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Abstract. We aim to recover the dense 3D surface of the hand from
depth maps and propose a network that can predict mesh vertices, trans-
formation matrices for every joint and joint coordinates in a single for-
ward pass. Use fully convolutional architectures, we first map depth im-
age features to the mesh grid and then regress the mesh coordinates into
real world 3D coordinates. The final mesh is found by sampling from the
mesh grid refit in closed-form based on an articulated template mesh.
When trained with supervision from sparse key-points, our accuracy is
comparable with state-of-the-art on the NYU dataset for key point lo-
calization, all while recovering mesh vertices and dense correspondences.
Under multi-view settings for training, our framework can also learn
through self-supervision by minimizing a set of data-fitting terms and
kinematic priors. Our approach is competitive with strongly supervised
methods and showcases the potential for self-supervision in dense mesh
estimation.

1 Introduction

We consider the problem of estimating 3D shape and pose of articulated objects
from single depth images. Specifically, we want to estimate the position of surface
mesh vertices of the human hand model. Unlike skeleton joints, dense mesh
vertices encode both pose and shape of the hand and enable a much wider range
of virtual and mixed reality applications. For example, one can directly put the
virtual hand in a VR game, or overlay a user’s hand surface with another texture
map in mixed reality. Furthermore, manipulation of virtual objects can naturally
be modelled through interaction of dense surface representations.

Estimating mesh vertices is significantly more challenging than estimating
skeleton joints. First, the scale of the problem increases by several magnitudes.
To reasonably represent a human hand, one needs thousands of mesh vertices,
as opposed to tens of joint positions and angles. Secondly, getting accurate 3D
ground truth for the thousands of vertices from real-world data is extremely
difficult even though having large amounts of labelled training data is crucial for
data-driven learning based methods.
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Fig. 1: Upper rows: qualitative results on NYU [55]. In each group, upper rows
are results supervised with key-point annotations and lower rows with self-
supervision. We visualize the correspondence map with each mesh coordinate,
the rendered shading and depth map of the initial estimated mesh model and
refined ones, as well as key-points. Bottom rows: qualitative results from real-
world data with multiple users and view points showing the estimated mesh and
corresponding keypoints.

The most recent works that estimate mesh vertices leverage deep methods
such as VoxelNet [57], graph convolutions [37, 13], or parametric models [5, 68,
23]. These approaches have made significant advances for hand pose estimation
but are not without drawbacks. They tend to be restricted to fixed mesh topolo-
gies, have a very large number of network parameters, are difficult to train,
and or are limited in spatial resolution. The use of parametric models such as
SMPL [22] and MANO [38] has made 3D mesh estimation highly accessible.
The models are highly compact; for example, MANO has 19[16] dimensions for
each hand. But by directly estimating shape parameters and joint angles of the
mesh, these parametric approaches may not capture finer spatial details. They
are also sensitive to perturbations, since small offsets from a single dimension of
an estimate easily propagates to many mesh vertices.

We were motivated to develop a method that disentangles hand pose from
shape estimation and is able to explicitly enforce estimated pose aligned with pre-
calibrated hand shapes when available. Since both captured inputs and meshes
are inherently surfaces, it is natural to consider them as a 2D embedding in a 3D
Euclidean space. To this end, we propose solving mesh vertex regression with a
fully 2D convolutional architecture that learns the extrinsic geometric properties
of 3D inputs as well as intrinsics of the mesh model. Our approach is easy to
train, highly efficient, and flexible enough to handle different mesh topologies and
templates. Moreover, we can also capture very fine spatial detailing through per-
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pixel correspondences to a mesh model, thereby allowing finer spatial resolution
and for better alignment between the mesh model and depth observations.

At the core of our method are two 2D fully convolutional networks (FCNs),
applied to the image and mesh estimates consecutively (see Fig. 2). Linking the
FCNs is a 2D embedding that propagates gradients directly from the irregular
representation of a mesh to the regular and ordered representation of an image.
To refine the estimated mesh, we solve for a similarity transform with singular
value decomposition (SVD) to a template hand mesh model. We then re-pose the
template mesh based on the transform to yield a denoised mesh surface together
with key points. Since SVD has closed form solutions and is a differentiable
operator, one can also place supervision on the estimated key points.

