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Abstract. Unsupervised depth estimation using photometric losses suf-
fers from local minimum and training instability. We address this issue
by proposing an adaptive co-teaching framework to distill the learned
knowledge from unsupervised teacher networks to a student network.
We design an ensemble architecture for our teacher networks, integrat-
ing a depth basis decoder with multiple depth coefficient decoders. Depth
prediction can then be formulated as a combination of the predicted
depth bases weighted by coefficients. By further constraining their cor-
relations, multiple coefficient decoders can yield a diversity of depth
predictions, serving as the ensemble teachers. During the co-teaching
step, our method allows different supervision sources from not only en-
semble teachers but also photometric losses to constantly compete with
each other, and adaptively select the optimal ones to teach the student,
which effectively improves the ability of the student to jump out of the
local minimum. Our method is shown to significantly benefit unsuper-
vised depth estimation and sets new state of the art on both KITTI and
Nuscenes datasets.

Keywords: Unsupervised, Monocular Depth Estimation, Knowledge Dis-
tillation, Ensemble Learning

1 Introduction

Monocular depth estimation is a fundamental research task in computer vision,
with a wide application ranging from navigation [32], 3D reconstruction [10] to
simultaneous localization and mapping [2]. With the rapid development of deep
learning techniques, monocular depth estimation based on deep convolutional
networks has achieved significant progress in recent years. Nonetheless, training
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Fig. 1. Strength of our adaptive co-teaching framework. We conduct visual-
ized comparison of our proposed adaptive co-teaching strategy (3rd column), photo-
metric constraint based unsupervised training (1st column), and the straightforward
distillation method (2nd column) on KITTI. Our scheme can transfer more accurate
knowledge to the student maintaining fine-grained details.

complex deep networks entails large-scale annotated depth data which are ex-
pensive to achieve and still very limited in terms of amount and diversity. To
alleviate the need of depth annotations, unsupervised approaches have recently
been investigated for learning monocular depth using either stereo images [12,14]
or monocular videos [15,16], which have shown promising performance.

In this paper, we focus on unsupervised depth estimation using unlabeled
monocular videos. Under the assumption of static scenes and Lambertian sur-
faces, both depth and pose networks can be jointly learned in an unsupervised
manner by minimizing the photometric reconstruction losses of view synthesis.
However, the above assumption may not hold in many scenarios, leading to un-
stable unsupervised learning and local minimum issues in dynamic regions and
non-Lambertian or low-textured surfaces.

To alleviate this issue, recent works [7,17,24] propose to exploit semantic
segmentation labels as prior knowledge to facilitate training. Though impres-
sive performance has been achieved, these methods rely on additional manual
annotations, and thus fail to maintain the advantages of unsupervised learning.
An alternative idea to mitigate this challenge is to leverage the distillation tech-
niques [30,29,27,28,37]. Although distillation learning can circumvent the unsta-
ble training issue, the teacher network is trained using conventional unsupervised
framework. As shown in the second column of Figure 1, it still suffers from the
mentioned drawbacks, leading to low-quality pseudo labels and degraded final
performance.

In light of the above issues, we propose an adaptive co-teaching framework
for unsupervised depth estimation, which operates in a two-stage fashion. In the
first stage, we train an ensemble of teacher networks for depth estimation in a
unsupervised manner. By penalizing the correlation among teacher networks, we
obtain a diversity of plausible solutions for depth estimation, providing a signif-
icantly higher chance to escape from local minimums of unsupervised learning
compared to training a single teacher network. In the second stage, we transfer
the learned knowledge from the teacher ensemble to the student network through
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a cost-aware co-teaching loss, which allows teacher networks in the ensemble to
compete with each other and is able to adaptively select the optimal supervision
source to teach the student network.

As another contribution of this work, we present the MUlti-STream ensemble
network (MUSTNet) to facilitate more effective teacher ensemble learning. Our
MUSTNet comprises a basis decoder and multiple coefficient decoders, where
the basis decoder decomposes the depth map into a set of depth bases, and each
coefficient decoder predicts a weight vector to linearly combine the depth bases,
giving rise to one prediction of the depth map. By integrating both the basis
and coefficient decoders in a single network, the MUSTNet serves as a more
compact architecture for ensemble networks. In addition, the decomposition of
the depth map into depth bases permits a more elegant and convenient way to
enforce model diversity within the ensemble. As shown in our experiments, by
incorporating the MUSTNet into our co-teaching framework, we achieve new
state-of-the-art performance on popular benchmarks.

The contributions of our approach can be summarized into three-folds:

– An adaptive co-teaching framework for unsupervised depth estimation that
enjoys the strengths of knowledge distillation and ensemble learning for more
accurate depth estimation.

– A novel Multi-Stream Ensemble Network which decomposes depth maps into
depth bases weighted by depth coefficients, providing a compact architecture
for both the teach ensemble and the student model.

– A cost-aware co-teaching loss which leverages both the ensemble teachers
and the photometric constraint to adaptively distill our student network.

Our model outperforms state-of-the-art monocular unsupervised approaches on
the KITTI and Nuscenes datasets.

