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Abstract. Crowd localization, predicting head positions, is a more prac-
tical and high-level task than simply counting. Existing methods em-
ploy pseudo-bounding boxes or pre-designed localization maps, relying
on complex post-processing to obtain the head positions. In this paper,
we propose an elegant, end-to-end Crowd Localization TRansformer
named CLTR that solves the task in the regression-based paradigm. The
proposed method views the crowd localization as a direct set prediction
problem, taking extracted features and trainable embeddings as input of
the transformer-decoder. To reduce the ambiguous points and generate
more reasonable matching results, we introduce a KMO-based Hungar-
ian matcher, which adopts the nearby context as the auxiliary matching
cost. Extensive experiments conducted on five datasets in various data
settings show the effectiveness of our method. In particular, the proposed
method achieves the best localization performance on the NWPU-Crowd,
UCF-QNRF, and ShanghaiTech Part A datasets.
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1 Introduction

Crowd localization, a fundamental subtask of crowd analysis, aims to provide
the location of each instance. Here, the location means the center points of
heads because annotating the bounding box for each head is expensive and
laborious in dense scenes. Thus, most crowd datasets only provide point-level
annotations. A powerful crowd localization algorithm can give great potential
for similar tasks, e.g., crowd tracking [45], object counting [16,5], and object
localization [46,3].

The mainstream crowd localization methods can be generally categorized into
detection-based (Fig. 1(a)) and map-based (Fig. 1(b)) methods. The detection-
based methods [31,24] utilize nearest-neighbor head distances to initialize the
pseudo ground truth (GT) bounding boxes. However, these detection-based

Project page at https://dk-liang.github.io/CLTR/.
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Fig. 1. (a) Detection-based methods, using the predefined pseudo GT bounding boxes.
(b) Map-based methods, using high-resolution representation and complicated post-
processing. (c) Regression-based methods, mapping the input images to the point coor-
dinates directly. (d) Due to lack of context, the L1 distance easily causes the ambiguous
match pair.

methods can not report satisfactory performance. Moreover, the heuristic non-
maximum suppression (NMS) is used to remove the negative predictions. Most
crowd localization methods [1,46] are map-based because it has relatively higher
localization accuracy. Nevertheless, the map-based methods still suffer some in-
evitable problems. For instance, complex multi-scale representation is necessary
to generate sharp maps. Besides, they adopt non-differentiable post-processing
(e.g., find-maxima) to extract the location, which precludes end-to-end training.

In contrast, the regression-based methods, directly regressing the coordinates,
are more straightforward than the detection-based and map-based methods, as
shown in Fig. 1(c). The benefits of regression-based can be summarized as two
folds. (1) It is simple, elegant, and end-to-end trainable since it does not need
pre-processing (e.g., pseudo GT boxes or maps generation) and post-processing
(e.g., NMS or find-maxima). (2) It does not rely on complex multi-scale fusion
mechanisms to generate high-quality feature maps.

Recently, we have witnessed the rise of Transformer [2] in computer vision. A
pioneer is DETR [2], an end-to-end trainable detector without NMS, which mod-
els the relations of the object queries and context via Transformer and achieves
competitive performance only using a single-level feature map. This simple and
effective detection method gives rise to a question: can crowd localization be
solved with such a simple model as well?

Our answer is: “Yes, such a framework can be applied to crowd localiza-
tion.” Indeed, it is nothing special to directly apply the DETR-based pipeline
in crowd localization. However, crowd localization is quite different from ob-
ject detection. DETR shows terrible performance in the crowd localization task,
attributed to the intrinsic limitation of the matcher. Specifically, the key compo-
nent in DETR is the L1-based Hungarian matcher, which measures L1 distance
and bounding box IoU to match the prediction-GT bounding box pairs, showing
superior performance in object detection. However, no bounding box is given
in crowd datasets, and more importantly, L1 distance easily gives rise to am-
biguous matching in the point-to-point pairs (i.e., a point that can belong to
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multiple gts simultaneously as shown in Fig. 1(d)). The main reasons are two-
fold: (1) The L1-based Hungarian is a local view without context. (2) Different
from the object detection, the crowd images only contain one category (heads),
and the dense heads usually have similar textures, reporting close confidence,
confusing the matcher. To this end, we introduce the k-nearest neighbors (KNN)
matching objective named KMO as an auxiliary matching cost. The KMO-based
Hungarian considers the context from nearby heads, which helps to reduce the
ambiguous points and generate more reasonable matching results.

In summary, the main contributions of this paper are two-fold: 1) We pro-
pose an end-to-end Crowd Localization TRansformer framework named CLTR,
which formulates the crowd localization as a point set prediction task. CLTR
significantly simplifies the crowd localization pipeline by removing pre-processing
and post-processing. 2) We introduce the KMO-based Hungarian bipartite match-
ing, which takes the context from nearby heads as an auxiliary matching cost. As
a result, the matcher can effectively reduce the ambiguous points and generate
more reasonable matching results.