We first pre-trained our network on a synthetic dataset. Afterwards, the
network can be fine tuned to real-world data by either feeding sparse key-point
annotations or by directly minimizing the reconstruction error between the mesh
estimation and observations. For the latter case, we propose a self-supervision
scheme that minimizes a geometric model-fitting energy as a training loss. The
model’s accuracy steadily improves with increasing amounts of data seen, even
without any human-provided labels. Finally, since correspondences between ob-
served hand pixels and the mesh are estimated in a differentiable way, we can
optimize the correspondences jointly with the disparity between the correspon-
dence pairs during model-fitting. This differs from and complements standard
ICP optimization methods. Such a self-supervision scheme greatly improves the
accuracy trained by synthetic data only. To further resolve the self-occlusion, a
multi-view consistency term can be optionally added when a multi-view camera
setup is available. In the multi-view camera setup, the proposed self-supervision
method can achieve competitive accuracy to supervised state-of-the-art.

Our contributions can be summarized as follows,

– We propose a novel fully convolutional network architecture for regressing
thousands of mesh vertices in an end-to-end manner.

– A self-learning scheme is proposed for training the network; without any
human labels, our network achieves competitive results when compared to
fully supervised state-of-the-art. Such a learning approach offers a new and
accurate way of annotating real-world data and thereby solves one of the key
difficulties in making progress for hand pose estimation.

– Our method bridges a gap between data-driven discriminative methods and
optimization-based model-fitting and benefits from both: accuracy that im-
proves with the amount of data shown, while not needing human annotations.

2 Related Works

Hand pose estimation. Deep learning has significantly advanced state-of-the-
art for hand pose estimation. The general trend has been to develop deeper and
more complex network architectures [7, 27, 8, 14, 24, 11, 61, 63]. Such progress has
hinged on having large amounts of annotated data [55, 67, 43]. Obtaining accu-
rate annotations, even for simple 3D joint coordinates, is extremely difficult and
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time consuming. Annotations generated by manually initializing trackers [55, 28]
require carefully designed interfaces for 3D annotation and there is often large
discrepancies between human annotators [48]. Motion-capture rigs [43] and aux-
iliary sensors [67] are fully automatic but have limited deployment environments.
To mitigate the lack of annotations, semi-supervised approaches [60, 6, 33] and
approaches coupling real and synthetic data [42, 32, 36] have also been proposed.

An alternative line of work [53, 35, 49, 40, 51, 18, 46, 54, 25] estimates pose by
minimizing a model-fitting error. Model-fitting needs little to no human labels,
but the accuracy is heavily dependent on the careful design of the energy func-
tion. A recent trend bridges data-driven and model-fitting approaches [56, 10,
13, 59] by using a differentiable renderer and incorporating the model-fitting er-
ror as a part of the training loss. Our work continues in this trend, but differs
from previous methods in two key respects. First, we re-parameterize the mesh
with a 2D embedding, which allows us to use a 2D fully convolutional network
architecture. Secondly, we apply self-supervision on both the image grid and the
mesh grid, leading to efficient gradient flows during back-propagation.

Human mesh model recovery from single image. Data-driven meth-
ods have greatly advanced the 3D reconstruction of shape and pose of the
full body [52, 62, 3, 30, 50, 31, 56, 19, 57, 39, 65], face [17, 21, 66, 37] and hands [54,
17, 23, 68, 5, 13, 16]. Earlier works focused on landmark detection[3], segmenta-
tion[54], and finding correspondences [52, 62, 17, 66, 25], and performed a model-
based optimization to fit the mesh in a subsequent step. Recently, trends have
shifted to end-to-end learning of the mesh with neural networks. Several works [30,
19, 31, 56, 68, 5, 23, 65, 16] favour parametric models like SMPL [22] and MANO [38].

