry [40, 36, 26, 44] and virtual
colonoscopy[48, 28], the accuracy of shape classification and abnormality detec-
tion relies heavily on the quality of the surface registration results.

In this work, we propose a novel approach to model the space of point land-
mark constrained diffeomorphisms for 3D surface registration. The generators of
this space are the Beltrami coefficients infinitesimally Teichmüller equivalent to
0. This theoretic result can be applied to optimize special energies in the point
landmark constrained diffeomorphism space, such as harmonic energy and angle
distortion, to obtain harmonic mappings and Teichmüller mappings. The com-
putation of these mappings can be effectively accomplished by solving quadratic
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optimization problems. As shown in Fig.6, given a male and a female facial sur-
face with landmarks, there are infinite many diffeomorphisms between the two
faces with landmark constraints. Conventional Tecihmüller map is only one of
them. The current work allows us to perform optimization in this mapping space,
for example, a diffeomorphism with landmark constraints with minimal elastic
deformation energy (namely generalized harmonic energy).

(a) (b) (c) (d)

Fig. 1: Surface conformal mapping from (a) to (b) and quasi-conformal mapping
from (c) to (d).

Criteria for Registrations The following criteria are widely considered effective
to evaluate the quality of a surface mapping. i) Bijection In most situations, a 1-1
correspondence is desired for surface registration purposes. ii) Distortion Surface
registration will induce geometric distortions. In applications, it is highly pre-
ferred to minimize the distortion. iii) Feature alignment Surfaces, such as human
faces and human bodies, have natural anatomical features like eye corners, nose
tips, and joints. A high-quality surface registration should align these features
accurately. iv) Smoothness In practice, surface registrations are required to be
continuous and even smooth without folding or tearing. For surface registration
purposes, an ideal mapping should be smooth, bijective, features aligned, and
with least distortion. Thus, we propose an efficient algorithm to find point land-
mark constrained diffeomorphisms (smooth, bijective) with minimal distortions
based on infinitesimal Teichmüller theory.

Space of Diffeomorphisms Based on the quasi-conformal geometry theory [29, 2,
11], the mapping space of all diffeomorphisms between two surfaces is converted
to a functional space defined on the source surface.

Consider a pair of Riemannian surfaces (S,g) and (T,h) with the same topol-
ogy, as shown in the last two frames in Fig. 1, where S is the female face and T
is the unit planar disk. A diffeomorphism f : S → T maps infinitesimal ellipses
on the source to infinitesimal circles on the target. The shape of the ellipses (ec-
centricity and the orientation) is encoded into a complex function, the so-called
Beltrami coefficient µf . The diffeomorphism f and its Beltrami coefficient µf
mutually determine each other by the Beltrami equation in Eqn. 4. The space
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of all diffeomorphisms between the two surfaces is essentially equivalent to the
functional space of all Beltrami coefficients, whose norm is less than one almost
everywhere (see e.g. [2]).

Point Landmark Constrained Diffeomorphism Space Suppose some landmarks
are given {pi}ni=1 on the source surface S and {qj}nj=1 on the target surface T ,
the landmark matching criteria requires the diffeomorphisms f : S → T maps
each pi to the corresponding qi. Using the Beltrami coefficient representation of
the mappings, the central question becomes how to choose µ, such that

fµ(pi) = qi, ∀i = 1, . . . , n. (1)

The diffeomorphisms satisfying the Eqn. 1 form the point landmark constrained
diffeomorphism space, denoted as F(S \ Γ, T \ Λ), where Γ = {pi}ni=1 and Λ =
{qj}nj=1. Fig. 2 shows one point landmark constrained diffeomorphism.

Suppose there are two Beltrami coefficients µ1 and µ2, such that fµk satisfies
the point landmark constraints in Eqn. 1, then the composition (fµ2)−1 ◦ fµ1

is an automorphism of the source S, homotopic to identity and fixes all the
landmarks pi’s. The point landmark constrained automorphisms form a group

G(S \ Γ ) := {fµ : ‖µ‖∞ < 1, fµ ∼ idS , f
µ(pi) = pi,∀i}, (2)

where Γ is the set of landmarks.
G(S \Γ ) is an infinite dimensional Lie group, we can find a set of its “genera-

tors”, the so-called infinitesimal Teichmüller trivial diffeomorphisms, T 0(S \Γ ).
Namely, for any fµ ∈ G(S \ Γ ), we can find a sequence of diffeomorphisms fµi ,
µi ∈ T 0(S \ Γ ), such that

lim
n→∞

fµn/n ◦ fµn−1/n ◦ · · · fµ1/n → fµ,

where the space of infinitesimal Teichmüller trivial diffeomorphisms is given by
(see e.g. [10])

