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1 Experiment Details on Monodepth2 Network

We claim that our framework can improve the depth estimation performance of
existing unsupervised approaches. In our paper, we further showcase the experi-
mental results based on the most popular Monodepth2 network. In this section,
we introduce more training details of this experiment.
Detailed modification of the network. Specifically, we modify the basic
single stream network design into our proposed multi-stream format, severing as
the network of the teacher ensemble and the student. We use the same ResNet-
18 as the original model. The modified decoder is shown in Table 1. Specifically,
for the teacher ensemble, we use 4 coefficient decoders with one basis decoder.
For the final student, we use only one coefficient decoder with one basis decoder.
Training details. Compared with original training strategy, we employed our
proposed two-stage training scheme on the modified network introduced above.
In the first stage, we train the teacher ensemble with Eq.6 in main paper. Fol-
lowing [3], we train the model for 20 epochs using Adam in the first stage. We
use a learning rate of 1e-4 for first 15 epochs and then dropped to 1e-5 for the
remainder. In the second stage, we use the proposed cost-aware distillation loss
to distill the student model. The second stage is trained for 20 epochs, with a
learning rate of 1e-4.

2 Visualization of Basis Maps

In our main paper, we claimed that our proposed MUSTNet can contribute to
both the teacher ensemble and the student network, for the bases decoder can
generate more diverse depth features. We further visualize some typical depth
bases in this section. The results are shown in Figure 1. Specifically, we can
observe that some depth bases (Top-right) have higher response on the close
objects while some others bases (Bottom-right) focus on the learning of the far
background. Additionally, some bases maintain fine-grained details of the close
objects (Top-left) or the far background (Bottom-right).

3 Visualization of Depth Maps of the Teachers/Student

We further showcase the qualitative comparison of the recovered depth maps
by the teacher ensemble and the student model, shown in Figure 2. We can
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Basis Decoder

layer k s ch res input activation

upconv5 3 1 256 32 e conv5 ReLU
iconv5 3 1 256 16 upconv5, e conv4 ReLU

upconv4 3 1 128 16 iconv5 ReLU
iconv4 3 1 128 8 upconv4, e conv3 ReLU
disp4 3 1 16 1 iconv5 Sigmoid

upconv3 3 1 64 8 iconv4 ReLU
iconv3 3 1 64 4 upconv3, e conv2 ReLU
disp3 3 1 16 1 iconv3 Sigmoid

upconv2 3 1 256 32 iconv3 ReLU
iconv2 3 1 256 16 upconv2, e conv1 ReLU
disp2 3 1 16 1 iconv2 Sigmoid

upconv1 3 1 256 32 iconv3 ReLU
iconv1 3 1 256 16 upconv1 ReLU
disp1 3 1 16 1 iconv1 Sigmoid

Coefficient Decoder

layer k s ch res input activation

c conv1 1 1 256 32 e conv5 ReLU

c conv2 3 1 256 32 c conv1 ReLU

c conv3 3 1 256 32 c conv2 ReLU

c conv4 3 1 256 32 c conv3 ReLU

c conv5 3 1 16 32 c conv4 ReLU

c pool1 - 1 16 1 c conv5 -
Table 1. Network architecture of the coefficient decoder and the basis de-
coder. k represents the kernel size. ch represents output channels. res represents the
resolution scale. input represents the input features for each layer. activation rep-
resents the activation function. e conv represents the output feature of the shared
encoder.

observe that, during distilling, the teacher ensemble can select more accurate
knowledge to guide the training of the student model. It reveals that, benefited
from the adaptive co-teaching framework, the student model produces more
accurate depth maps than the teacher ensembles.