Various encoder-decoder frameworks have also been used, applying graph
convolution to mesh vertices [37, 13], VoxelNet to 3D occupancy grids[57], and
fully connected and transposed convolutions to silhouettes [50] and texture and
mesh vertices [21]. Unlike these works, our approach is based on correspondence
estimation. Yet we also differ from other correspondence-based methods [62, 52,
1, 17, 66] in that we directly estimate mesh vertices with a single forward pass.

3D Network Architectures. It is highly intuitive to parameterize 3D in-
puts and outputs as an occupancy grid or distance field and use a 3D architec-
ture [12, 57, 24]. Networks such as VoxelNet however are parameter heavy and
severely limited in spatial resolution. PointNet [34] is a light-weight alternative
and while it can interpret 3D inputs a set of un-ordered points, it also largely
ignores spatial contexts which may be important downstream.

Since captured 3D inputs are inherently object surfaces, it is natural to con-
sider them as 2D embeddings in 3D space. Several works [9, 20, 37] have modeled
mesh surfaces as a graph and have applied graph network architectures to cap-
ture intrinsic and extrinsic geometric properties of the mesh. Our method also
works on the hand surface, but it is a simpler and more flexible network archi-
tecture which is easier to train. Our method most resembles [2, 47] by mapping
high dimension data to a 2D grid. However, instead of just working on points
from the depth map, we use dual grids, enabling the mapping of heterogeneous
data from Euclidean space to mesh surfaces and vice versa.
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Fig. 2: System Framework. Starting from a depth map of the segmented hand
as input, we estimate a dense correspondence map to the mesh model for every
point on the image grid (Sec. 3.2). This correspondence maps features from the
image grid to the mesh grid and allows us to recover the 3D coordinates of all
the mesh vertices (Sec. 3.3) on the mesh grid. Finally, coordinates are refined by
skinning a template mesh model with respect to the recovered vertices (Sec. 3.4).

3 Dual Grid Net

Our Dual Grid Net (DGN) is an efficient fully convolutional network architecture
for mesh vertex estimation. At its core are consecutive 2D convolutions on two
grids – an image grid and a mesh grid – where features from one grid can be
mapped to another differentiably. We assume we are provided a canonical hand
mesh model which is generic and applicable to all users’ hands. In a given depth
map, every pixel on the hand’s surface has a correspondence to the mesh surface.
Finding these correspondences is equivalent to mapping pixel coordinates from
the image grid to the mesh grid (Sec. 3.1). Armed with a dense correspondence
(Sec. 3.2) we map features from the image grid to the mesh grid and recover
the 3D coordinates of all the mesh vertices (Sec. 3.3). We further refine these
coordinates by skinning a template mesh model with respect to the recovered
mesh vertices (Sec. 3.4). The entire process is illustrated in Fig. 2.

(a) (b) (c) (d)

Fig. 3: (a) Triangular mesh model used in this work; (b) 2D MDS embedding of
the mesh vertices; (c, d) mesh coordinates on mesh surface corresponding to 2D
MDS embedding.
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3.1 Mesh model

We use a triangle mesh model (see Fig. 3(a)) with 1721 vertices. Every point
on the mesh surface has a pair of “intrinsic” coordinates which depend only
on its position on the mesh and is therefore invariant to hand pose, shape, or
view point. In addition, we consider “extrinsic” properties of points on the mesh
surface such as texture, colour, or its 3D coordinates in the camera. Both the
intrinsics and extrinsics of each mesh vertex can be approximated via linear
interpolation of neighbouring points on the mesh surface.

A common way to parameterize mesh coordinates is via UV maps [1]. We
follow a similar approach and use multidimensional scaling (MDS) [4] to param-
eterize the mesh. For any two points on a mesh surface, MDS aims to keep their
Cartesian distance w.r.t. the mesh coordinates to be as close as possible to the
geodesic distance on the mesh surface. We set the dimension of mesh coordi-
nates (a.k.a. the intrinsic coordinates) to 2, to allow for 2D convolutions on the
mesh grid. The learned MDS embedding used in this work is shown in Fig. 3(b),
and the corresponding mesh coordinates projected onto the 3D mesh surface in
Fig. 3(c) and (d) respectively.

