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Considering the space limitation of the main text, we provided more results
and discussion in this supplementary material, which is organized as follows:

– Section A: results on Waymo dataset.
– Section B: detailed ablation analysis and discussion.
• Section B.1: decoupled instance depth.
• Section B.2: grid design.
• Section B.3: affine-based data augmentation.
• Section B.4: instance depth uncertainty.
• Section B.5: instance depth aggregation.

– Section C: qualitative results.
• Section C.1: analysis on attribute depth and visual depth uncertainty.
• Section C.2: more qualitative results of 3D box predictions.
• Section C.3: failure cases and discussion.

A Results on Waymo Dataset

We perform experiments on Waymo dataset [4], which is a large-scale modern
dataset for self-driving. It contains 798 sequences for training and 202 sequences
for validation. We use the same data split strategy proposed in CaDDN [3].
The processed training dataset includes approximately 50K training samples.
We show the results in Table 1. We can see that our method performs the best
on most metrics. It further validates the effectiveness of the proposed method.

B Detailed Ablation Analysis and Discussion

To better understand the effect of each component in our method, we perform
more detailed ablation studies. The results are shown in Table 2. We perform
5 groups of experiments, i.e., experiment ([a,b,c], [d,e,f,g], [h,i,j,k], [l,m,n,o],
[p,q,r,s,t,u]), to compare the decoupled depth with the original prediction. We
also extend our grid design, affine transformation based data augmentation,
depth uncertainty, and depth aggregation to the baseline for comprehensive com-
parisons. For comparison convenience, we copy the results from experiment (e,
g, i, k) to experiment (m, o, q, s), respectively.
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Table 1. Results on Waymo val set. “Runtime∗” in the table refers to the runtime
reported on KITTI. DID-M3D performs the best.

Methods Venue Runtime∗
3D mAP/mAPH

Overall 0−30m 30−50m 50m−∞

Under Level 1 (IoU=0.5)

PatchNet [2] ECCV20 488ms 2.92/2.74 10.03/9.75 1.09/0.96 0.23/0.18
CaDDN [3] CVPR21 630ms 17.54/17.31 45.00/44.46 9.24/9.11 0.64/0.62
PCT [5] NeurIPS21 445ms 4.20/4.15 14.70/14.54 1.78/1.75 0.39/0.39
MonoJSG [1] CVPR22 42ms 5.65/5.47 20.86/20.26 3.91/3.79 0.97/0.92
DID-M3D ECCV22 40ms 20.66/20.47 40.92/40.60 15.63/15.48 5.35/5.24

Under Level 2 (IoU=0.5)

PatchNet [2] ECCV20 488ms 2.42/2.28 10.01/9.73 1.07/0.94 0.22/0.16
CaDDN [3] CVPR21 630ms 16.51/16.28 44.87/44.33 8.99/8.86 0.58/0.55
PCT [5] NeurIPS21 445ms 4.03/3.99 14.67/14.51 1.74/1.71 0.36/0.35
MonoJSG [1] CVPR22 42ms 5.34/5.17 20.79/20.19 3.79/3.67 0.85/0.82
DID-M3D ECCV22 40ms 19.37/19.19 40.77/40.46 15.18/15.04 4.69/4.59

B.1 Decoupled Instance Depth

As shown in Table 2, for every group of experiments, we investigate the effect
of the decoupled instance depth. We can easily see that the decoupled design
consistently improves the overall performance with a significant margin. For
example, on the naive baseline, the decoupled design boosts the performance
from 13.43/8.70 to 16.49/10.94 (experiment b→c) under the moderate setting.
When employing other strategies, it also improves the AP from 19.82/14.47 to
22.76/16.12 (experiment t→u) under the moderate setting. These improvements
validate its effectiveness.

B.2 Grid Design

Most previous monocular works produce a single instance depth prediction. Our
method divides the RoI into grids to decouple the instance depth. The grid de-
sign produces multiple predictions, which may be unfair to the single prediction.
Therefore, we extend the grid design to the baseline for fair comparisons. We can
see that the baseline benefits from this grid design with slight improvements. The
naive baseline obtains 1.0/0.24 AP improvements (experiment a→b) under the
moderate setting. However, when the network is equipped with other useful com-
ponents, gains from the grid design are weakened (e.g., 19.68/14.13→19.82/14.47
(experiment j→t) under the moderate setting).