Extensive experiments are carried out on five challenge datasets, and sig-
nificant improvements from KMO-based Hungarian matcher indicate its effec-
tiveness. In particular, just with a single-scale and low-resolution ( 1

32 of input
images) feature map, CLTR can achieve state-of-the-art or highly competitive
localization performance.

2 Related Works

2.1 Detection-based methods

The detection-based methods [31,24,44] mainly follow the pipeline of Faster
RCNN [29]. Specifically, PSDDN [24] utilizes the nearest neighbor distance to
initialize the pseudo bounding boxes and update the pseudo boxes by choosing
smaller predicted boxes in the training phase. LSC-CNN [31] also uses a similar
mechanism to generate the pseudo bounding boxes and propose a new winner-
take-all loss for better training at higher resolutions. These methods [31,24,44]
usually use NMS to filter the predicted boxes, which is not end-to-end trainable.

2.2 Map-based methods

Map-based methods are the mainstream of the crowd localization task. Idress et
al. [13], and Gao et al. [7] utilize small Gaussian kernel density maps, and the
head locations are equal to the maxima of density maps. Even though using
the small kernel can generate sharp density maps, it still exists overlaps in the
extremely dense region, making the head location undistinguishable. To solve
this, some methods [46,18,8,1] focus on designing new maps to handle the ex-
tremely dense region, such as the distance label map [46], Focal Inverse Dis-
tance Transform Map (FIDTM) [18] and Independent Instance Map (IIM) [8].
These methods can effectively avoid overlap in the dense region, but they need
post-processing (“find-maxima”) to extract the instance location and rely on
multi-scale feature maps, which is not simple and elegant.
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Fig. 2. The overview of our CLTR. First, the input image I is fed to the CNN-based
backbone to extract the features F . Second, the features F are added position em-
bedding, resulting in Fp, fed to the transformer-encoder layers, outputting Fe. Third,
we define N× trainable embeddings Qh as query, Fe as key, and transformer decoder
takes the Qh and Fe as input to generate the decoded feature Fd. Finally, the Fd can
be decoupled to the point coordinate and corresponding confidence score.

2.3 Regression-based methods

Just a few research works focus on regression-based. We note a recent paper [34],
P2PNet, also a regression-based framework for crowd localization. But this is a
concurrent work that has appeared while this manuscript is under preparation.
P2PNet [34] defines surrogate regression on a large set of proposals, and the
model relies on pre-processing, such as producing 8 × W × H point proposals
(anchors). In contrast, our method replaces massive fixed point proposals with
a few trainable instance queries, which is more elegant and unified.

2.4 Visual transformer

Recently, visual transformers [4,37,23,2,28] have gone viral in computer vision. In
particular, DETR [2] utilizes the Transformer-decoder to model object detection
in an end-to-end pipeline, successfully removing the need for post-processing.
Based on DETR [2], Conditional DETR [28] further adopts the spatial queries
and keys to a band containing the object extremity or a region, accelerating the
convergence of DETR [2]. In the crowd analysis, Liang et al. [17,26] propose
TransCrowd, which reformulates the weakly-supervised counting problem from
a sequence-to-count perspective. Several methods [36,35] demonstrate the power
of transformers in point-supervised crowd counting setup. Method [6] adopts the
IIM [8] in the swin transformer [25] to implement crowd localization.

3 Our Method

The overview of our method is shown in Fig. 2. The proposed method is an
end-to-end network, directly predicting all instances at once without additional
pre-processing and post-processing. The approach consists of a CNN-based back-
bone, a transformer encoder, a transformer decoder, and a KMO-based matcher.
Given an image by I ∈ RH×W×3, where H, W are the height and width of the
image,
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– The CNN-based backbone first extracts the feature maps F ∈ RH
32×

W
32×C

from the input image I. To verify the effectiveness of our method, the F is
only a single-scale feature map without feature aggregation.

– The feature maps F are then flattened into a 1D sequence with positional
embedding, and the channel dimension is reduced from C to c, which results

in Fp ∈ R
HW
322

×c. The transformer-encoder layers take the Fp as input and
output encoded features Fe.

– Next, the transformer-decoder layers take the trainable head queries Qh and
encoded features Fe as input and interact with each other via cross attention
to generate the decoded embedding Fd, which contains the point (person’s
head) and category information.

– Finally, the decoded embeddings Fd are decoupled to the point coordinates
and confidence scores by a point regression head and a classification head,
respectively.

3.1 Transformer Encoder

We use a 1×1 convolution to reduce the channel dimension of the extracted fea-
ture maps F from RH

32×
W
32×C to RH

32×
W
32×c (c set as 256). Due to the transformer-

encoder adopt a 1D sequence as input, we reshape the extracted features F and

add position embedding, resulting in Fp ∈ R
HW
322

×c. The Fp are then fed into the
transformer-encoder layers to generate the encoded features Fe. Here the encoder
contains many encoder layers, and each layer consists of a self-attention (SA)
layer and a feed-forward (FC) layer. The SA consists of three inputs, including
query (Q), key (K), and value (V ), defined as follow:

SA(Q,K, V ) = softmax(
QKT

√
c

)V, (1)

where Q, K and V are obtained from the same input Z (e.g., Q = ZWQ). In
particular, we use the multi-head self-attention (MSA) to model the complex
feature relation, which is an extension with several independent SA modules:
MSA = [SA1;SA2; · · · ;SAm]WO, where WO is a re-projection matrix and m is
the number of attention heads set as 8.