2 Related Work

2.1 Unsupervised Monocular Depth Estimation

Monocular depth estimation is an inherent ill-posed problem. Recently, with
the help of Multi-view Stereo or Structure from Motion, some works [43,1,15]
propose to tackle this problem within an unsupervised learning manner replacing
the need of ground truth annotations.

Unsupervised Stereo Training. [12] proposes the first approach that esti-
mates depth maps in an unsupervised manner with the help of multi-view syn-
thesis. This work provides a basic paradigm for unsupervised depth estimation.
After that, [14] employs a view synthesis loss and a depth smoothness loss to
further improve the depth estimation performance. Very recently, [38] proposes
a two-stage training strategy, which firstly generates pseudo depth labels from
input images and secondly refine the network with a self-training strategy. It
achieves better performance than state-of-the-art unsupervised methods.
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Unsupervised Monocular Training. Different from multi-view based meth-
ods, monocular video sequence based methods require additional process to ob-
tain camera poses. [43] jointly estimates depths and relative poses between adja-
cent frames, and indirectly supervise the depth and pose networks by computing
the image re-projecting losses. However, this training strategy highly relies on
the assumption that the adjacent frames comprise rigid scenes. Consequently,
non-rigid parts caused by moving objects may seriously affect the performance.
To solve this problem, [1] introduces an additional network to predict per-pixel
invalid masks to ignore regions violating this assumption. [15] proposes a simple
yet effective auto-masking and min re-projecting method to solve the problem of
moving objects and occlusion. [24] decomposes the motion to the relative camera
motion and instance-wise object motion to geometrically correct the projection
process. [35] presents a novel tightly-coupled approach that leverages the inter-
dependence of depth and ego motion at training and inference time. Although
these methods have achieved matured performance, it is still an open question
to solve the problem introduced by the photometric loss.

2.2 Knowledge Distillation

Knowledge distillation is originally proposed by [3] and popularized by [20]. The
idea has been exploited for many computer vision tasks [6,18,26] for its ability
to compressing a large network to a much smaller one. Recently, some works
attempt to exploit distillation for unsupervised depth estimation.

Multi-view Training. [29] propose a self-distillation strategy for unsupervised
multi-view depth estimation in which a sub-network of a bidirectional teacher is
self-distilled to exploit the cycle inconsistency knowledge. [38] generates pseudo
depth labels from the input images and secondly refine the network with a self-
training strategy. More recently, [28] also apply a self-distillation method to un-
supervised multi-view depth estimation and try to generate pseudo labels based
on their proposed post-processing method. However, these multi-view images
based methods fail to cope with monocular videos. It is hard for these methods
to generate high quality pseudo labels for the camera poses keep unknown.

Monocular Training. For monocular videos, some approaches also attempt
to employ knowledge distillation to unsupervised depth estimation. [27] train a
complex teacher network in a unsupervised manner and distill the knowledge to a
lightweight model to compress parameters while maintain high performance. [37]
inference depth from multi-frame cost volume and generate depth prior informa-
tion with a monocular unsupervised approach to teach the cost volume network
in those potentially problematic regions. All the above introduced methods boost
unsupervised depth estimation performance. However, those approaches lever-
age single depth teacher for distillation, which can not contribute to the student
network to jump out of local minimal. Different from these methods, our work
conducts an adaptive co-teaching strategy that leverages an ensemble of diverse
teachers for better distillation.
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3 Problem Formulation

During training, we consider a pair of input images: source image Is and target
image It of size H ×W . Two convolutional networks are leveraged to estimate
the depth map of It and the relative camera pose ps→t = [R|t] between Is and
It, respectively. After that, a synthesized target image It′ can be generated by
rendering the source image Is with predicted depth dt, relative pose pt, and the
given camera intrinsic K. As a consequence, the depth and relative pose can be
jointly optimized by minimizing the photometric loss given by

Lp = α (1− SSIM (It, It′)) + (1− α) ∥It − It′∥1 , (1)

where || ∗ ||1 measures the pixel-wise similarity and SSIM indicates the struc-
tural similarity to measure the discrepancy between the synthesized and the real
images structure. α is the hyper-parameter used to balance these two loss terms.
Following [15], we set α = 0.85.

Furthermore, in order to mitigate spatial fluctuation, we apply the edge-aware
depth smoothness loss used in [15,21] , which can be described as

Ls (Di) = |δxDi| e−|δxIi| + |δyDi| e−|δyIi|. (2)

Following [15], for each pixel we optimize the loss for the best matching source
image by selecting the per-pixel minimum over the reconstruction loss.

4 Methodology

Motivation and Overview. There may exist multiple feasible solutions to the
photometric constraint (1), especially at low-texture regions, leading to training
ambiguity and sub-optimal convergence. In this paper, we address this issue by
proposing an adaptive co-teaching framework for unsupervised depth estimation.
Our philosophy is to firstly learn an ensemble of depth estimation networks in
the unsupervised manner, which can deliver a variety of depth prediction for an
input image. We then treat these pre-trained networks as teachers and select
their optimal predictions as pseudo labels to train the final student network
using our cost-aware loss. As a result, training the student network under our co-
teaching framework can circumvent the unstable issue of unsupervised learning.
As verified in our experiment, through knowledge distillation from ensemble
teachers, the student network outperforms each individual teacher network. In
the following, we first introduce a new network architecture named MUSTNet
for the teacher ensemble in Sec. 4.1. We then elaborate on the proposed adaptive
co-teaching framework in Sec. 4.2. Finally, Sec. 4.3 presents the implementation
details of our method.