3.2 Mesh Coordinate Estimation

Similar to [1], we first estimate the 2D mesh coordinates for all pixels from the
hand region. We adopt an hourglass network [26] (see Fig. 2) as the backbone
architecture and apply it in two heads. The first head estimates the 2D mesh
coordinates Im for all depth pixels while the second head estimates a generic
feature map If which is later mapped to the mesh grid. Unlike [17], which per-
forms classification followed by residual regression, we adopt a direct regression
approach, which we find achieves sufficient accuracy.

Previous works [13, 5, 68, 23] encoded image inputs as a fixed-size latent vec-
tor. Our approach, by using dense mesh coordinates, has two major advantages.
Firstly, it allows us to use an FCN architecture. This important difference means
we can maintain spatial resolution but also has advantages of efficiency and
translational invariance. It is also much easier for learning, since one can di-
rectly apply pixel-wise supervision on both image grid and mesh grid. Secondly,
the estimated mesh coordinates establishes a dense correspondence map between
the captured hand surface and the mesh surface. The correspondence map, as
we will show in Sec. 4.1, allows us to directly embed a lifting energy [18], which
is beneficial to minimizing the model-fitting error in a self-supervised setting.

3.3 Mapping from image grid to mesh grid

In this section, we describe the recovery of all mesh vertices, including occluded
ones, from the estimated per-pixel mesh coordinates and features on the image
grid. Based on the estimated mesh coordinates, feature maps computed from
the depth image can be mapped from the image grid to the mesh grid. Similar
to [2], we call this process extension (see Fig. 4).



Dual Grid Net: Hand Mesh Vertex Regression from Single Depth Maps 7

More specifically, for any pixel p belonging to the hand surface, we can regress
its coordinate on the mesh grid m = (mx,my) ∈ R2 as well as its corresponding
feature f ∈ Rd as obtained by the feature head as described in Sec. 3.2. f is
propagated to the mesh grid via soft assignment to the neighbours of m:

f
propagation−−−−−−−−−⇀↽−−−−−−−−−

sampling

∑
n∈Ω(m)

wn · fn. (1)

f is propagated to the grid point n with a weighting determined by the softmax
of its distance to m as follows, where σ = 0.5:

wn =
e−σ(n−m)2∑
l e
−σ(l−m)2

. (2)

We adopt a second hourglass network on the mesh grid to recover all mesh
vertices. Given that every mesh vertex is associated with a fixed mesh coordinate,
the output features of hourglass network is aggregated according to their mesh
coordinates of vertices. In turn, this process is named as sampling (see Fig. 4).

Note that propagated features will only partially occupy the mesh grid due
to occlusions. However, the sampling process requires features from all over the
mesh grid. This resembles an image in-painting process and we leverage the
encoder-decoder structure of the hourglass to utilize both global and local con-
text when filling in these values.

f (mx,my)

sampling

extension

Mesh Grid

Fig. 4: Illustrations of the exten-
sion and sampling process, where
f ∈ Rf is the mapped feature and
(mx,my) ∈ R2 is its corresponding
coordinate on the mesh grid. The
black box indicates the kernel size
of extension and sampling.

B
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C
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−1LB

L = BT−1
p TB−1
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Fig. 5: The relationship between lo-
cal transformation L w.r.t. the local
bone frame B and global transfor-
mation T w.r.t. the camera frame
C.

3.4 Refining Mesh Vertices

Post-sampling, the initial mesh estimate is not very accurate (see Fig. 1). But
given that our interest is to work with a specific model, i.e., that of the (canon-
ical) hand, it is excessive to add further network structures for more accurate
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estimates. Instead, we propose to refine the vertices with a kinematic module.
We align the initial mesh estimate with a template mesh model and solve for a
rigid transformation via a closed form solution.

