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Abstract. In this paper, we tackle the task of estimating the 3D ori-
entation of previously-unseen objects from monocular images. This task
contrasts with the one considered by most existing deep learning meth-
ods which typically assume that the testing objects have been observed
during training. To handle the unseen objects, we follow a retrieval-based
strategy and prevent the network from learning object-specific features
by computing multi-scale local similarities between the query image and
synthetically-generated reference images. We then introduce an adap-
tive fusion module that robustly aggregates the local similarities into a
global similarity score of pairwise images. Furthermore, we speed up the
retrieval process by developing a fast retrieval strategy. Our experiments
on the LineMOD, LineMOD-Occluded, and T-LESS datasets show that
our method yields a significantly better generalization to unseen objects
than previous works. Our code and pre-trained models are available at
https://sailor-z.github.io/projects/Unseen_Object_Pose.html.
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1 Introduction

Estimating the 3D orientation of objects from an image is pivotal to many com-
puter vision and robotics tasks, such as robotic manipulation [7,41,29], aug-
mented reality, and autonomous driving [11,6,39,22]. Motivated by the tremen-
dous success of deep learning, much effort [36,24,32] has been dedicated to de-
veloping deep networks able to recognize the objects depicted in the input image
and estimate their 3D orientation. To achieve this, most learning-based meth-
ods assume that the training data and testing data contain exactly the same
objects [16,33] or similar objects from the same category [34,21]. However, this
assumption is often violated in real-world applications, such as robotic manip-
ulation, where one would typically like the robotic arm to be able to handle
previously-unseen objects without having to re-train the network for them.

In this paper, as illustrated in Fig. 1, we tackle the task of 3D orientation
estimation for previously-unseen objects. Specifically, we develop a deep network
that can be trained on a limited number of objects, and yet remains effective
when tested on novel objects that drastically differ from the training ones in
terms of both appearance and shape. To handle such previously-unseen objects,

https://sailor-z.github.io/projects/Unseen_Object_Pose.html
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Fig. 1. 3D orientation estimation for unseen objects. The network is trained on
a limited number of objects and tested on unseen (new) objects that fundamentally
differ from the training ones in shape and appearance. The goal is to predict both the
category and the 3D orientation of these unseen objects.

we cast the task of 3D orientation estimation as an image retrieval problem.
We first create a database of synthetic images depicting objects in different
orientations. Then, given a real query image of an object, we search for the most
similar reference image in the database, which thus indicates both the category
and 3D orientation of this object.

Intuitively, image retrieval methods [35] offer a promising potential for gen-
eralization, because they learn the relative similarity of pairwise images, which
can be determined without being aware of the object category. However, most
previous works [35,28,1,30,37] that follow this approach exploit a global image
representation to measure image similarity, ignoring the risk that a global de-
scriptor may integrate high-level semantic information coupled with the object
category, which could affect the generalization ability to unseen objects. To ad-
dress this problem, our approach relies on the similarities of local patterns, which
are independent to the object category and then facilitate the generalization to
new objects. Specifically, we follow a multi-scale strategy and extract feature
maps of different sizes from the input image. To facilitate the image comparison
process, we then introduce a similarity fusion module, adaptively aggregating
multiple local similarity scores into a single one that represents the similarity
between two images. To further account for the computational complexity of the
resulting multi-scale local comparisons, we design a fast retrieval strategy.

We conduct experiments on three public datasets, LineMOD [13], LineMOD-
Occluded (LineMOD-O) [3], and T-LESS [14], comparing our method with both
hand-crafted [8] and deep learning [35,1,38,27] approaches. Our empirical results
evidence the superior generalization ability of our method to previously-unseen
objects. Furthermore, we perform ablation studies to shed more light on the
effectiveness of each component in our method. Our contributions can be sum-
marized as follows:

– We estimate the 3D orientation of previously-unseen objects by introducing
an image retrieval framework based on multi-scale local similarities.

– We develop a similarity fusion module, robustly predicting an image simi-
larity score from multi-scale pairwise feature maps.
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– We design a fast retrieval strategy that achieves a good trade-off between
the 3D orientation estimation accuracy and efficiency.

2 Related Work

Object Pose Estimation. In recent years, deep learning has been dominating
the field of object pose estimation. For instance, PoseCNN [36] relies on two
branches to directly predict the object orientation as a quaternion, and the 2D
location of the object center, respectively. PVNet [24] estimates the 2D projec-
tions of 3D points using a voting network. The object pose is then recovered by
using a PnP algorithm [10] over the predict 2D-3D correspondences. DenseFu-
sion [32] fuses 2D and 3D features extracted from RGB-D data, from which it
predicts the object pose. GDR-Net [33] predicts a dense correspondence map,
acting as input to a Patch-PnP module that recovers the object pose. These deep
learning methods have achieved outstanding pose estimation accuracy when the
training and testing data contain the same object instances [9]. However, the
patterns they learn from the input images are instance specific, and these meth-
ods cannot generalize to unseen objects [23].