4.1 MUSTNet: MUlit-STream ensemble Network

A conventional approach to building network ensembles is to group a set of
independent networks with similar architectures. The memory complexity and
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Fig. 2. Illustration of the proposed MUlti-STream ensemble Network.

computational overhead for training such an ensemble of networks will be linearly
increased w.r.t. to the amount of ensemble members. Besides, the diversity of the
learned network parameters can not be easily guaranteed. Inspired by the above
observation, we design a more compact network structure named MUlti-Stream
ensemble network (MUSTNet) for monocular depth estimation. In contrast to
the above conventional approach, the proposed MUSTNet integrates a number
of depth net into a single network. As shown in Figure 2, MUSTNet contains
one encoder followed by one basis decoder and N coefficient decoders in parallel.
Given an input image, the basis decoder produces an output of M channels with
each channel as one depth basis. Meanwhile, each coefficient decoder generates
a coefficient vector of M dimensions. Each coefficient can be used as weight to
linearly combine the depth basis, producing an estimation of depth map. The N
coefficient decoders will then make N predictions of the depth map. As a result,
the MUSTNet is equivalent to an ensemble of N depth estimation networks.

Basis Decoder. The basis decoder is designed motivated by prior methods
[15,27]. It receives a multi-scale feature pyramid from the encoder, and the fea-
tures are then progressively combined from coarse to fine level. Different from
the basic structure, we extend the output channels of the last layer convolution
to M . For each channel, we employ a sigmoid activation function to generate a
normalized basis, representing the disparity values.

Coefficient Decoder. The coefficient decoder receives the coarsest output from
the depth encoder. It consists of three 3× 3 convolution layers followed by non-
linear ReLU layers. An additional 3× 3 convolution is add to compress feature
channels to M , which keeps the same as the number of depth bases. Finally, we
use a global average pooling layer to generate the coefficients.

Discussion. Our MUSTNet provides a compact structure for depth estimation,
which enjoys more flexibility than conventional network ensembles from multiple
aspects. As can be seen in Sec. 4.2, the diversity of the teacher ensemble is
essential in our co-teaching framework. By decomposing depth estimation into
depth bases and coefficient prediction, our MUSTNet permits an elegant and
convenient way (introduced in Sec. 4.2) to enforce ensemble diversity. In addition,
the MUSTNet structure is also scalable, i.e., it can not only serve as our teacher
ensemble, but is also suitable for the student depth network by using only one
coefficient decoder. By using consistent architectures for teachers and student
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Fig. 3. Illustration of the proposed adaptive co-teaching framework. Specifi-
cally, (a): In the first stage, we train the pose network (θpose) and the depth network
(θdepth) in an unsupervised manner. We employ an ensemble network for the depth es-
timation to generate a diversity of pseudo labels. (b): In the second stage, we transfer
the learned knowledge to a student monocular depth network leveraging the proposed
cost aware co-teaching loss.

network, we expect the distillation learning to be more coherent, and thus more
superior final performance.

4.2 Adaptive Co-teaching Framework

As shown in Figure 3, our adaptive co-teaching framework operates in a two-
stage fashion. In the first stage, we train a teacher ensemble through unsuper-
vised learning. By penalizing their correlation, a diversity of teachers can be
achieved. The second training stage is introduced to transfer the learned knowl-
edge to the student network through a cost-aware co-teaching loss. It allows
teacher networks in the ensemble to compete with each other and can adap-
tively select the optimal supervision source to teach the student network for
much better predictions.
Unsupervised Teacher Ensemble Learning. We adopt the MUSTNet with
N > 1 coefficient decoders as our teacher ensemble, where each coefficient de-
coder correspond to an individual teacher. We design the following two con-
straints to pursue model diversity.

Bases diversity constraint. We prefer the components of the bases have
significant different distributions, which can help the network jump out of local
minimal solutions. As suggested by [25], we assume the disparity values subject
to a Gaussian distribution, and force the generated depth bases to have similar
variances and different means for irrelevant outputs

Lv =
1
n

∑n
i=1 σ

2
i −

(
1
n

∑n
i=1 σi

)2
1
n

∑n
i=1 µ

2
i −

(
1
n

∑n
i=1 µi

)2 , (3)

where µn and σn denote the mean and variance of the n-th depth basis, respec-
tively.

Coefficients orthogonality constraint. For each predicted depth coefficient
vector w, we compute its normalized version as w = w

|w| , and stack all the
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normalized coefficients into a matrix W . The correlation of matrix W can be
computed as

Cw = W ·WT . (4)

To penalize the relevance among coefficients, we define the coefficient orthogo-
nality constraint as follows

Lw = ||Cw − E||, (5)

where E represents the identity matrix.
The final loss function for training the teacher ensemble combines the pho-

tometric loss with the above two constraints and can be described as

Lself = Lp + αLs + βLv + γLw, (6)

where, α, β and γ are the hyper-parameters. In our work, we set α = 1e − 3,
β = 1e− 3, γ = 1e− 5.
Student Learning via Adaptive Co-teaching. Given the pre-trained teacher
ensemble, we learn a student depth network using a cost-aware co-teaching loss,
which can not only identify the best teacher for distillation but also adaptively
switch between distillation and unsupervised learning to select the optimal su-
pervision sources.