3.2 Transformer Decoder

The transformer-decoder consists of many decoder layers, and each layer is com-
posed of three sub-layers: (1) a self-attention (SA) layer. (b) a cross attention
(CA) layer. (3) a feed-forward (FC) layer. The SA and FC are the same as the
encoder. The CA module takes two different embeddings as input instead of the
same inputs in SA. Let us denote two embeddings as X and Z, and the CA can
be written as CA = SA(Q = XWQ,K = ZWK , V = ZWV ). Following [28], each
decoder layer takes a set of trainable embedding (Qh ∈ RN×c) as query and the
features from the last encoder layers as key and value. The decoder output the
decoded features Fd, which are used to predict the point coordinates (regression
head) and confidence scores (classification head).
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Fig. 3. (a) A pair of GT and predictions. (b) The L1-based Hungarian generate
unsatisfactory matching results. (c) The proposed KMO-based Hungarian models the
context as the matching cost, generating more reasonable matching results.

3.3 KMO-based Matcher

To train the model, we need to match the predictions and GT by one-to-one,
and the unmatched predicted points are considered to the “background” class.

Let us denote the predicted points set as ŷ = {ŷj}Nj=1 and GT points set

as y = {yi}Mi=1. N and M refer to the number of predicted heads and GT,
respectively. N is larger than M to ensure each GT matches a prediction, and
the rest of the predictions match failed can be classified as negative. Next, we
need to find a bipartite matching between these two sets with the lowest cost. A
straightforward way is to take the L1 distance and confidence as matching cost:

Lm(yi, ŷj) = ||ypi − ŷpj ||1 − Ĉj , i ∈ M, j ∈ N, (2)

where ||∗||1 means the L1 distance and Ĉj is the confidence of the j-th predicted
point. ypi is a vector that defines the i-th GT point coordinates. Accordingly, ŷpj
is formed as the point coordinates of j-th predicted head. Based on the Lm, we
can utilize the Hungarian [14] to implement one-to-one matching. However, we
find that merely taking the L1 with confidence maybe generate unsatisfactory
matching results (seen Fig. 1(d)). Another toy example is shown in Fig. 3, given
a pair of GT and prediction set (Fig. 3(a)), from the whole perspective, the ŷ1
should match the y1 ideally (just like ŷ2 match y2). Using Eq. 2 for matching
cost1, it will match the ŷ1 and y4 since the L1-based Hungarian lack of context
information. Thus, we introduce the KMO-based Hungarian, which effectively
utilizes the context as auxiliary matching cost, formulated as Lk

m:

Lk
m(yi, ŷj) = ||ypi − ŷpj ||1 + ||yki − ŷkj ||1 − Ĉj ,

yki =
1

k

k∑
k=1

dki , ŷkj =
1

k

k∑
k=1

d̂kj ,
(3)

where dki means the distance between i-th GT point and its k-th neighbour. yki
refer to the average neighbour-distance of the i-th GT point. d̂kj and ŷkj have

similar definitions as dki and yki , respectively. Taking inspirations from [24,31],

1 Here, we ignore the Ĉj for simply illustrating since heads usually report similar
confidence score.
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in our experiments, ŷkj is predicted by the network. The proposed Lk
m, revisiting

the label assignment from a context view, turns to find the whole optimum.
As shown in Fig. 3(c), the proposed KMO-based Hungarian makes sure the ŷ1
successfully matches the y1. Regarding the predictions as a point set containing
the geometric relationships. Assignment on Fig. 3(b) is not wrong, but it is a
local view without context, and it will break the internal geometric relationships
of the point set. Assignment on Fig. 3(c) considers the context information from
the nearby heads, pursuing the whole optimum and maintaining the geometric
relationships of the point set, making the model easier to be optimized, which is
more reasonable. For the case in Fig. 1(d), when multiple gts tend to match the
same predicted point, the KMO-based Hungarian will resolve their conflicts by
using the context information. Note that the matcher is just used in the training
phase.

3.4 Loss function

After obtaining the one-to-one matching results, we calculate the loss for back-
propagate. We make point predictions directly. The loss consists of point regres-
sion and classification. For the point regression, we employ the commonly-used
L1 loss, defined as:

Lloc = ||ypi − ŷpσ(i)||1, (4)

where ŷpσ(i) is the matched subset from ypi by using the proposed KMO-based

Hungarian. It is noteworthy that we normalize all ground truth point range to
[0, 1] for scale invariance. We utilize the focal loss as the classification loss Lcls,
and the final loss L is defined as:

L = Lcls + λLloc, (5)

where λ is a balance weight, set as 2.5. These two losses are normalized by the
number of instances inside the batch.

