
Fusing Local Similarities for Retrieval-based 3D
Orientation Estimation of Unseen Objects

Chen Zhao1, Yinlin Hu1,2, and Mathieu Salzmann1,2

1CVLab EPFL, 2ClearSpace SA
{chen.zhao, yinlin.hu, mathieu.salzmann}@epfl.ch

1 Network Architecture

Fig. 1 illustrates the network architectures of our multi-scale feature extraction
module and adaptive fusion module. The multi-scale feature extraction module
generates three feature maps of different sizes by default, i.e., F1 ∈ R13×13×128,
F2 ∈ R16×16×128, and F3 ∈ R32×32×128. Given a pair of source image and refer-
ence image, the corresponding feature maps are paired to compute F∗

1, F
∗
2, and

F∗
3, respectively. The local similarities are then adaptively fused into an image

similarity score via our adaptive fusion module. Every convolution layer (conv)
and fully connected layer (FC) is followed by ReLU, except for the ones in grey.

2 Canonical Frame

Fig. 2 shows the importance of a canonical frame to the 3D object orientation
estimation. Specifically, the expected Rsrc is the relative rotation between the
camera frame and the object frame. Since the object can be placed in the real
world with arbitrary poses, multiple possible object frames could exist. These
object frames correspond to different relative rotations. Therefore, Rsrc is ill-
defined without a canonical frame. To address this issue, one could define a
common canonical frame for all objects, but the shape variation among different
objects makes this definition unreasonable. Consequently, we assume the 3D
object models to be known in our experiments, which are employed to define
the canonical frames dependently. Holding this assumption, we also use the 3D
models to generate synthetic reference images for our retrieval-based 3D object
orientation estimation.

3 Experimental Setup

Table 1 shows the data splitting of LineMOD and LineMOD-O. The cropped
data are assigned to three different groups according to the depicted objects.

Recall that the reference images are generated by rendering the corresponding
3D object model with different 3D orientation. The 3D orientation is formalized
as a 3D rotation matrix. In our experiments, the 3D rotation matrix is randomly
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(a) Multi-Scale Feature Extraction
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(b) Adaptive Fusion

Fig. 1. Network Architecture. F1, F2, and F3 indicate the three feature maps used
to estimate local similarities. The estimator is used for the confidence map estimation.

Table 1. Data splitting of LineMOD and LineMOD-O.

Dataset Split #1 Split #2 Split #3

LineMOD
ape, benchvise cat, driller glue, holepuncher
camera, can duck, eggbox iron, lamp, phone

LineMOD-O ape, can cat, driller, duck eggbox, glue, holepuncher

sampled, using the 6D representation [9]. Fig. 3 illustrates the distribution of the
sampled 3D rotation matrices, which is visualized by using t-SNE [5]. Compared
with the samples using the representation of Euler angles [7] (Fig. 3(b)), the
ones based on the 6D representation (Fig. 3(a)) are scattered in the sample
space more evenly.
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Fig. 2. Importance of a canonical frame. Different object frames correspond to
different relative 3D rotations, which makes the 3D object orientation in the camera
frame ill-defined. A canonical frame is required to uniquely define Rsrc.

(a) 6D representation (b) Euler angle

Fig. 3. Distribution of the sampled 3D rotation matrices. The 3D object ori-
entation (3D rotation matrix) of the reference images is sampled using 6D represen-
tation [9] (a) and Euler angles [7] (b), respectively. The distribution is visualized by
using t-SNE [5].

4 Qualitative Results

Fig. 4 shows some qualitative results in the presence of unseen objects on
LineMOD and LineMOD-O. The images in the leftmost column are the real
source images and the ones in the rightmost column are the most similar syn-
thetic references. The other images are the retrieved results of the evaluated
methods. One can observe that given some unseen objects, the previous ap-
proaches either select wrong objects or pick up the correct objects but with
incorrect 3D orientation. By contract, our method is capable of robustly retriev-
ing the reference similar to the source image, and thus ensures the 3D orientation
estimation accuracy for unseen objects.
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Source Ours GTHOG LD NetVLAD MPE
(a) LineMOD

Source Ours GTHOG LD NetVLAD MPE
(b) LineMOD-O

Fig. 4. Qualitative Results in the presence of unseen objects.
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Table 2. Rota. Acc. (%) on LineMOD [4] in the case of unseen objects.

Split #1 Split #2 Split #3 Mean

HOG [3] 71.43 66.24 53.75 63.81
LD [8] 14.39 19.46 13.32 15.72
NetVLAD [1] 42.84 38.04 41.31 40.73
MPE [6] 53.15 44.77 67.76 55.23
Ours 90.37 82.00 79.17 83.85

Table 3. Rota. Acc. (%) on LineMOD-O [2] in the case of unseen objects.

Split #1 Split #2 Split #3 Mean

HOG [3] 34.51 34.92 28.01 32.48
LD [8] 7.85 4.30 6.98 6.38
NetVLAD [1] 37.33 24.31 23.37 28.34
MPE [6] 27.81 7.52 21.40 18.91
Ours 64.43 54.69 39.64 52.92

5 Quantitative Results

In the main paper, we assume that the object category is unknown on LineMOD
and LineMOD-O, and the evaluated methods are used to both classify the object
and estimate its 3D orientation. Therefore, the 3D object orientation estimation
accuracy is related to the object classification accuracy (please refer to Eq. 9
in our main paper). To further evaluate the unseen-object generalization in the
context of pure 3D object orientation estimation, we conduct another experiment
on LineMOD and LineMOD-O, assuming the object category is known. In this
case, Rota. Acc. is computed as

Rota. Acc. =

{
1 if d(R̂ref ,Rsrc) < λ
0 otherwise

. (1)

We report Rota. Acc. (%) for unseen objects in Table 2 and Table 3. As this
benchmark is less challenging, all methods yield better results compared with
the ones reported in Sec. 4.3 of the main paper. In this context, our method
still surpasses the competitors by a significantly large margin. This observation
indicates the better distinctiveness of our method towards the 3D orientation of
unseen objects. The superior results on LineMOD-O also evidence the robustness
of our method to occlusions.

6 Failure Cases

Fig. 6 illustrates some failure cases of our method on LineMOD. One can observe
that there is a flipping issue in these cases. Taking the benchvise as an exam-
ple, it is difficult to distinguish between our result and the ground-truth one,
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Source Ours GT

Fig. 5. Failure cases on LineMOD [4] in the presence of unseen objects.

which makes this problem challenging. To address this issue, the network should
be able to extract fine-grained information. Ideally, our patch-level solution is
more capable of capturing such information than image-level one. Therefore, in
our future work, we plan to utilize hard example mining over the patch-level
comparison to make our method pay more attention to fine-grained differences.
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