Ensemble distillation loss. To aggregate multiple predictions from the teacher
ensemble to synthesize satisfactory pseudo labels for distillation learning, we
measure the accuracy of the predicted depth maps using the photometric recon-
struction error (1). For each spatial location in the training image, we select the
depth value predicted by the teacher ensemble with the minimum reconstruction
error as the final pseudo label. The distillation loss is then defined as

Ldistill = ∥ds − d∥1 +
∑
i

[
(∇xDi)

2
+ (∇yDi)

2
]
, (7)

where d denotes the depth map predicted by the student network, ds denotes the
synthesized pseudo label, and Di = log (di) − log (dsi ). The first term measures
the difference between the predictions and pseudo labels, while the second term
enforces the smoothness of the predicted depth maps.

Adaptive switch between supervisions. In order to select the optimal super-
vision sources for learning the student, we propose to adaptively switch between
the distillation learning (7) and unsupervised learning (1). Our basic idea is to
estimate the quality of the potential solution yielded by the unsupervised learn-
ing. When unsupervised learning is likely to suffer from failure, we then switch to
distillation learning. To this purpose, we introduce a cost volume [37,39] based
masking mechanism. The cost volume V is constructed using the photometric
reconstruction errors of K discrete depth planes. The planes are uniformly dis-
tributed over the disparity space. We set K=16 in our experiments. For each
spatial location i, we compute the minimum error across all the depth planes as
ei = mink(Vi[k]). A smaller ei mostly indicates a high-quality solution. However,
this does not hold in low-texture regions, where multiple different solutions can
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produce similar errors. To address this issue, we further convert the cost volume
into a confidence volume P as

P = softmax

(
β
1

V

)
, (8)

where the softmax normalization is performed for each spatial location along
the K depth planes, and β is a hyper-parameter that controls the height of local
peaks. β is set as 0.05 in our work. The maximum confidence for location i is
further computed as ci = maxk(Pi[k]). For low-texture regions with multiple
local minimum errors, their maximum confidences are relatively low (See Fig-
ure 3 (b) for an example). Therefore, unsupervised learning is only applicable
to regions with low minimum errors and high maximum confidences. We define
the selection mask Mu for unsupervised learning as

Mu
i =

{
1, if ei < τe and ci > τc,
0, otherwise,

(9)

where τe and τc are two pre-defined thresholds. In our work, τe and τc are set
as 0.6, 0.002, respectively. Mu

i indicates the mask value at position i. For re-
gions with large minimum errors, we explore distillation from ensemble teachers
for better supervision. However, the pseudo labels for distillation are generated
based on photometric reconstruction losses, which are unreliable in low-texture
regions. Therefore, the selection mask Md for distillation learning also discards
the low-texture regions and can be defined as

Md
i =

{
1, if ei ≥ τe and ci > τc,
0, otherwise.

(10)

Finally, the cost aware co-teaching loss is formulated as a combination of the
ensemble distillation loss and the unsupervised loss spatially weighted by their
corresponding selection masks.

4.3 Implementation

Network architecture. For our MUSTNet, we use the ResNet-18 [19] as the
encoder. Furthermore, we employ the Redesigned Skip Connection block pro-
posed in [27] to decrease the semantic gap between different scale features and
obtain sharper depth details. For the relative pose, we employ the same design as
[15], which predicts 6-DoF axis-angle representation. The first three dimensions
represent translation vectors and the last three represent Euler angles.
Training details. We implement our models on PyTorch and train on one
Nvidia 2080Ti GPU. We use the Adam optimizer [23] with β1 = 0.9, β2 =
0.999. For the first training stage of the adaptive co-teaching framework, we
employ a main-assistant training strategy to pursue the ability of the teachers.
We firstly train a teacher network with only one coefficient decoder, namely main
teacher, for 20 epochs, with a batch size of 12. As in [15], the initial learning
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Image PackNet-SfM Monodepth2 Ours

Fig. 4. Visual comparison of our method and recent works. The predicted
depth maps of our method are perceptually more accurate with more details.

rate for both depth and pose models is set to 1e-4 and decays after 15 epochs
by factor 10. Then, we fix the parameters of the depth and pose networks, and
train additional N-1 parallel coefficient decoders, namely assistant teachers, for
another 5 epoch with a learning rate of 1e-5. The second stage of the adaptive co-
teaching framework is trained for 15 epochs, with a batch size of 8. The learning
rate is set to 1e-4. We adopt data augmentation strategies including random
color jittering and horizontal flipping to improve generalization ability.

5 Experiments

In this section, we evaluate our proposed approach on two publicly available
datasets, and perform ablation studies to validate the effectiveness of our design.
Source code will be released at https://github.com/Mkalilia/MUSTNet.