4 Experiments

4.1 Implementation details

We use the ResNet50 [10] as the backbone. The number of transformer encoder
layers and decoder layers are both set to 6. The N is set to 500 (number of
instance queries Qh). We augment the training data using random cropping,
random scaling, and horizontal flipping with a 0.5 probability. The crop size is
set as 128×128 for ShanghaiTech Part A, 256×256 for the rest datasets. We use
Adam with the learning rate of 1e-4 to optimize the model. For the large-scale
datasets (i.e., UCF-QNRF, JHU-Crowd++, and NWPU-Crowd), we ensure the
longer size is less than 2048, keeping the original aspect ratio. The batch size
is set to 16. k is set as 4 for all datasets. During the testing phase, each image
is split into non-overlapped patches (size same as training phase). Zero padding
is adopted if a cropped patch is smaller than the predefined size. And a simple
confidence threshold (set to 0.35) is used to filter the “background” class.
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Table 1. Localization performance on NWPU-Crowd dataset. * means the methods
rely on box-level instead of point-level annotations.

Method
Validation set Test set

P(%) R(%) F(%) P(%) R(%) F(%)

Faster RCNN* [29] 96.4% 3.8% 7.3% 95.8% 3.5% 6.7%
TinyFaces* [11] 54.3% 66.6% 59.8% 52.9% 61.1% 56.7%
TopoCount* [1] - - - 69.5% 68.7% 69.1%

GPR [7] 61.0% 52.2% 56.3% 55.8% 49.6% 52.5%
RAZ Loc [19] 69.2% 56.9% 62.5% 66.6% 54.3% 59.8%

AutoScale loc [46] 70.1% 63.8% 66.8% 67.3% 57.4% 62.0%
Crowd-SDNet [44] - - - 65.1% 62.4% 63.7%

GL [39] - - - 80.0% 56.2% 66.0%
CLTR (ours) 73.9% 71.3% 72.6% 69.4% 67.6% 68.5%

Table 2. Localization performance on the UCF-QNRF dataset. We report the Average
Precision, Recall, and F1-measure at different thresholds σ: (1, 2, 3, . . . , 100) pixels.

Method Av.Precision Av.Recall F1-measure

CL [13] 75.80% 59.75% 66.82%
LCFCN [15] 77.89% 52.40% 62.65%

Method in [30] 75.46% 49.87% 60.05%
LSC-CNN[31] 75.84% 74.69% 75.26%

AutoScale loc [46] 81.31% 75.75% 78.43%
GL [39] 78.20% 74.80% 76.40%

TopoCount [1] 81.77% 78.96% 80.34%
CLTR (ours) 82.22% 79.75% 80.97%

4.2 Dataset

We evaluate our method on five challenging public datasets, each being elabo-
rated below.

NWPU-Crowd [42] is a large-scale dataset collected from various scenes,
consisting of 5,109 images. The images are randomly split into training, valida-
tion, and test sets, which contain 3109, 500, and 1500 images, respectively. This
dataset provides point-level and box-level annotations.

JHU-Crowd++ [33] is a challenging dataset containing 4372 crowd images.
This dataset consists of 2272 training images, 500 validation images, and 1600
test images. And the total number of people in each image ranges from 0 to
25791.

UCF-QNRF [13], a dense dataset, contains 1535 images (1201 for training
and 334 for testing) and about one million annotations. The average number of
pedestrians per image is 815, and the maximum number reaches 12865.

ShanghaiTech [48] is divided into Part A and Part B. Part A consists of
300 training images and 182 test images. Part B consists of 400 training images
and 316 test images.

4.3 Evaluation Metrics

This paper mainly focuses on crowd localization, and counting is an incidental
task, i.e., the total count is equal to the number of predicted points.
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Table 3. Comparison of the localization performance on the Part A dataset.

Method
σ = 4 σ = 8

P (%) R (%) F (%) P (%) R (%) F (%)

LCFCN[15] 43.3% 26.0% 32.5% 75.1% 45.1% 56.3%
Method in [30] 34.9% 20.7% 25.9% 67.7% 44.8% 53.9%
LSC-CNN [31] 33.4% 31.9% 32.6% 63.9% 61.0% 62.4%
TopoCount [1] 41.7% 40.6% 41.1% 74.6% 72.7% 73.6%
CLTR (ours) 43.6% 42.7% 43.2% 74.9% 73.5% 74.2%

Localization Metrics. In this work, we utilize the Precision, Recall, and
F1-measure as the localization metrics, following [42,13]. If the distance between
a predicted point and GT point is less than the predefined distance threshold σ,
this predicted point will be treated as True Positive (TP). For the NWPU-Crowd
dataset [42], containing the box-level annotations, we set σ to

√
w2 + h2/2, where

w and h are the width and height of each head, respectively. For the Shang-
haiTech dataset, we utilize two fixed thresholds, including σ = 4 and σ = 8.
For the UCF-QNRF, we use various threshold ranges from [1, 100], following
CL [13].