T 0(S \ Γ ) :=

{
µ : ‖µ‖∞ < 1,

∫
S

µϕ = 0, ∀ϕ ∈ Ω(S \ Γ )

}
. (3)

Thus, the infinitesimal Teichmüller trivial diffeomorphisms T 0(S\Γ ) generate
the point landmark constrained automorphism group G(S \ Γ ). And G(S \ Γ )
gives all the point landmark constrained diffeomorphisms, namely solutions to
Eqn. 1.

Optimization in the Space of Diffeomorphisms In practice, the optimal regis-
tration can be obtained by searching in the point landmark constrained diffeo-
morphism space (solutions to Eqn. 1) for a solution that optimizes some specific
energy. From the above discussion, the optimization can be carried out within
G(S \ Γ ) or T 0(S \ Γ ) instead. Constraints described in Eqn. 3 are linear, and
given suitable energy, the optimization will become convex and can be solved by
quadratic programming methods.
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In this work, we compute point landmark constrained harmonic maps, which
minimizes the elastic deformation energy in the point landmark constrained
diffeomorphism space. Furthermore, we compute the point landmark constrained
Teichmüller map that minimizes the angle distortion, namely the L∞-norm of
the Beltrami coefficient. Our experimental results demonstrate the efficacy and
efficiency of the proposed method.

Fig. 2: Feature alignment illustration. The red dots are feature points and the
blue dots represent the target position of the feature points. Namely, we are
looking for a diffeomorphism that maps the red dots to the blue dots. The bijec-
tivity is visualized by the circle patterns with no overlap or flip. The coincident
blue and red dots represent the exact match of feature points.

Contributions The proposed method has the following merits:

– Novel: We propose a novel approach to compute diffeomorphic surface map-
pings with point landmark constraints. Both point landmark constrained
harmonic maps and Teichmüller maps can be computed under the same
framework.

– Rigorous: We present a solid mathematical foundation to guarantee the
existence of the Teichmüller map which is diffeomorphic, point landmarks
aligned, and with least distortion.

– Practical: Based on infinitesimal Teichmüller theory, the feature aligned
mapping is computed by iteratively solving quadratic optimization prob-
lems.

2 Related Works

3D surface registration methods have been extensively studied in recent years
because of their fundamental importance. We list some of the most related work
from more than abundant literature and readers are referred to [38, 30, 9, 35] for
surveys in surface registration and parameterization.
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Point Cloud Registration Point could registration methods can be applied on the
vertices of 3D surfaces directly. Iterative Closest Points (ICP) [6, 33] is one of the
most well-known methods for point cloud registration. However, ICP is designed
to deal with rigid motion situations. To alleviate this issue, multiple researches [4,
5, 14] presented non-rigid ICP methods that focus on non-rigid transformation.
However, despite the popularity, these methods fail to guarantee the bijectivity
and feature alignment constraints.

Conformal Parameterization Conformal parameterization [13, 39, 49] is a power-
ful tool in delivering 1-to-1 correspondence between 3D surfaces and 2D domains
while preserving local features. Several conformal parameterization registration
methods are proposed in 3D facial surface registration and show good results [18,
23, 56, 37]. Many computational approaches have been introduced such as least-
square conformal mapping [21, 20], holomorphic differentials based approaches
[53] and Ricci flow techniques [18, 17, 49]. However, these conformal parameter-
ization approaches cannot deal with feature constraints while preserving diffeo-
morphic from surfaces to surfaces. Gu et al.[13] proposed to compose an Möbius
transformation to the conformal parameterization to minimize landmark mis-
match energy. Similar ideas were presented in [42] as well. Lui et al.[24, 23] and
Choi et al.[7] improved this method by optimizing energy functionals consisting
of harmonic energy and landmark mismatch energy, however, both approaches
failed to either guarantee exact match of the landmarks or retain diffeomorphic
given a large number of landmark constraints.