5.1 Datasets

KITTI. The KITTI benchmark [13] is the most widely used dataset for training
and test monocular depth methods. We employ the training and test split of
[8]. As in [15], we use the pre-processing strategy to remove static frames. In
particular, we use 39810 monocular triplets for training, 4424 for validation and
697 for evaluation. We follow [15], which uses the same intrinsics for all the
images and sets the camera principal point to the image center. The focal length
is set as the average of that of all the samples in KITTI.

Nuscenes. Nuscenes [4] is a recently released 3D dataset for multiple vision
tasks. It carries the full autonomous vehicle sensor suite: 6 cameras, 5 radars
and 1 lidar, all with full 360 degree field of view. We only use this dataset for
evaluation to assess the generalization capability of our approach. Based on [16],
we evaluate our network on the official NuScenes-mini train-val dataset, which
contains 404 front-facing images with ground-truth depth.

https://github.com/Mkalilia/MUSTNet
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Methods Sup. Backbone.
Error metric↓ Accuracy metric↑

AbsRel SqRel RMSE RMSlg δ < 1.25 δ < 1.252 δ < 1.253
L
o
w
e
r SfMLearner[43] M DispNet 0.198 1.836 6.565 0.275 0.718 0.901 0.960

Struct2D[5] M ResNet18 0.141 1.026 5.291 0.215 0.816 0.945 0.979
Geo-Net[40] MF ResNet50 0.155 1.296 5.857 0.233 0.793 0.931 0.973

S
ta

n
d
a
rd

R
e
so

lu
ti
o
n

SC-SfM[1] M DispNet 0.128 1.047 5.234 0.208 0.846 0.947 0.976
MD2[15] M ResNet18 0.115 0.903 4.863 0.193 0.877 0.959 0.981
SAFE-Net[7] MS ResNet18 0.112 0.788 4.582 0.187 0.878 0.963 0.983
HR-Depth[27] M ResNet18 0.109 0.792 4.632 0.185 0.884 0.962 0.983
SCSI[36] M ResNet18 0.109 0.779 4.641 0.186 0.883 0.962 0.982
Ours M ResNet18 0.106 0.763 4.562 0.182 0.888 0.963 0.983

Zhou et al.[42] M ResNet50 0.121 0.837 4.945 0.197 0.853 0.955 0.982
PackNet[16] M PackNet 0.111 0.785 4.601 0.189 0.878 0.960 0.982
Adrian et al.[22] M ResNet101 0.106 0.861 4.699 0.185 0.889 0.962 0.982

H
ig
h
e
r

Zhao et al.[41] MF ResNet18 0.113 0.704 4.581 0.184 0.871 0.961 0.984
Lee et al.[24] MS ResNet18 0.112 0.777 4.772 0.191 0.872 0.959 0.982
MD2[15] M ResNet18 0.115 0.882 4.701 0.190 0.879 0.961 0.982
Fang et al.[11] M ResNet18 0.110 0.806 4.681 0.187 0.881 0.961 0.982
HR-Depth[27] M ResNet18 0.106 0.755 4.472 0.181 0.892 0.966 0.984
Ours M ResNet18 0.104 0.750 4.451 0.180 0.895 0.966 0.984

PackNet[16] M PackNet 0.107 0.802 4.538 0.186 0.889 0.962 0.981
Chang et al.[33] M ResNet50 0.104 0.729 4.481 0.179 0.893 0.965 0.984

Table 1. Quantitative results on KITTI dataset for distance up to 80m. M
refers to methods supervised by monocular videos.MS refers to methods supervised by
monocular videos and semantic information. MF refers to methods that jointly train
depth and optical flow network. At test time, we scale depth with median ground-truth
LiDAR information. Best results are marked bold.

5.2 Quantitative Evaluation

Results on KITTI Eigen split. We report the performance of our network
on KITTI raw data with the evaluation metrics described in [9]. We evaluated
our model at standard resolution (192×640) and high resolution (1024×320).
We compare our model with state-of-the-arts. Results in Table 1 show the su-
periority of our approach compared with all existing ResNet-18 based unsuper-
vised approaches [15,27,36,11]. We also outperform recent models [16,42,33,22]
with much larger backbones and recent works using additional semantic infor-
mation [7,24] or optical flow information [24,41]. Furthermore, we showcase the
qualitative comparison in Figure 4. The depth predictions of our method are
perceptually more accurate depth information with sharper depth details.

Generalization Capability. We also evaluate our approach on the recently
proposed nuScenes dataset[4]. As shown in Table 2, our approach outperforms
state-of-the-arts which confirms the generalization ability of our method across
a large spectrum of vehicles and countries.
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Methods Sup.
Error metric↓ Accuracy metric↑

AbsRel SqRel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

SC-SfMLearner[43] M 0.210 2.257 9.358 0.316 0.677 0.868 0.936
MD2[15] M 0.199 2.236 9.316 0.311 0.697 0.869 0.936
HR-Depth[27] M 0.196 2.191 8.894 0.308 0.702 0.869 0.937

Ours M 0.192 2.143 8.888 0.305 0.716 0.870 0.936

Table 2. Quantitative results of depth estimation on nuScenes dataset
at the standard resolution. Best are marked bold.

5.3 Ablation Studies

We conduct multiple ablative analysis on our approach, to further study the
performance improvements provided by each component.
Ablation study for MUSTNet. As one of our main contributions, MUSTNet
serves as the architecture of both the teacher ensemble and the student model.