Counting Metrics. The Mean Absolute Error (MAE) and Mean Square Er-

ror (MSE) are used as counting metrics, defined as: MAE = 1
Nc

∑Nc

i=1 |Pi −Gi|,

MSE =
√

1
Nc

∑Nc

i=1 |Pi −Gi|2, where Nc is the total number of images, Pi and

Gi are the predicted and GT count of the i-th image, respectively.

5 Results and Analysis

5.1 Crowd Localization

We first evaluate the localization performance with some state-of-the-art lo-
calization methods [39,1,46], as shown in Table 1, Table 2, and Table 3. For
the NWPU-Crowd (see Table 1), a large-scale dataset, our CLTR outperforms
GL [39] and AutoScale [46] at least 5.8% (resp. 2.5%) for F1-measure on the
validation set (resp. test set). It is noteworthy that this dataset provides precise
box-level annotations, and the TopoCount [1] relies on the labeled box in the
training phase instead of using the point-level annotations. Even though our
method is just based on point-annotation, a more weak label mechanism, it can
still achieve competitive performance against the TopoCount [1] on the NWPU-
Crowd (test set). For the dense dataset, UCF-QNRF (see Table 2), our method
achieves the best Average Precision, Average Recall and F1-measure. For the
ShanghaiTech Part A (see Table 3), a sparse dataset, our CLTR outperforms
the state-of-the-art method TopoCount [1] by 2.1% F1-measure for the strict
setting (σ = 4), and still get ahead for the less strict settings (σ = 8). These
results demonstrate that the proposed method can cope with various scenes,
including large-scale, dense and sparse scenes. Note that all of other localization
methods [46,39,1] adopt multi-scale or higher-resolution feature that potentially
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Table 4. Counting results of various methods on the NWPU validation and test sets.

Method
Output
Position

Information

Validation set Test set

MAE MSE MAE MSE

MCNN [48] ✗ 218.5 700.6 232.5 714.6
CSRNet [16] ✗ 104.8 433.4 121.3 387.8
CAN [22] ✗ 93.5 489.9 106.3 386.5
SCAR [9] ✗ 81.5 397.9 110.0 495.3
BL [27] ✗ 93.6 470.3 105.4 454.2

SFCN [43] ✗ 95.4 608.3 105.4 424.1
DM-Count [41] ✗ 70.5 357.6 88.4 388.6

RAZ loc [19] ✔ 128.7 665.4 151.4 634.6
AutoScale loc [46] ✔ 97.3 571.2 123.9 515.5
TopoCount [1] ✔ - - 107.8 438.5

GL [39] ✔ - - 79.3 346.1
CLTR (ours) ✔ 61.9 246.3 74.3 333.8

Table 5. Comparison of the counting performance on the UCF-QNRF, ShanghaiTech
Part A, and Part B datasets.

Method
Output
Position

Information

QNRF Part A Part B

MAE MSE MAE MSE MAE MSE

CSRNet [16] ✗ - - 68.2 115.0 10.6 16.0
L2SM [47] ✗ 104.7 173.6 64.2 98.4 7.2 11.1
DSSI-Net [21] ✗ 99.1 159.2 60.6 96.0 6.9 10.3
MBTTBF [32] ✗ 97.5 165.2 60.2 94.1 8.0 15.5
BL [27] ✗ 88.7 154.8 62.8 101.8 7.7 12.7
AMSNet [12] ✗ 101.8 163.2 56.7 93.4 6.7 10.2
LibraNet [20] ✗ 88.1 143.7 55.9 97.1 7.3 11.3
KDMG [40] ✗ 99.5 173.0 63.8 99.2 7.8 12.7
NoisyCC [38] ✗ 85.8 150.6 61.9 99.6 7.4 11.3
DM-Count [41] ✗ 85.6 148.3 59.7 95.7 7.4 11.8

CL [13] ✔ 132.0 191.0 - - - -
RAZ loc+ [19] ✔ 118.0 198.0 71.6 120.1 9.9 15.6
PSDDN [24] ✔ - - 65.9 112.3 9.1 14.2
LSC-CNN [31] ✔ 120.5 218.2 66.4 117.0 8.1 12.7
TopoCount [1] ✔ 89.0 159.0 61.2 104.6 7.8 13.7
AutoScale loc [46] ✔ 104.4 174.2 65.8 112.1 8.6 13.9
GL [39] ✔ 84.3 147.5 61.3 95.4 7.3 11.7
CLTR (ours) ✔ 85.8 141.3 56.9 95.2 6.5 10.6

benefit our approach, which is currently not our focus and left as our future
work.