Quasiconformal Mapping Quasiconformal mapping generalizes conformal map-
ping by allowing bounded angle distortion. Some early quasiconformal mapping
algorithms were based on circle packing approaches [15] and were restricted
between planar domains [29, 8]. Zeng et al.[46, 47] proposed to use the cur-
vature flow approach with auxiliary metrics to compute quasiconformal maps
for compact Riemann surfaces. Later, Zeng et al.[51] proposed a method to
compute quasiconformal maps with curve landmark constraints by integrating
quasi-holomorphic 1-forms, and in [52] graph-constrained diffeomorphisms are
computed by computing harmonic maps with boundary constraints. To strictly
enforce the landmark matching constraints, Lui et al.[27] optimized the regis-
tration using Beltrami holomorphic flow, where the surface diffeomorphism is
obtained by adjusting Beltrami coefficients. Lui et al.[25] also applied a similar
approach in surface registration compression. To compute general quasiconfor-
mal maps between arbitrary Riemann surfaces with similar ideas, Wong et al.[45]
proposed a vector field approach named discrete Beltrami flow. Even though
these approaches perform well in preserving bijectivity, they are less ideal in
matching feature points accurately, especially when the shape deformation is
large.

Teichmüller Mapping Closely related to quasiconformal maps, Teichmüller map
is the quasiconformal map where the L∞ norm of the Beltrami coefficients is
minimized. In other words, the Teichmüller map is the quasiconformal map as
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close to a conformal map as possible with certain constraints. Weber et al.[43]
presented an algorithm to approximate the extremal quasiconformal map for
genus zero surfaces with boundaries. Lui et al.[22] proposed an iterative algo-
rithm by quasi-conformal iteration. A Beltrami holomorphic flow approach to
compute Teichmüller extremal map for multiply-connected domains was intro-
duced by Ng et al.[31]. In addition to algorithms, Teichmüller space and shape
descriptor were applied in surface indexing and classification [19] and medical
imaging [41] [50]. For isogeometric analysis purposes, Nian and Chen [32] pro-
posed an iterative algorithm to compute Teichmüller map based on alternating
direction method of multipliers.

3 Theoretical Background and Definitions

In the following text, we refer to “point landmark(s)” as “landmark(s)” when
there is no confusion.

Beltrami Equation Suppose f : D → D is a complex function, and treated as
a mapping from the unit disk D in the complex plane to itself. The Beltrami
coefficient µ is defined as

∂f

∂z̄
= µ(z)

∂f

∂z
. (4)

This equation is also called the Beltrami equation. The dilatation of f is defined
as

Kf =
1 + |µf |
1− |µf |

(5)

Then the map f is said to be quasiconformal is Kf is bounded, and it’s called
K-quasiconformal is Kf ≤ K. A map f is called conformal (holomorphic), if
µf is zero everywhere, or equivalently Kf is one everywhere. Intuitively, f maps
infinitesimal ellipses to infinitesimal circles, the eccentricity of the ellipse is rep-
resented by the ratio between the major axis and the minor axis, which equals to
Kf ; the angle between the major axis of the ellipse and the horizontal direction
is given by 1/2 arg(µ).

Measurable Riemann Mapping Given a homeomorphism f : D→ D, its Beltrami
coefficient µf can be computed by Eqn.4; inversely, given the Beltrami coefficient,
there exists a corresponding map.

Theorem 1 (Measurable Riemann Mapping [1]). Given a measurable com-
plex function µ : D → C, such that ‖µ‖∞ < 1, then there exists a homeomor-
phism f : D→ D satisfying the Beltrami equation 4. Furthermore, two such kind
of mappings differ by a Möbius transformation

z 7→ eiθ
z − z0

1− z̄0z
,

where z0 ∈ D.
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The Beltrami differential is related to the Jacobian of the map f , J(f)2 =
|fz|2(1 − |µf |)2, hence if ‖µf‖∞ < 1, then f is diffeomorphic. This shows the
space of all automorphisms of the disk is equivalent to the space of Beltrami
coefficients, quotient the Möbius transformation group,

{diffeomorphisms on D} ∼= {µ|‖µ‖∞ < 1}/{Mobius}

Riemann Surface Suppose S is a topological surface, covered by a set of open
sets S ⊂

⋃
Uα, each set Uα is mapped onto a complex domain ϕα : Uα → C,

then (Uα, ϕα) is a chart of S, {(Uα, ϕα)} is an atlas of S. If Uα ∩ Uβ 6= ∅, then
the transition function is given by ϕαβ := ϕβ ◦ ϕ−1

α .

Definition 1 (Riemann Surface). Suppose S is a topological surface with an
atlas {(Uα, ϕα)}, if all transition functions are bi-holomorphic, then the atlas is
called a conformal atlas, the surface is called a Riemann surface.