The teacher ensemble: We compare three variances of the model in an un-
supervised manner, shown in L1-3 in Table 3. Baseline employs a single stream
depth decoder outputting one channel prediction which keeps the same as [15,27].
+BD extends the decoder to the basis decoder with 16 output channels. The final
outputs are generated by averaging all the channels. Compared with Baseline,
both +BD and MUSTNet improve the performance. With 16 channel bases,
more diverse representations of depth are embedded to guide the network out
of local minimums and converge to a better solution. +BD is a special case of
MUSTNet with a fixed weight 1

N [1, 1, ..., 1]T for all frames. MUSTNet learns
more appropriate representations by co-adapting bases and coefficients. Higher
quality pseudo-labels can be generated leveraging the MUSTNet as the teacher
model. Meanwhile, as shown in L4-5, the student model learned from the MUST-
Net also beats that from the Baseline.

The student model: As discussed in Sec 4.1, the proposed MUSTNet is also
suitable for student network by using one coefficient decoder. Compared with
baseline, it provides an elegant way to adaptively learn feature channels and
perform high quality predictions by dividing the single channel output into depth
bases. As shown in L5-6 in Table 3, the results of a MUSTNet student are much
better than the results of a Baseline student.
Ablation study for the Adaptive Co-teaching scheme. In this part we
conduct 4 different training schemes on the MUSTNet to compare our adaptive
co-teaching framework with the conventional unsupervised method and other
distillation methods[27,31]. The results can be seen in L6-9 in Table 3.

Distill with a single teacher: L6 represents that we train only one teacher
model for distillation. It is a straight forward distillation method, which is used in
[27]. However, the improvement over the unsupervised baseline (L3) is marginal.
The student just try to regress to pseudo labels of the teacher and can not learn
more robust feature representations resulting in sub-optimal solutions.

Distill with teacher ensemble: Then we use the method provided by [31]
to distill the student, shown in L7. Specifically, we train N randomly initialized
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Model P-Cons. D-Cons. AS. TS. NT. T-Model. PM.
Error ↓ Accuracy ↑

AbsRel RMSE δ < 1.25

Baseline ✓ 1 0.113 4.795 0.880

†+BD ✓ 1 0.112 4.808 0.881
MUSTNet ✓ 1 0.109 4.656 0.883
Baseline ✓ 2 1 Baseline 1× 0.113 4.801 0.879
Baseline ✓ 2 1 MUSTNet 1× 0.112 4.744 0.882
MUSTNet ✓ 2 1 MUSTNet 1× 0.110 4.718 0.883
MUSTNet ✓ 2 4 MUSTNet 4× 0.108 4.622 0.885
MUSTNet ✓ ✓ 2 4 MUSTNet 1× 0.108 4.574 0.886

MUSTNet ✓ ✓ ✓ 2 4 MUSTNet 1× 0.106 4.562 0.888

Table 3. Ablation study of the Adaptive Co-teaching Framework. P-Cons
denotes photometric constraint. D-Cons denotes distillation constraint with depth
pseudo labels generated by T-Model. AS denotes adaptively switch between su-
pervisions. TS denotes the total training stages. NT denotes number of teachers.
PM denotes the teacher has N× parameters of the student network. Results for
different variants of our method are trianed at 192× 640.

network with the same architecture (baseline) and obtain empirical mean as the
pseudo depth. The parameters of this bootstrapped ensemble architecture is N
times of our compact ensemble, while the performance gain is still marginal.

Distill with our adaptive co− teaching framework: The teacher ensemble
can be easily acquired by training a MUSTNet with a basis decoder and N co-
efficient decoders. We distill the student model with both photometric loss and
pseudo label constraint, shown in L8. Then we further add the selective masks
for the final cost-aware co-teaching loss, shown in L9. Compared with other dis-
tillation methods, the performance gain brought by our framework is significant
with much lighter teacher ensemble and much simpler training process.

Visualized comparison. For the sake of the pages limit, we report more visual-
ized comparisons in the supplementary material. Specifically, i) the visualization
of the depth bases. ii) the comparison of the outputs of the teacher ensemble
and student model. iii) more quantitative and qualitative results.

5.4 Extension of our work

While our method significantly improves the performance of our proposed model,
it also retains the advantages of being integrated into other models with two
simple modifications: (i) replace the single stream depth decoder with our multi-
stream decoder format, and (ii) distill a dual-stream student model leveraging
our adaptive co-teaching scheme.

We conduct experiments on one famous unsupervised method [15], and the
quantitative results can be seen in Table 4. More details of this experiment are
presented in our supplementary materials. Our framework improve the AbsRel
from 0.115 to 0.103 at high resolution, which further verifies our contribution.
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Methods Sup. TS.
Error metric↓ Accuracy metric↑

AbsRel SqRel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

1
9
2
*
6
4
0 MD2[15] P 1 0.115 0.903 4.863 0.193 0.877 0.959 0.981

Dual-stream P 1 0.111 0.829 4.782 0.189 0.878 0.960 0.982
Dual-stream A 2 0.108 0.795 4.649 0.185 0.885 0.962 0.983

3
2
0
*
1
0
2
4 MD2[15] P 1 0.115 0.882 4.701 0.190 0.879 0.961 0.982

Dual-stream P 1 0.108 0.818 4.591 0.185 0.890 0.963 0.982
Dual-stream A 2 0.103 0.745 4.451 0.180 0.894 0.965 0.983

Table 4. Quantitative results on [13]. P denotes photometric constraint. TS
denotes the total training stages. A represents our adaptive co-teaching scheme.