More specifically, given the correspondence between estimated vertices Ps
and vertices from the template modelQ for each hand part (palm or finger bone),
we estimate a similarity transformation matrix T by minimizing the Euclidean
distance between correspondence points pi∈Ps and qi∈Q as

T∗ = argminT

∑
i

‖pi −Tqi‖. (3)

The refined mesh results from posing the template mesh with the similarity
transformation matrices through linear blend skinning (LBS). Note that Eq. 3 is
a least squares minimization and that T∗ can be found in closed form [44] e.g.,
with singular value decomposition (SVD).

By using a closed form solution, the mesh can be refined with a single forward
pass through the network. Coordinates of key points can also be obtained from
the transformation matrices in a similar way as mesh vertices. And because
SVD is differentiable, supervision can also be placed on top of the key-point
coordinates. As will be shown in Sec. 5, when given only the supervision of these
sparse key-points, our method can accurately recover dense meshes.

3.5 Supervised training loss

We apply MSE to the correspondence estimation Im and refined mesh vertices

Pr, to optimize network parameters θ, where Î(i)
m and P̂(i)

r are the ground-truth
correspondence map and mesh vertex coordinates for the ith sample respectively:

L(θ) =
∑
i

‖I(i)
m − Î(i)

m ‖2 + α‖P(i)
r − P̂(i)

r ‖2. (4)

3.6 Implementation Details

The hand region is first localized with the segmentation network of [54]. The
image input to the hourglass network on the image grid is 64×64; the size of
the mesh grid is set as 16×16. To further reduce computation, we adopt pixel
shuffling techniques [41] to decrease the spatial resolution by a factor of 2 on both
the image grid and mesh grid. While the number of input and output feature
channels are increased by a factor of 4, the number of feature channels in hidden
layers are unchanged. The kernel size of extension and sampling are both 8×8.

4 Self-supervision on unlabelled real data

Training of the network proposed in Section 3 with direct supervision would
require labels in the form of dense correspondences and vertex locations. This
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is impossible to annotate for real-world data. Yet training with only synthetic
data is also not an option. As shown later in the experiments and also observed
in the literature [36, 32, 59], the large domain gap between real and synthesized
depth maps gives rise to compromised accuracy. Since our network essentially
performs a (differentiable) rendering, the natural question that arises is whether
we can incorporate a model-fitting loss into training for self-supervised learning.

The self-supervision term is similar to conventional model-fitting energy func-
tions and is formulated as follows,

L(θ) =
∑
i

l
(i)
data(θ) + λ1l

(i)
prior(θ) + λ2l

(i)
mv(θ) (5)

where θ is the network parameter and l(i) is the loss for the ith sample. For
notation simplicity, we omit the superscript in the rest of this section. The term
ldata measures how much the rendered depth map resembles the input depth map.
Priors lprior constrain the estimate to be kinematically feasible. Finally, a multi-
view consistency term lmv which can be used in calibrated multi-camera setups
to handle self-occlusion. The λ’s are associated weighting hyperparameters.

4.1 Data Terms

For ldata, we use only an ICP and a lifting energy term:

ldata(θ) = lICP(θ) + ωllifting(θ). (6)

The ICP term measures the disparity between points to their projections onto
the mesh surface:

lICP(θ) =
∑
i∈I

min
j∈m({T}|θ)

d(i, j), (7)

where m({T}|θ) is the skinned mesh surface, where {T} is a set of per-joint
transformation matrices, which are estimated as per Sec 3.4. lICP(θ) approxi-
mates the point to surface distance by finding the nearest vertex from the mesh
model based on the distance function d. For d(·, ·), we use a smooth L1 loss.
Similar to [49], we restrict the points to find only correspondences on the frontal
surface of the mesh.