4 Additional Visualization of the Masks

In Figure 3, we showcase the masks used in our method. Specifically, the 6th row
represent the selective mask Md

i for the distillation scheme, which is introduced
in Sec 4.2 in the main paper. Additionally, as described in Sec 4.3, to address
some dynamic scenes, we used additional pseudo optical flow maps generated
by [4] as geometric guidance. We generate dynamic masks by computing the
displacement of each pixel between the current frame and adjacent frames using
a) pseudo optical flow and b) cross-view projection based on the predicted depth
and pose. The generated dynamic masks are shown in 7th row.
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Methods Sup. Resolution
Error metric↓ Accuracy metric↑

AbsRel SqRel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

SfMLearner M 416× 128 0.176 1.532 6.129 0.244 0.758 0.921 0.971
Vid2Depth M 416× 128 0.134 0.983 5.501 0.203 0.827 0.944 0.981
DDVO M 416× 128 0.126 0.866 4.932 0.185 0.851 0.958 0.986
EPC++ M 640× 192 0.120 0.789 4.755 0.177 0.856 0.961 0.987

Monodepth2 M 640× 192 0.090 0.545 3.942 0.137 0.914 0.983 0.995
HR-Depth M 640× 192 0.082 0.484 3.776 0.127 0.925 0.986 0.996

Ours M 640× 192 0.082 0.447 3.687 0.126 0.926 0.986 0.996

Table 2. Quantitative results of depth estimation on KITTI improved
ground truth. Best results are marked bold. Comparison of existing methods to
our own on the KITTI 2015 [2] using the improved ground truth [5] of the eigen split.
M represents unsupervised monocular supervision. Results are presented without any
post-processing.

Methods Sup. Resolution
Error metric↓ Accuracy metric↑

AbsRel SqRel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

Ours M 640× 192 0.106 0.763 4.562 0.182 0.888 0.963 0.983
Ours MF* 640× 192 0.105 0.753 4.568 0.182 0.890 0.963 0.983

Table 3. The effect of the dynamic masks.

5 Qualitative Results on KITTI Improved Ground Truth

In our main paper, we evaluate our method using the evaluation method intro-
duced by [1], which creates the ground truth depths by re-projecting LiDAR
points. However, the generated ground truth maps do not handle occlusions and
non-rigid parts. To solve this problem, some methods use the improved high
quality ground truth depth maps introduced by [5]. These high quality images
are instead reprojected using 5 consecutive LiDAR frames and uses the stereo
images for better handling of occlusions. Finally, this improved ground truth
depth is provided for 652 of the 697 test frames contained in the Eigen test split
[1]. We evaluate our approach on the improved ground truth frames and com-
pare to existing methods without retraining. We evaluate these methods using
the same error metrics as the standard evaluation, and clip the predicted depths
to 80 meters to match the Eigen evaluation. As shown in Table 2, our method
still significantly outperforms all previously published methods on all metrics.

6 The Set of the Number of Depth Bases

We claim that dividing the single channel output into depth bases contributes
to more accurate depth predictions. The number of the depth bases (N) is a
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Typical depth basesImage/Predicted depth

Fig. 1. Visualization of typical depth bases and the predicted depth maps.

key hyper-parameter for it influence the dimension of the depth bases and the
coefficient vector. In our experiments, we have tested different set of N (4, 8, 16,
32, 64). It seems that a higher numbers of outputs be more beneficial. However,
in our experiments, when N is larger than 16, the performance gain is marginal.
Specifically, when N is set as 8/16/32/64, the AbsRel of the student model
are 0.108/0.105/0.105/0.106. We conjecture that several typical depth basis are
sufficient enough for diverse results. Setting a larger N will result in redundant
channels. N=16 is the best set to trade-off computational complexity and depth
basis diversity when training our model in the KITTI dataset.

For training the network on other datasets, we suggest to adjust this hyper-
parameter according to the default setting(N=16).

7 The effect of the dynamic masks

The cost volume based masking mechanism essentially follows the static scene
assumption. It fails to mask out the dynamic parts. To solve this problem, we
generate dynamic masks with the help of additional optical flow information.
Specifically, we compute the displacement of each pixel between the current
frame and adjacent frames using a) optical flow estimation [4] and b) cross-view
projection based on the predicted depth and pose. If the error of the above two
methods is larger than a threshold τs, we mark the current pixel as dynamic and
will ignore it during loss computation. The results can be seen in Table 3.
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Student predictionTeacher predictions

Fig. 2. Visual comparison of the depth predictions of the teacher models
and the student network.
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Fig. 3. Visual comparison of the our selective masks as well as the flow
masks for dynamic scenes.
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