5.5 Discussion

Dynamic Mask. The cost volume based masking mechanism essentially follows
the static scene assumption. It fails to mask out the dynamic parts. To solve this
problem, we further conduct an extensive experiment to mask out those dynamic
parts with the help of additional optical flow information generated by [34]. The
detailed ablation study is shown in our supplementary material.
Moving object.Despite good performance achieved by our adaptive co-teaching
framework, one limitation appears on the moving objects that keep station rel-
ative to the camera. We have considered to mask out potential dynamic regions
leveraging additional optical flow information. However, our framework essen-
tially follows the static scene assumption which makes it fails to distinguish rela-
tive station parts and infinity. We support that, under the unsupervised learning
pipeline, additional semantic guidance is essential to cope with this situation.
Video inference. Another limitation appears on the scale inconsistency of video
inferring. For the lack of pose ground truth, the scene scale keeps unknown. We
tried to train our network in a scale consistent manner leveraging the geometric
loss proposed in [43]. However, the joint depth-pose learning process is affected
for it enforcing a consistent scale across all images.

6 Conclusion

The core design of our work is an adaptive co-teaching framework, which aims
to solve the problem of training ambiguity and sub-optimal convergence for
unsupervised depth estimation. We first design a compact ensemble architecture,
namely MUlti-STream ensemble network, integrating a depth basis decoder with
multiple depth coefficient decoders. Meanwhile, we propose a cost-aware co-
teaching loss to transfer the learned knowledge from the teacher ensemble to
a student network. As verified in our experiment, training the student network
under our framework can circumvent the unstable issue of unsupervised learning.
Our method sets new state-of-the-art on both KITTI and Nuscenes datasets.
Acknowledgements This research is supported by National Natural Science
Foundation of China (61906031, 62172070, U1903215, 6182910), and Fundamen-
tal Research Funds for Central Universities (DUT21RC(3)025).



Adaptive Co-Teaching for Unsupervised Monocular Depth Estimation 15

References

1. Bian, J., Li, Z., Wang, N., Zhan, H., Shen, C., Cheng, M.M., Reid, I.: Unsupervised
scale-consistent depth and ego-motion learning from monocular video. Advances
in neural information processing systems 32, 35–45 (2019)

2. Bloesch, M., Czarnowski, J., Clark, R., Leutenegger, S., Davison, A.J.:
Codeslam—learning a compact, optimisable representation for dense visual slam.
In: Proceedings of the IEEE conference on computer vision and pattern recogni-
tion. pp. 2560–2568 (2018)

3. Bucila, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing(KDD’06) (2006)

4. Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan, A.,
Pan, Y., Baldan, G., Beijbom, O.: nuscenes: A multimodal dataset for autonomous
driving. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. pp. 11621–11631 (2020)

5. Casser, V., Pirk, S., Mahjourian, R., Angelova, A.: Depth prediction without the
sensors: Leveraging structure for unsupervised learning from monocular videos. In:
Proceedings of the AAAI conference on artificial intelligence. vol. 33, pp. 8001–8008
(2019)

6. Chen, G., Choi, W., Yu, X., Han, T., Chandraker, M.: Learning efficient object
detection models with knowledge distillation. Advances in neural information pro-
cessing systems 30 (2017)

7. Choi, J., Jung, D., Lee, D., Kim, C.: Safenet: Self-supervised monocular depth
estimation with semantic-aware feature extraction. In: Thirty-fourth Conference
on Neural Information Processing Systems, NIPS 2020. NeurIPS (2020)

8. Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with
a common multi-scale convolutional architecture. In: Proceedings of the IEEE in-
ternational conference on computer vision. pp. 2650–2658 (2015)

9. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image
using a multi-scale deep network. In: 28th Annual Conference on Neural Infor-
mation Processing Systems 2014, NIPS 2014. pp. 2366–2374. Neural information
processing systems foundation (2014)

10. Fan, H., Hao, S., Guibas, L.: A point set generation network for 3d object recon-
struction from a single image. 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2017)

11. Fang, J., Liu, G.: Self-supervised learning of depth and ego-motion from video
by alternative training and geometric constraints from 3d to 2d. arXiv preprint
arXiv:2108.01980 (2021)

12. Garg, R., Bg, V.K., Carneiro, G., Reid, I.: Unsupervised cnn for single view depth
estimation: Geometry to the rescue. In: European conference on computer vision.
pp. 740–756. Springer (2016)

13. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti
vision benchmark suite. In: 2012 IEEE conference on computer vision and pattern
recognition. pp. 3354–3361. IEEE (2012)

14. Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth es-
timation with left-right consistency. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 270–279 (2017)

15. Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-
supervised monocular depth estimation. In: Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision. pp. 3828–3838 (2019)