5.2 Crowd Counting

In this section, we compare the counting performance with various methods
(including density map regression-based and localization-based), as shown in
Table 4, Table 5 and Table 6. Although our method only uses a single-scale and
low-resolution ( 1

32 of input image) feature map, it can achieve state-of-the-art
or highly competitive performance in all experiments. Specifically, our method
achieves the first MAE and MSE on the NWPU-Crowd test set (see Table 4).
Compared with the localization-based counting methods (the bottom part of
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Table 6. Categorical counting results on JHU-Crowd++ dataset. Low, Medium, and
High respectively indicate three categories based on different ranges: [0, 50], (50, 500],
and (500, +∞). Weather means the degraded images (e.g., haze, snow, rain).

Methods
Output
Position

Information

Low Medium High Weather Overall

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

MCNN [48] ✗ 97.1 192.3 121.4 191.3 618.6 1,166.7 330.6 852.1 188.9 483.4
CSRNET [16] ✗ 27.1 64.9 43.9 71.2 356.2 784.4 141.4 640.1 85.9 309.2
JHU++ [33] ✗ 14.0 42.8 35.0 53.7 314.7 712.3 120.0 580.8 71.0 278.6
LSC-CNN [31] ✗ 10.6 31.8 34.9 55.6 601.9 1,172.2 178.0 744.3 112.7 454.4
BL [27] ✗ 10.1 32.7 34.2 54.5 352.0 768.7 140.1 675.7 75.0 299.9

AutoScale loc [46] ✔ 13.2 30.2 32.3 52.8 425.6 916.5 - - 85.6 356.1
TopoCount [1] ✔ 8.2 20.5 28.9 50.0 282.0 685.8 120.4 635.1 60.9 267.4
GL [39] ✔ - - - - - - - - 59.9 259.5
CLTR (ours) ✔ 8.3 21.8 30.7 53.8 265.2 614.0 109.5 568.5 59.5 240.6

Table 7. Effect of transformer size (the number of layers and the number of trainable
queries Qh) on UCF-QNRF dataset.

Layers
N

(Queries number)
Localization Counting

P (%) R (%) F (%) MAE MSE

3 500 80.60% 79.44% 80.02% 88.4 149.9
6 500 82.22% 79.75% 80.97% 85.8 141.3
12 500 80.82% 79.41% 80.11% 87.7 150.3

6 300 80.61% 79.18% 79.89% 89.9 153.6
6 700 81.32% 79.38% 80.34% 86.8 146.4

Table 5), which can provide the position information, our method achieves the
best counting performance in MAE and MSE on ShanghaiTech Part A and Part
B datasets. On the UCF-QNRF dataset, our method achieves the best MSE
and reports comparable MAE. On the JHU-Crowd++ dataset ( Table 6), our
method outperforms the state-of-the-art method GL [39] by a significant margin
of 18.9 MSE. Furthermore, CLTR has superior performance on the extremely
dense (the “High” part) and degraded set (the “Weather” part).

5.3 Visualizations

We further give some qualitative visualizations to analyze the effectiveness of
our method, as shown in Fig. 4. The samples are selected from some typical
scenes on the NWPU-Crowd dataset (validation set), including negative, sparse,
extremely dense and dark scenes. In the first row, CLTR shows a strong robust
on the negative sample (“dense fake humans”). CLTR performs well in different
congested scenes, such as the sparse scene (row 2) and extremely dense scene
(row 3). Additionally, we find that CLTR can also make promising localization
results in dark scenes (row 4). These impressive visualizations demonstrate the
effectiveness of our method in crowd localization and counting.
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Negative sample GT = 0 Predicted Count = 0 P = None, R = None

Sparse sample GT = 11 Predicted Count = 11 P = 1.0, R = 1.0

Dense sample GT = 9728 Predicted Count = 9306 P = 0.81, R = 0.77

Dark sample GT = 1270 Predicted Count = 1366 P = 0.82, R = 0.84

Image GT point map Predicted point map Localization results

Fig. 4. Some examples from the NWPU-Crowd dataset (validation set). From left to
right, there are images, GT points, predicted points, and localization results. Row 1, row
2, row 3, and row 4 refer to the negative, sparse, dense and dark samples, respectively.
In the last column, P and R are the Precision and Recall, respectively. The green, red
and magenta points denote true positive (TP), false negative (FN) and false positive
(FP), respectively. It can be seen that the proposed method can effectively handle
various scenes.

5.4 Ablation studies

The ablation studies are carried out on the UCF-QNRF dataset, a large and
dense dataset, which can effectively avoid overfitting.

Effect of transformer. We first study the influence by changing the size of
the transformer, including the number of encoder/decoder layers and trainable
instance queries. As listed in Table 7, we find that when the layer and queries
number are set to 6 and 500, the CLTR achieves the best performance. When
the number of queries changes to 700 (resp. 300), the performance of MAE drops
from 85.8 to 86.8 (resp. 89.9). We hypothesize that, by using a small number of
queries, CLTR may lose potential heads, while using a large number of queries,
CLTR may generate massive negative samples. We empirically find that all the
pre-defined non-overlap patches contain less than 500 persons. The following
ablation studies are organized using 6 transformer layers and 500 queries.
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Table 8. The effectiveness of the proposed KMO-based Hungarian on UCF-QNRF
dataset. Lm only adopts the L1 distance with confidence as matching cost, and Lk

m

contains the proposed KMO.