We also leverage the correspondence map and minimize the distance between
points and their estimated correspondences on the mesh surface via a lifting
term:

llifting(θ) =
∑
i∈I

d(i, f(i|θ)), (8)

where f(i|θ) estimates the 3D coordinates of the correspondence of i on the mesh
surface, given the estimated mesh coordinate of i through the sampling process
(see Fig. 4). The lifting term simultaneously optimizes over the correspondence
map Im on the image grid and the coordinate map Jo on the mesh grid (see
Fig. 2); this introduces more efficient gradient flows to different network stages.
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4.2 Kinematic Priors

The kinematic priors are defined as

lprior(θ) = lcollision(θ) + κ1larap + κ2loffset(θ). (9)

The collision term lcollision(θ) penalizes collisions between any pair of joints:

lcollision(θ) =
∑
i,j

max(t− ‖pi − pj‖, 0), (10)

where pi and pj are the 3D coordinate of the corresponding joints. We set the
threshold t = 5mm for all pair of joints.

The as rigid as possible term Larap(θ) [45] constrains local deformations
of estimated mesh surfaces to be rigid:

larap = ‖Pr − Ps‖2, (11)

where Ps are the originally estimated mesh vertices. Pr are the refined vertices
through linear blend skinning and are guaranteed to be rigid for each part.

Section 3.4 described how to estimate the similarity transformation T with
respect to the camera frame for each hand part. T transforms the bone from
a rest pose1 to the observed pose with respect to the camera frame. From the
perspective of forward kinematics, T can be defined as

T = Tp ·B−1 · L ·B, (12)

where Tp is the parent transformation matrix, B is the bone frame in the neutral
pose (see Fig. 5) . L is the local transformation matrix with respect to the bone
frame B. Since B is given in the original mesh model and Tp is known from
previous estimates, L can be recovered with a closed form solution.

We rewrite L as [SR|t], where S ∈ R3×3 is a diagonal matrix scaling the
matrix, R ∈ R3×3 is the rotation matrix, t ∈ R3 is the translation. Note that
except for the wrist, there is no translation on the remaining joints. We thus
penalize translations in the finger’s local transformation with an offset term

loffset =
∑
i∈F
‖ti‖2, (13)

where F represents all the finger joints.

As the joint angles can be calculated from local transformation L with a
closed-form solution, further constraints such as push constraints can easily be
added. We find this to be unnecessary since synthetic data with supervision is
also fed to the network to regularize the estimates (see Sec. 4.4).

1 Defined by placing origin at the joint and aligning the z-axis with its parent bone.
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4.3 Multiple view consistency

To handle severe self-occlusions and holes in noisy depth inputs, we add consis-
tency constraints lmv applied to real data captured on a multi-camera rig:

lmv(θ) = lvertex(θ) + η1lICP(θ) + η2llifting(θ). (14)

By calibrating the extrinsics of the camera, the vertex term lvertex minimizes
the distance between mesh vertices to their robust average (median in this pa-
per) in the canonical frame. lICP and llifting work similarly to the aforementioned
single-view cases, except that the estimated mesh model is first mapped to an-
other camera frame and then matched against the corresponding depth map.

4.4 Active data augmentation by estimation

Since the proposed method could recover the hand mesh, we propose a strat-
egy to actively feed synthesized data given the estimated mesh on real data to
the network. The supervision from the synthesized data provides more realistic
poses and helps the network to better recover from wrong estimates. From our
experiments, we find this strategy to be useful to stabilize the self-supervision
training and further decrease the model fitting error on unlabelled training data.

5 Experimentation

5.1 Dataset and evaluation protocols

We evaluate on the NYU Hand Pose Dataset [55]. It is currently the only pub-
licly available multi-view depth dataset and features sequences captured by 3
calibrated and synchronized PrimeSense cameras. It consists of 72757×3 frames
for training and 8252 × 3 for testing. NYU is highly challenging as the depth
maps are noisy and the sequences cover a wide range of hand poses. Additionally,
we synthesize a dataset of 20K depth maps of various hand poses with random
holes and noise to evaluate the trained network’s ability to generalize to new
synthesized samples. We follow [54] to detect hands (∼1ms per frame). In total,
our method is highly efficient and achieves 59.2 FPS on an Nvidia 1080Ti GPU.