16 W.Ren, L.Wang et al.

16. Guizilini, V., Ambrus, R., Pillai, S., Raventos, A., Gaidon, A.: 3d packing for
self-supervised monocular depth estimation. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 2485–2494 (2020)

17. Guizilini, V., Hou, R., Li, J., Ambrus, R., Gaidon, A.: Semantically-guided repre-
sentation learning for self-supervised monocular depth. In: International Confer-
ence on Learning Representations (2019)

18. Gupta, S., Hoffman, J., Malik, J.: Cross modal distillation for supervision transfer.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 2827–2836 (2016)

19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

20. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015)

21. Janai, J., Guney, F., Ranjan, A., Black, M., Geiger, A.: Unsupervised learning of
multi-frame optical flow with occlusions. In: Proceedings of the European Confer-
ence on Computer Vision (ECCV). pp. 690–706 (2018)

22. Johnston, A., Carneiro, G.: Self-supervised monocular trained depth estimation
using self-attention and discrete disparity volume. In: Proceedings of the ieee/cvf
conference on computer vision and pattern recognition. pp. 4756–4765 (2020)

23. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

24. Lee, S., Im, S., Lin, S., Kweon, I.S.: Learning monocular depth in dynamic scenes
via instance-aware projection consistency. In: Proceedings of the AAAI Conference
on Artificial Intelligence. vol. 35, pp. 1863–1872 (2021)

25. Li, S., Wu, X., Cao, Y., Zha, H.: Generalizing to the open world: Deep visual
odometry with online adaptation. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 13184–13193 (2021)

26. Li, Y., Yang, J., Song, Y., Cao, L., Li, L.J.: Learning from noisy labels with distil-
lation. In: 2017 IEEE International Conference on Computer Vision (ICCV) (2017)

27. Lyu, X., Liu, L., Wang, M., Kong, X., Liu, L., Liu, Y., Chen, X., Yuan, Y.:
Hr-depth: high resolution self-supervised monocular depth estimation. CoRR
abs/2012.07356 (2020)

28. Peng, R., Wang, R., Lai, Y., Tang, L., Cai, Y.: Excavating the potential capacity
of self-supervised monocular depth estimation. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 15560–15569 (2021)

29. Pilzer, A., Lathuilière, S., Sebe, N., Ricci, E.: Refine and distill: Exploiting cycle-
inconsistency and knowledge distillation for unsupervised monocular depth estima-
tion. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2020)

30. Pilzer, A., Xu, D., Puscas, M., Ricci, E., Sebe, N.: Unsupervised adversarial depth
estimation using cycled generative networks. In: 2018 International Conference on
3D Vision (3DV). pp. 587–595. IEEE (2018)

31. Poggi, M., Aleotti, F., Tosi, F., Mattoccia, S.: On the uncertainty of self-supervised
monocular depth estimation. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 3227–3237 (2020)

32. Prucksakorn, T., Jeong, S., Chong, N.Y.: A self-trainable depth perception method
from eye pursuit and motion parallax. Robotics and Autonomous Systems 109,
27–37 (2018)



Adaptive Co-Teaching for Unsupervised Monocular Depth Estimation 17

33. Shu, C., Yu, K., Duan, Z., Yang, K.: Feature-metric loss for self-supervised learning
of depth and egomotion. In: European Conference on Computer Vision. pp. 572–
588. Springer (2020)

34. Teed, Z., Deng, J.: Raft: Recurrent all-pairs field transforms for optical flow. In:
European conference on computer vision. pp. 402–419. Springer (2020)

35. Wagstaff, B., Peretroukhin, V., Kelly, J.: Self-supervised structure-from-
motion through tightly-coupled depth and egomotion networks. arXiv preprint
arXiv:2106.04007 (2021)

36. Wang, L., Wang, Y., Wang, L., Zhan, Y., Wang, Y., Lu, H.: Can scale-consistent
monocular depth be learned in a self-supervised scale-invariant manner? In: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision. pp.
12727–12736 (2021)

37. Watson, J., Mac Aodha, O., Prisacariu, V., Brostow, G., Firman, M.: The temporal
opportunist: Self-supervised multi-frame monocular depth. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1164–
1174 (2021)

38. Yang, J., Alvarez, J.M., Liu, M.: Self-supervised learning of depth inference for
multi-view stereo. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 7526–7534 (2021)

39. Yang, J., Mao, W., Alvarez, J.M., Liu, M.: Cost volume pyramid based depth
inference for multi-view stereo. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 4877–4886 (2020)

40. Yin, Z., Shi, J.: Geonet: Unsupervised learning of dense depth, optical flow and
camera pose. In: Proceedings of the IEEE conference on computer vision and pat-
tern recognition. pp. 1983–1992 (2018)

41. Zhao, W., Liu, S., Shu, Y., Liu, Y.J.: Towards better generalization: Joint depth-
pose learning without posenet. In: 2020 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR) (2020)

42. Zhou, J., Wang, Y., Qin, K., Zeng, W.: Unsupervised high-resolution depth learning
from videos with dual networks. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 6872–6881 (2019)

43. Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth
and ego-motion from video. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2017)


	Adaptive Co-Teaching for Unsupervised Monocular Depth Estimation