Matching cost
Localization Counting

Av.Precision(%) Av.Recall(%) F1-measure(%) MAE MSE

Lm 80.89% 79.17% 80.02% 91.3 157.4

Lk
m (ours) 82.22% 79.75% 80.97% 85.8 141.3

Table 9. The influence of using different numbers of nearest-neighbour on the UCF-
QNRF dataset.

k
Localization Counting

Av.Precision(%) Av.Recall(%) F1-measure(%) MAE MSE

3 81.46% 79.19% 80.31% 87.1 146.8
4 82.22% 79.75% 80.97% 85.8 141.3
5 81.52% 79.34% 80.42% 86.9 148.1

Effect of matching cost. We next study the impact of the proposed KMO,
as shown in Table 8. When removing the KMO, we observe a significant per-
formance drop for the counting (MAE from 85.8 to 91.3) and localization as
well. We hypothesize that the L1 with classification can not provide a strong
matching indicator, while the proposed KMO gives a direct signal to achieve
great one-to-one matching based on whole-optimal.

Effect of K. We then study the effect of using different k (the number of
nearest-neighbor), listed in Table 9. The proposed CLTR with different k con-
sistently achieves improvement compared with the baseline, demonstrating the
proposed KMO-based Hungarian’s effectiveness. When the k is set to 4, we find
that the result achieves the best on the UCF-QNRF dataset. We then set the
same k in all datasets without further fine-tuning, which works well. We also
try to use a fixed radius around each point and take as many NN as they fall
within that circle. However, the training time is unacceptable because calculating
dynamic KNN in each circle is time-consuming.

The computational statistics. Finally, we report the Multiply-Accumulate
Operations (MACs) and parameters, as listed in Table 10. Although the proposed
method has the largest parameters (mainly from the transformer part), it still
reports the smallest MACs. Speeding up our model is a future work that is
worthy of being studied.

5.5 Limitations

Our method has some limitations. For instance, due to the CLTR crop a fixed-
size (i.e., 256 × 256) sub-image for training and testing, it may fail on ex-
tremely large heads, which are significantly larger than the crop size, as shown
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(a) Large scale head, image size: 2048×1536 (b) “Fake” people in the background

Fig. 5. Failure cases analysis. (a) Large-scale head, significantly larger than the crop-
size. (b) Confusing regions that do not need to localize. The green, red, and magenta
denote true positive (TP), false negative (FN), and false positive (FP), respectively.

Table 10. The comparisons of complexity. The experiments are conducted on a 3090
GPU, and the size of the input image is 1024 × 768.

Method Parameters (M) MACs (G)

LSC-CNN [31] 35.0 1244.3
AutoScale [46] 24.9 1074.6
TopoCount [1] 25.8 797.2

GL [39] 21.5 324.6
CLTR (ours) 43.4 157.2

in Fig. 5(a). This problem can be solved by resizing the image into a small
resolution. Another case of unsatisfied localization is shown in Fig. 5(b), where
there are some confused background regions (containing “fake” people that do
not need localization). This failure case can be solved using more modalities,
such as thermal images.

6 Conclusion

In this work, we propose an end-to-end crowd localization framework named
CLTR, solving the task in the regression-based paradigm. The proposed method
follows a one-to-one matching mechanism during the training phase. To achieve a
good matching result, we propose the KMO-based Hungarian matcher, using the
context information as an auxiliary matching cost. Our approach is simple yet
effective. Experiments on five challenge datasets demonstrate the effectiveness of
our methods. We hope our method can provide a new perspective for the crowd
localization task.

Acknowledgment

This work was supported by National Key R&D Program of China (Grant No.
2018YFB1004602).



An End-to-End Transformer Model for Crowd Localization 15

References

1. Abousamra, S., Hoai, M., Samaras, D., Chen, C.: Localization in the crowd with
topological constraints. In: Proc. of the AAAI Conf. on Artificial Intelligence (2021)

2. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-
to-end object detection with transformers. In: Proc. of European Conference on
Computer Vision. pp. 213–229. Springer (2020)

3. Chen, Y., Liang, D., Bai, X., Xu, Y., Yang, X.: Cell localization and counting
using direction field map. IEEE Journal of Biomedical and Health Informatics
26(1), 359–368 (2021)

4. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth
16x16 words: Transformers for image recognition at scale. Proc. of International
Conference on Learning Representations (2020)

5. Du, D., Wen, L., Zhu, P., Fan, H., Hu, Q., Ling, H., Shah, M., Pan, J., Al-Ali,
A., Mohamed, A., et al.: Visdrone-cc2020: The vision meets drone crowd counting
challenge results. In: Proc. of European Conference on Computer Vision. pp. 675–
691. Springer (2020)