B.3 Affine-based Data Augmentation

We extend the affine-based data augmentation to the baseline detector, Please
note, in this process we directly scale the instance depth, as the baseline uses the
direct instance depth prediction. When using affine-based data augmentation,
the baseline benefits from it a lot (e.g., 12.43/8.54→16.25/11.20 (experiment
a→f) under the moderate setting). Even if without a correct instance depth
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Table 2. Detailed ablation studies. “E.”: experiments; “Dec. ID.”: decoupled instance
depth; “G.”: grid; “Aff. Aug.”: affine-based data augmentation; “Tr. ID.”: transformed
instance depth; “ID. U.”: instance depth uncertainty; “ID. C.”: instance depth con-
fidence; “ID. AA.”: instance depth adaptive aggregation. The transformed instance
depth (“Tr. ID.”) refers to the depth transformation in the affine-based data augmen-
tation.

E. Dec. ID. G. Aff. Aug. Tr. ID. ID. U. ID. C. ID. AA.
APBEV /AP3D (IoU=0.7)|R40

Easy Moderate Hard

(a) 15.52/10.55 12.43/8.54 11.42/7.14
(b) X 16.23/10.94 13.43/8.70 11.88/7.98
(c) X X 19.86/13.13 16.49/10.94 14.40/9.89

(d) X 16.91/11.21 13.20/9.08 12.07/8.16
(e) X X X 17.98/12.11 15.34/10.72 14.11/9.11
(f) X X 19.84/14.07 16.25/11.20 14.13/9.97
(g) X X X X 22.98/16.95 18.72/13.24 16.57/11.23

(h) X X X 21.75/15.94 17.87/12.64 15.45/11.16
(i) X X X X X 25.23/18.14 20.06/13.91 17.63/12.52
(j) X X X X 25.56/18.91 19.68/14.13 16.94/12.32
(k) X X X X X X 29.34/21.51 21.53/15.57 18.55/12.84

(l) X X 17.60/12.14 14.09/9.37 12.36/8.42
(m) X X X 17.98/12.11 15.34/10.72 14.11/9.11
(n) X X X 21.01/14.67 16.79/11.24 15.41/10.18
(o) X X X X 22.98/16.95 18.72/13.24 16.57/11.23

(p) X X X X 22.76/16.56 18.40/12.99 16.15/11.06
(q) X X X X X 25.23/18.14 20.06/13.91 17.63/12.52
(r) X X X X X 26.61/19.44 19.72/14.44 16.85/12.13
(s) X X X X X X 29.34/21.51 21.53/15.57 18.55/12.84
(t) X X X X X X 26.72/19.48 19.82/14.47 16.93/12.15
(u) X X X X X X X 31.10/22.98 22.76/16.12 19.50/14.03

transformation, the performance is still boosted (12.43/8.54→13.20/9.08 (ex-
periment a→d) under the moderate setting), which can be attributed to the
improvements on the robustness for a simple baseline.

On the other hand, for our decoupled manner, the instance depth is decoupled
in a more intuitive and reasonable way, thus incorrect depth transformation dam-
ages the accuracy (downgrading from 16.49/10.94 to 15.34/10.72 (experiment
c→e) under the moderate setting). With the correct depth transformation, our
method obtains significant improvements via the affine-based data augmentation
(2.23/2.30 AP gains (experiment c→g) under the moderate setting).

B.4 Instance depth Uncertainty

We also investigate the impact brought by the uncertainty. The uncertainty can
stabilize the training process as it allows the network to learn more reasonable
objects. We can observe that this strategy brings improvements for both the
coupled and the decoupled manner (e.g., 16.25/11.20→17.87/12.64 (experiment
f→h) and 18.72/13.24→20.06/13.91 (experiment g→i) under the moderate set-
ting). Intuitively, once the network has learned the depth uncertainty, we can
use it to represent the confidence of instance depth estimation. This depth con-
fidence can also express the 3D location confidence, which is used to combine
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with 2D detection confidence as the final 3D detection confidence. Based on this,
the performance is further boosted (e.g., 1.81/1.49 gains (experiment h→j) and
1.47/1.66 gains (experiment i→k) under the moderate setting).