While our framework is flexible to any hand model, e.g., the MANO model[38],
we follow [55] and use the LibHand model from [58] in the following experiments.
This provides for an unbiased quantitative analysis since the definition of the
palm center differs in different skeleton models. Note that the original hand shape
from LibHand is different from either subject in the NYU dataset. Following the
protocol of [55] and previous works, we quantitatively evaluate a subset of 14
joints with two standard metrics: mean joint position error (in mm) averaged
over all joints and frames, and the percentage of success frames, i.e., frames
where all predictions are within a certain threshold [52].
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5.2 Training with only synthesized data

We first evaluate how a network trained on synthesized data can generalize to
newly synthesized data and real data (see second to sixth row in Table 1). The
synthesized data is rendered from a mesh model with various poses and shapes
and then corrupted with random depth noise and holes. Data is synthesized
in an on-line manner and around 7.2 million samples are fed into the network
for training. Our proposed kinematic module successfully reduces the average
error over all mesh vertices from 14.75mm to 7.65mm. The network can also
generalize to newly synthesized samples and achieves a high accuracy with only
7.1mm mean joint position error. However, the error increases almost three-fold
to 23.21mm when testing on real-world depth maps. This shows that even though
the network encounters data augmented with random noise, it readily over-fits
to the rasterization artifacts and hand shapes of synthesized depth maps.

5.3 Ablation studies

Variations in training data. We investigate how different training data and
different supervision impacts the accuracy. First, we train only with the 8252×3
testing samples to check how well self-supervision can fit the mesh model to
depth maps. We then trained with all training data, but in a single view setting
to check how a multi-view set up impacts performance. Finally, we also look into
supervision with sparse key-points to check if the proposed network accurately
recover the mesh vertices and the key-points on unseen samples in testing set.

According to Tab. 1, self-supervision based fine tuning on real data signif-
icantly reduces the mean joint error from 23.21mm of synthetic data trained
network to 16.96mm. Similar improvements can also be found in Fig. 6a with
15% - 20% more successful frames on the error thresholds between 20mm to
40mm after fine tuning. However, single view only is not adequate to address
the challenges from noisy depth map and severe self occlusion. To this end, we
find leveraging multiple view consistency as additional constraints(see Sec. 4.3)
further improve the self-supervision results (see Tab. 1 and Fig. 6a).

Our estimates are highly accurate, with only 8.5mm mean joint position er-
ror (see Table 1). Furthermore, 67.8% of frames have a maximum error below
20mm and 85.3% below 30mm respectively (see Fig. 6a). Interestingly, training
directly on the test samples gives rise to a higher mean joint error than train-
ing on a larger training set excluding the test samples (14.50mm vs 13.09mm,
see Table 1). We attribute this to the poor initialization of the network when
trained on synthesized data. The learning likely gets trapped in local minima
since first-order based optimization is used during back-propagation. However, if
the amount of training data increases, mean joint position error decreases. This
justifies the benefits of data-driven approaches over conventional model-based
trackers which optimizes each frame independently.

As shown in Fig. 1, our method can accurately reconstruct the 3D mesh model
given only sparse key-point supervision. When it comes to mean joint position
error, the estimation is highly accurate with only 8.5 mean joint position error
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(see Table 1). Furthermore, 67.8% of frames have a maximum error below 20mm
and 85.3% below 30mm respectively (see Fig. 6a).

Studying the impact of self-supervision loss terms. We study the in-
dividual contributions of the different self-supervision loss terms by training
without the Llifting, Lcollision, Larap, Loffset and active augmentation techniques.
The contributions of each of the terms are validated as we observe similar de-
creases in accuracy when they are omitted (see Table 1 and Fig. 6b). Notable
is the fact that without the lifting energy term, the average error increases by
1.41mm from 13.09mm to 14.50mm. The percentage of successful frames drops
by 7% from 64% to 57% on the error threshold of 30mm.