Suppose (S,g) is oriented, then for each point p ∈ S, one can find a small
neighborhood Up such that the isotherm parameterization ϕp exists inside Up,
then all (Up, ϕp)’s form the conformal atlas, (S,g) is a Riemann surface.

Holomorphic Quadratic Differential Suppose S is a Riemann surface with a
conformal atlas {(Ui, zi)}, where zi is the isothermal parameter inside Ui.

Definition 2 (Holomorphic Quadratic Differential). A holomorphic quadratic
differential on a Riemann surface S is an assignment of a function φi(zi) on each
local chart zi such that if zj is another local coordinate, we have

φi(zi) = φj(zj)

(
dzj
dzi

)2

.

We denote the space of all holomorphic differentials on S as Ω(S). Given a
holomorphic quadratic differential ϕ ∈ Ω(S), a curve γ is called the horizontal
trajectory of ϕ, if the integration of

√
ϕ along γ is always a real number. Fig. 3

illustrates the horizontal trajectories of holomorphic quadratic differentials on
the cat surfaces.

Ω(S) is a complex linear space. For a genus g > 1 closed Riemann surface S,
Ω(S) is 3g − 3 dimensional. If S is a sphere with n punctures,

S = C ∪ {∞} − {a1, a2, · · · , an}

then every holomorphic quadratic differential has the form ϕ(z)dz2, where

φ(z) =

n∑
k=1

ρk
z − ak

,

such that
n∑
k=1

ρk = 0,

k∑
k=1

ρkak = 0,

n∑
k=1

ρka
2
k = 0.
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Fig. 3: Holomorphic quadratic differentials.

For S = D\{z1, z2, ..., zn},

φk(z) =
η

(z − zk)
, 1 ≤ k ≤ n (6)

form a basis of n dimensional complex vector space, where η is a constant such
that ‖φ‖ =

∫
S
|φ| = 1

Beltrami Differential Given a diffeomorphism between two Riemann surfaces
f : (S1, {zi})→ (S2, {wj}), the Beltrami differential can be defined as

∂wj
∂z̄i

dz̄i = µ(zi)
∂wj
∂zi

dzi.

Then Beltrami differential µ(zi)dz̄i/dzi is invariant under the transition maps
and thus is globally defined. The K-quasiconformal map can be generalized to
the Riemann surface cases directly.

Teichmüller Equivalence We are interested in such kind of homeomorphisms
that fix the landmarks.

Definition 3 (Landmark Preserving Automorphism). Suppose S is a Rie-
mann surface, with landmarks Γ = {p1, p2, · · · , pn}, f : S → S is a diffeomor-
phism homotopic to the identity map, preserving the landmarks, f(pi) = pi,
i = 1, 2, . . . , n, then we say f is a landmark preserving automorphism.

All the landmark preserving automorphisms form a group, denoted as G(S \
Γ ).

Definition 4 (Teichmüller Trivial). Suppose µ is a Beltrami differential for a
Riemann surface with landmarks, if fµ is a landmark preserving automorphism,
then µ is called Teichmüller equivalent to 0, or Teichmüller trivial, denoted as
µ ∼ 0.

The group of landmark preserving automorphism is isomorphic to the space
of Teichmüller trivial Beltrami differentials,

G(S \ Γ ) ∼= {‖µ‖∞ < 1, µ ∼ 0}.
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In practice, it is difficult to compute Teichmüller trivial Beltrami differential
directly. Instead, we seek for infinitesimally teichmüller trivial differentials.

Definition 5 (Infinitesimal Teichmüller Equivalence). Two Beltrami dif-
ferentials µ and ν are called infinitesimally equivalent if ∀φ ∈ Ω(S) with ‖φ‖ = 1,∫

S

µφ =

∫
S

νφ (7)

The space of Beltrami differentials infinitesimally Teichmüller equivalent to
ν is given by

T ν(S) :=

{
µ : ‖µ‖∞ < 1,

∫
S

(µ− ν)φ = 0,∀φ ∈ Ω(S)

}
. (8)

Geometrically, if µ ∈ T ν(S) is infinitesimally Teichmüller equivalent to ν, then
when t→ 0

fν+t(µ−ν)(pi) = fν(pi) + o(t), ∀pi ∈ Γ.

Teichmüller Map In general cases, the Teichmüller map is the one that minimizes
the angle distortion.