6. Gao, J., Gong, M., Li, X.: Congested crowd instance localization with dilated
convolutional swin transformer. arXiv preprint arXiv:2108.00584 (2021)

7. Gao, J., Han, T., Wang, Q., Yuan, Y.: Domain-adaptive crowd counting via
inter-domain features segregation and gaussian-prior reconstruction. arXiv preprint
arXiv:1912.03677 (2019)

8. Gao, J., Han, T., Yuan, Y., Wang, Q.: Learning independent instance maps for
crowd localization. arXiv preprint arXiv:2012.04164 (2020)

9. Gao, J., Wang, Q., Yuan, Y.: Scar: Spatial-/channel-wise attention regression net-
works for crowd counting. Neurocomputing (2019)

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proc. of IEEE Intl. Conf. on Computer Vision and Pattern Recognition (2016)

11. Hu, P., Ramanan, D.: Finding tiny faces. In: Proc. of IEEE Intl. Conf. on Computer
Vision and Pattern Recognition (2017)

12. Hu, Y., Jiang, X., Liu, X., Zhang, B., Han, J., Cao, X., Doermann, D.: Nas-
count: Counting-by-density with neural architecture search. In: Proc. of European
Conference on Computer Vision (2020)

13. Idrees, H., Tayyab, M., Athrey, K., Zhang, D., Al-Maadeed, S., Rajpoot, N., Shah,
M.: Composition loss for counting, density map estimation and localization in dense
crowds. In: Proc. of European Conference on Computer Vision (2018)

14. Kuhn, H.W.: The hungarian method for the assignment problem. Naval research
logistics quarterly 2(1-2), 83–97 (1955)

15. Laradji, I.H., Rostamzadeh, N., Pinheiro, P.O., Vazquez, D., Schmidt, M.: Where
are the blobs: Counting by localization with point supervision. In: Proc. of Euro-
pean Conference on Computer Vision (2018)

16. Li, Y., Zhang, X., Chen, D.: CSRNet: Dilated convolutional neural networks for
understanding the highly congested scenes. In: Proc. of IEEE Intl. Conf. on Com-
puter Vision and Pattern Recognition (2018)

17. Liang, D., Chen, X., Xu, W., Zhou, Y., Bai, X.: Transcrowd: weakly-supervised
crowd counting with transformers. Science China Information Sciences 65(6), 1–14
(2022)

18. Liang, D., Xu, W., Zhu, Y., Zhou, Y.: Focal inverse distance transform maps for
crowd localization and counting in dense crowd. arXiv preprint arXiv:2102.07925
(2021)



16 D. Liang et al.

19. Liu, C., Weng, X., Mu, Y.: Recurrent attentive zooming for joint crowd counting
and precise localization. In: Proc. of IEEE Intl. Conf. on Computer Vision and
Pattern Recognition (2019)

20. Liu, L., Lu, H., Zou, H., Xiong, H., Cao, Z., Shen, C.: Weighing counts: Sequential
crowd counting by reinforcement learning. In: Proc. of European Conference on
Computer Vision (2020)

21. Liu, L., Qiu, Z., Li, G., Liu, S., Ouyang, W., Lin, L.: Crowd counting with deep
structured scale integration network. In: Porc. of IEEE Intl. Conf. on Computer
Vision (2019)

22. Liu, W., Salzmann, M., Fua, P.: Context-aware crowd counting. In: Proc. of IEEE
Intl. Conf. on Computer Vision and Pattern Recognition (2019)

23. Liu, X., Wang, Q., Hu, Y., Tang, X., Zhang, S., Bai, S., Bai, X.: End-to-end tem-
poral action detection with transformer. IEEE Transactions on Image Processing
(2022)

24. Liu, Y., Shi, M., Zhao, Q., Wang, X.: Point in, box out: Beyond counting persons in
crowds. In: Proc. of IEEE Intl. Conf. on Computer Vision and Pattern Recognition
(2019)

25. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows. In: Porc. of
IEEE Intl. Conf. on Computer Vision. pp. 10012–10022 (2021)

26. Liu, Z., He, Z., Wang, L., Wang, W., Yuan, Y., Zhang, D., Zhang, J., Zhu, P.,
Van Gool, L., Han, J., et al.: Visdrone-cc2021: the vision meets drone crowd count-
ing challenge results. In: Porc. of IEEE Intl. Conf. on Computer Vision. pp. 2830–
2838 (2021)

27. Ma, Z., Wei, X., Hong, X., Gong, Y.: Bayesian loss for crowd count estimation
with point supervision. In: Porc. of IEEE Intl. Conf. on Computer Vision (2019)

28. Meng, D., Chen, X., Fan, Z., Zeng, G., Li, H., Yuan, Y., Sun, L., Wang, J.: Condi-
tional detr for fast training convergence. In: Porc. of IEEE Intl. Conf. on Computer
Vision. pp. 3651–3660 (2021)

29. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detec-
tion with region proposal networks. In: Proc. of Advances in Neural Information
Processing Systems (2015)
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