5.4 Comparison to state-of-the-art

We compare to recent state-of-the-art in Table 2. When trained with keypoint
annotations, our method outperforms all other methods except [24] and [36] with
respect to mean joint position error. In addition, according to Fig. 6c, our method
performs similarly to [14, 32] when the error threshold is larger than 10mm and
outperforms all other methods except [36]. We note however that [24] report an
ensemble prediction result. This is impractical for real time use; in comparison,
our method is highly efficient and runs at 59.2 FPS on an NVidia 1080Ti GPU.
Furthermore, we out-perform [24] when compared its single model result. The
work of [36] leverages domain adaptation techniques to better utilize synthesized
data. This is complementary to our proposed method and beyond our current
scope. It is also worth noting that key-point estimation is a byproduct of our
proposed method. Our method is not designed to learn key-points; rather, the
primary aim of our work is to recover mesh vertices.

We also compare our self-supervision method with [10], which to best of
our knowledge is the only other unsupervised method. As is shown in Fig. 6c,
our network outperforms [10] by a large margin for the percentage of successful
frames at error thresholds higher than 25mm. We achieve a higher accuracy for
two reasons. First, our mesh parameterization allows the method to be robust
to small estimation offsets while [10] uses joint angles, which tend to propagate
errors from parent joints to children joints. Second, there are no gradients in their
depth term(Eq. 6 in [10]) associated with unexplained points from the depth map
which we handle with our proposed data term.

We further compare our self-supervision method with fully supervised deep
learning methods. Surprisingly, when trained without any human label, our self-
supervision based method achieves competitive results and even out-performs
several fully supervised methods[15, 12, 23, 64, 60, 29, 69]. This highly encourag-
ing results suggests that our method can be applied to provide labels for RGB
datasets with weak supervision from depth maps.

6 Conclusion and Discussion

We have presented a new network architecture to regress mesh vertices from
single depth map with efficient 2D fully convolutional network. At its core is
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Fig. 6: (a) Impact of data used for self-supervision; (b) Impact of different loss
terms and active data augmentation on self-supervised learning; (c) Comparison
to fully supervised (dashed line) and self-supervised (solid line) state-of-arts.

Method Mean joint error Method Mean joint error
ours (fully supervised) 8.5mm ours (self-supervised) 13.09mm

variations on training data impact of loss terms
trained on synt: without active augmentation 14.52mm
key-points (tested on real) 23.21mm without Llifting 14.50mm
key-points (tested on sync) 7.10mm without Lcollision 13.85mm
mesh vertices (tested on sync) 14.75mm without Larap 14.06mm
refined mesh vertices (tested on sync) 7.65mm without Loffset 14.12mm
self-supervised learning
trained on test set 14.50mm
trained with single view 16.96mm

Table 1: Ablation study and self comparison. We report mean joint error
averaged over all joints and frames.

re-parameterization of the mesh model. We demonstrate on-par performance to
state-of-arts method in the supervised setting and competitive self-supervision
results with multi-camera setup. As future work, we will check how explicit hand
shape calibration as proposed in [18] can be incorporated into current framework,
as well as extension to RGB inputs.
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Method mean joint error Method mean joint error
ours (supervised) 8.5mm ours (self-supervised) 13.1mm
A2J[63] 8.6mm FeatureMapping[36] 7.4mm
V2V(ensemble)[24] 8.4mm V2V(single model)[24] 9.2mm
Point-to-Point[14] 9.0mm SHPR(three views)[8] 9.4mm
MURAUER[32] 9.5mm DenseReg[61] 10.2mm
Pose-REN[7] 11.8mm DeepPrior++[27] 12.2mm
REN-4x6x6[15] 13.4mm 3DCNN[12] 14.1mm
DeepHPS(fine-tuned)[23] 14.2mm Lie-X[64] 14.5mm
CrossingNet[60] 15.5mm Feedback[29] 15.9mm

Table 2: Comparison with fully supervised state-of-the-art. We report
mean joint error averaged over all joints and frames. All methods are tested
on the NYU[55] test set. We show the comparison for reference, but would like
to stress that results are not directly comparable as our method is primarily
designed for mesh vertex recovery and not keypoint accuracy.
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