Definition 6 (Extremal Map). Let f : S1 → S2 be a quasiconformal map
between S1 and S2. f is said to be an extremal mapping if for any quasiconformal
map h : S1 → S2 isotopic to f relative to the boundary,

K(f) ≤ K(h) (9)

where K(f) = (1 + ||µ||∞)/(1 − ||µ||∞) is the maximal dilation. It is uniquely
extremal if the inequality in Eqn.9 is strict when h 6= f .

Definition 7 (Teichmüller Map). Let f : S1 → S2 be a quasiconformal map.
f is said to be a Teichmüller map associated to the holomorphic quadratic dif-
ferential φdz2, if its associated Beltrami differential is of the form

µ(f) = k
φ̄

|φ|
(10)

for some constant k < 1 and quadratic differential with ‖φ‖ <∞.

Under general conditions, the Teichmüller map is the extremal quasiconfor-
mal map within its homotopy class.

4 Algorithm

Based on previous theories, optimization in the space of landmark constrained
diffeomorphisms can be simplified to the optimization in the space of infinitesi-
mally equivalent Beltrami coefficients.
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In this section, we first present the general procedure of optimization in
the space of infinitesimally equivalent Beltrami coefficients. Then we present an
algorithm to compute Teichmüller map as a showcase of this general procedure.

Given f0 : D → D, with constraints f0(pi) = qi, pi ∈ Γ . The Beltrami
coefficient of f0 is µ0, the problem we consider is

min E(f, µ)

s.t.
∫
D µφj =

∫
D µ0φj ,∀ φj ∈ Ω(D)

(11)

where µ(z) = fz̄/fz.
In discrete setting, the domain D is represented as a triangle mesh D =

⋃
4i.

The Beltrami coefficient is represented as a piecewise constant function on the
triangle mesh µ =

∑
µi4i = (µ1, µ2, · · · , µT )T . The infinitesimal equivalence

condition can be discretized as∑
i

µiaji =
∑
i

µ0(i)aji

where aji =
∫
4i
φj . These are linear constraints on µ.

Beside the constraints in 11, it’s usually desirable to add more constraints in
order to ensure µ as well as corresponding f have desired properties. For example,
|µ| < 1 is a common constraint to add to ensure the resulting map to be bijective.
The energy E can have various forms depending on the diffeomorphism we want.
Usually, we derive the energy form E based on properties of corresponding map
f , which is the most challenging part of our algorithm.

The optimization problem can be solved iteratively. From initial µ0, we solve
the minimization problem 11 with either linear programming or quadratic pro-
gramming to obtain ν = arg minµE(f, µ). Next, we have to ensure ν is indeed
Beltrami coefficient of some f . We can solve the Beltrami equation to obtain f ,
or in some cases obtain f by closed form [12]. In either way, the f we obtained
may slightly move the landmark. We can diffuse f locally to restore landmark
constraints. Then we solve the minimization problem again to obtain a new ν.
This procedure is performed iteratively until the optimal µ is attained as well
as the optimal diffeomorphism f . Based on our experiments, this iterative pro-
cedure usually converges in a few iterations. For the Teichmüller problem we
will introduce later, it’s proved that the iterative procedure converges to a given
precision in finite steps [12].

If landmarks and their targets are too far away, it’s advisable to move land-
marks to targets gradually. For a sequence of initial map {f t0, t = 1, 2, · · · , T},
f t0(pi) = 1−t

T pi + t
T qi. We apply above optimization procedure for f t0 to obtain

f t, then use f t to initialize f t+1
0 by diffusing landmarks to next positions.

The algorithm is summarised as in Algorithm.1:
In figure 4, we illustrate the optimization within the space of landmark pre-

serving diffeomorphisms. The initial map f0 takes left to the middle with land-
mark constraints. For the map f from left to right, its Beltrami coefficient µ is
infinitesimal equivalent to µ0 of f0. The landmark constraints are preserved.
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Algorithm 1: Optimization in infinitesimal equivalence space

Result: Optimized µ and f
take some f0 and µ0;
while stop criteria is not satisfied do

solve problem 11 to obtain µ;
solve Beltrami equation 4 to obtain f ;
restore landmark constraints for f ;
compute µ = fz̄/fz;
let µ0 = µ;

end

Fig. 4: Infinitesimal equivalence

4.1 Harmonic map

Let f : D → D be a map that takes some feature points Γ = {p1, p2, · · · , pk}
to some target locations Q = {q1, q2, · · · , qk}, The harmonic energy of f can be
defined as

E(f) =

∫
D

(|fz|2 + |fz̄|2)dzdz̄

Without landmark constraints, by variational principle, the Euler–Lagrange equa-
tion for E(f) is

∆f = 0 (12)

This Laplace equation can be solved together with some boundary conditions.
However with landmark constraints, if we simply enforce those landmark con-
straints, the solution to 12 generally is not diffeomorphic. The harmonic map
with landmark constraints can be solved in the proposed space of landmark
preserving diffeomorphisms.