B.5 Instance Depth Aggregation

In previous experiments, for the grid design, the final instance depth is the av-
erage value in the RoI grids. Given that every instance depth estimation in each
grid has the corresponding uncertainty, we can use uncertainties in the grids to
adaptively obtain the final instance depth. Thus we perform experiments r→t
(for the original coupled manner) and s→u (for our decoupled manner). In-
terestingly, we can observe that this depth aggregation in the grid cannot bring
significant improvements to the original coupled manner (only 0.1/0.03 gains un-
der the moderate setting). This is because all direct instance depth estimates are
very close. By contrast, for our decoupled manner, we obtain obvious improve-
ments (1.23/0.55 gains under the moderate setting). It indicates that different
parts of the objects can produce different features, to conduct different instance
depth predictions with associated uncertainties. This experiment further vali-
dates the presence of the coupled nature in instance depth and demonstrates
the effectiveness of our method.

Fig. 1. Attribute depth and visual depth uncertainty. For simple objects, they show
similar distributions. While they have different characteristics for difficult objects.
Please refer to Section C.1 for more discussion. Best viewed in color with zoom in.
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C Qualitative Results

C.1 Analysis on Attribute Depth and Visual Depth Uncertainty

To better understand how the attribute depth and visual depth work, we illus-
trate their uncertainties on two typical scenes, as shown in Figure 1. • First,
we can easily see that all background areas of RoIs have high uncertainties. It
is expected because the background area does not have important clues to the
estimation of foreground objects, and its visual depths and attribute depths are
hard to predict. • Second, regarding simple objects such as objects (a, b, e, f),
their attribute depth uncertainties and visual depth uncertainties have similar
distributions, since both two types of depths are easy to estimate. • Third, for
the far objects (c, h), we know that the visual depth is less confident than the
attribute depth. This is reasonable as the object texture is obvious, and the
network can be confident in estimating attribute depths. By contrast, predicting
absolute visual depths for far objects is difficult. • Finally, concerning the oc-
cluded objects (d, g, i, j), we can observe that visual depths and attribute depths
have different interest areas. Visual depths mainly focus on closer objects be-
cause of the prediction simplicity. In contrast to visual depths, attribute depths
are more interested in the target object, which even is heavily occluded (objects
(i, j)). When the object is nearly invisible, attribute depths will give all areas
high uncertainties (object (d)).

C.2 More Qualitative Results of 3D Box Predictions

We provide more qualitative results in Figure 2. For better visualization, the 3D
box predictions are drawn in the 3D space and on the RGB image simultane-
ously. We can see that our method works well in most scenes, which proves its
effectiveness and robustness.
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Fig. 2. Qualitative results on KITTI val set. Red: ground-truth 3D boxes; Green:
our predictions. We can observe that most 3D box predictions are quite accurate. The
LiDAR point clouds are only used for visualization. Best viewed in color with zoom in.
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C.3 Failure Cases and Discussion

This paragraph aims to investigate failure cases in our method. We show some
examples in Figure 3. These failure cases can be roughly divided into four cate-
gories, i.e., faraway, occluded, truncated, and poor illumination. Faraway objects
are very difficult to be precisely predicted due to the dramatically decreased in-
formation along with the depth in monocular imagery. Some occluded and trun-
cated objects provide few valuable clues on the image to infer their locations
and orientations. As for objects in poor illumination, their texture features are
weakened, thus bringing difficulty in estimating their 3D boxes. In future works,
we will further explore these failure cases, to mitigate their adverse impacts.

Fig. 3. Failure cases on KITTI val set. Red: ground-truth 3D boxes; Green: our
predictions. We use arrows to indicate failure cases. We can see that failure objects
usually are faraway, occluded, truncated, or suffer from poor illumination. The LiDAR
point clouds are only used for visualization. Best viewed in color with zoom in.
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