Since fz̄ = µfz, we obtain

E(f, µ) =

∫
D
|fz|2(1 + |µ|2)dzdz̄
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The map f is represented as a piecewise linear function, thus fz on each triangle
4i is constant and so is µ. So the energy can be integrated as

E(f, µ) =
∑
i

|fz|2i (1 + |µi|2)Ai

where Ai is the triangle area of triangle 4i. From initial map f , we can compute
fz and µ, then we optimize µ and f using algorithm 1. Figure 5 shows an initial
map with landmark constraints and harmonic map obtained from algorithm 1.

Fig. 5: Harmonic map. Left is a surface with landmarks. The initial map takes
left to middle with landmark constraints. The harmonic map is from left to right.

4.2 Teichmüller map

We apply previous general procedure to compute Teichmüller map via infinites-
imal approach. Let D be extended complex plane or unit disk. Given an initial
map f0, which takes some feature points Γ = {p1, p2, · · · , pk} to some target
locations Q = {q1, q2, · · · , qk}, we find the Teichmüller map in the homotopy
class of f0 which preserves the feature points.

The quadratic differentials on D have closed form 6. Based on Teichmüller
theory, we should minimize the L∞ norm of µ.

min E(f, µ) = ‖µ‖∞

s.t.
∫
D µφi =

∫
D µ0φi,∀ φi ∈ Ω(D, Γ )

(13)

Quadratic differential φj(z) has a simple pole at pj and analytic elsewhere,
so it’s integrable on every triangle and on D. We denote the integral as

A = (aji) =

∫
4i

φj (14)

We further separate the real part and imaginary part and obtain

Arx−Aiy = br
Aix+Aiy = bi

(15)
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(a) (b)

Fig. 6: The Teichmüller map between two human face surfaces (a) and the Te-
ichmüller map between human face surfaces with neutral and smiling expressions
(b).

where µi = xi + iyi, A = Ar + iAi, b = br + ibi = Aµ0. The L∞ minimization
problem can be solved by introducing an auxiliary variable z with constraints
|µi|2 = x2

i + y2
i ≤ z. So we get a equivalent minimization problem

min z

s.t x2
i + y2

i < z
Arx−Aiy = br
Aix+Aiy = bi

(16)

which is a linear programming problem with quadratic constraints. It can be
efficiently solved using e.g., interior point method.

5 Experiment Results

We show the optimized diffeomorphisms between 3D human faces. We manually
select a few landmarks at the nose, eye corner and mouth corner to ensure mean-
ingful matching. For 3D surfaces, we first conformally map them to the 2D unit
disk. Then we compute the Teichmüller map mapping the unit disk to itself with
prescribed landmark constraints. Fig. 6(a) and Fig. 6(b) show the Teichmüller
maps. In the two figures, the left and right columns are original surfaces tex-
tured with circle patterns. In the middle columns, we draw the ellipses which are
deformed from each circle by the mappings. Note that in either case, all ellipses
have the same eccentricities since Teichmüller map has the property of having
the same |µ| almost everywhere (see Eqn. 10).

In Fig.7 we plot the L∞-norm of µ corresponding to the initial maps and
the optimized Teichmüller maps. We observe that the initial mappings have
large distortions near landmark constraints, while in the Teichmüller maps the
distortion is uniformly smoothed.
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Fig. 7: Heat map of L∞-norm of µ. The first and third columns correspond to
initial mappings and the second and fourth correspond to the optimized Te-
ichmüller maps.

Fig. 8: Convergence of the optimization.

Our experiments are conducted
on a desktop computer with Intel i7
4.3GHz CPU. The human face sur-
faces in Fig. 6(a) and Fig. 6(b) have
40K triangles. The optimizations con-
verge within 20 iterations and take
32s. The convergence of optimization
is shown in Fig. 8.

6 Conclusion

This work proposes a model of the
space of diffeomorphisms with land-
mark constraints. The generators of
the space consists of infinitesimal Te-
ichmüller trival Beltrami coefficients.
The harmonic map and Teichmüller
maps can be obtained by solving convex optimizations with quadratic program-
ming. The method is rigorous and practical. The experimental results demon-
strate the efficacy and efficiency of the proposed method.
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