Category-Level Object Pose Estimation. Some methods nonetheless loosen
the constraint of observing the same object instances at training and testing time
by performing category-level object pose estimation [34,5,31,18]. These methods
assume that the training data contain instances belonging to a set of categories,
and new instances from these categories are observed during testing. In this con-
text, a normalized object coordinate space (NOCS) is typically used [34,18], pro-
viding a canonical representation shared by different instances within the same
category. The object pose is obtained by combining the NOCS maps, instance
masks, and depth values. These methods rely on the intuition that the shapes
of different instances in the same category are similar, and then the patterns
learned from the training data can generalize to new instances in the testing
phase. As such, these methods still struggle in the presence of testing objects
from entirely new categories. Furthermore, all of these techniques require depth
information as input. By contrast, our method relies only on RGB images, and
yet can handle unseen objects from new categories at testing time.

Unseen Object Pose Estimation. A few attempts at predicting the pose of
unseen objects have been made in the literature. In particular, LatentFusion [23]
introduces a latent 3D representation and optimizes an object’s pose by differen-
tiable rendering. DeepIM [19] presents an iterative framework, using a matching
network to optimize an initial object pose. Both of these methods require an
initial pose estimate, which is typically hard to obtain for unseen objects. Fur-
thermore, the pose estimation step in LatentFusion leverages depth information.
Since estimating the full 6D pose of an unseen object from a single RGB image
is highly challenging, several works suggest simplifying this problem by focusing
on estimating the 3D object orientation [35,2,28,38,37]. These methods utilize
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Fig. 2. Difference between previous works and our method. (a) Existing works
convert images into global descriptors that are used to compute a similarity score
for retrieval. (b) Our method compares images using local similarities between the
corresponding elements in feature maps, and adaptively fuses these local similarities
into a single one that indicates the similarity of two images.

the 3D object model to generate multi-view references, which are then combined
with the real image to either perform template matching [35,2,28,27,37] or di-
rectly regress the 3D orientation [38]. However, they propose to learn a global
representation from an image, in which the high-level semantic information is
correlated to the object and then limits the generalization to unseen objects. In
this paper, we also focus on 3D orientation estimation of unseen objects, but
handle this problem via a multi-scale local similarity learning network.

3 Method

3.1 Problem Formulation

Let us assume to be given a set of training objects Otrain belonging to different
categories Ctrain.1 As depicted by Fig. 1, we aim to train a model that can
predict the 3D orientation of new objects Otest, Otest∩Otrain = ∅, from entirely
new categories Ctest, Ctest ∩ Ctrain = ∅. Specifically, given an RGB image Isrc
containing an object Osrc ∈ Otest, our goal is to both recognize the object
category Csrc and estimate the object’s 3D orientation, expressed as a rotation
matrix Rsrc ∈ R3×3. We tackle this dual problem as an image retrieval task.
For each Oi

src ∈ (Otrain ∪ Otest), we generate references Ii
ref with different 3D

orientations by rendering the corresponding 3D model Mi. We then seek to pick
Îref ∈ {I1

ref ∪I2
ref · · ·∪IN

ref} that is the most similar to Isrc. The category label
Csrc and 3D orientationRsrc of Osrc are then taken as those of the corresponding
Ôref .

3.2 Motivation

As illustrated in Fig. 2(a), the existing retrieval-based 3D orientation estimation
methods [35,28,37] convert an image into a global descriptor. Retrieval is then

1 In our scenario, and in contrast to category-level pose estimation, each object in-
stance corresponds to its own category.
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Fig. 3. Network architecture. We extract multi-scale features from a locally-
normalized image. We then compute local similarities at each scale between the features
of the source image and those of a reference one, and adaptively fuse them into a global
similarity score.

performed by computing the similarity between pairs of descriptors. As a con-
sequence, the deep network that extracts the global descriptor typically learns
to encode object-specific semantic information in the descriptor, which results
in a limited generalization ability to unseen objects. By contrast, we propose
to compare images via local patch descriptors, in which it is harder to encode
high-level semantic information thus encouraging the network to focus on lo-
cal geometric attributes. As shown in Fig. 2(b), we estimate local similarities
between the corresponding elements in source and reference feature maps. Fur-
thermore, to enforce robustness to noise, such as background, we introduce an
adaptive fusion module capable of robustly predicting an image similarity score
from the local ones.

3.3 Multi-scale Patch-level Image Comparison

As the source image is real but the reference ones are synthetic with discretely
sampled 3D orientation, the appearance and shape variations are inevitable even
for the most similar reference. Moreover, the background included in the source
image, but absent from the reference ones, typically interferes with our patch-
level comparisons. In practice, we have observed that small patches could be
too sensitive to appearance and shape variations, while large patches tend to
be affected by the background. Finding a single effective patch size balancing
robustness to the domain gap and to the background therefore is challenging.

To address this issue, we introduce a multi-scale feature extraction module.
As shown in Fig. 3, our network takes a grey-scale image I ∈ R128×128 as input,
which shows better robustness than color images in practice. Subsequently, we
employ a series of ResNet layers [12], estimating a down-sampled feature map
F ∈ R13×13×C . We compute multi-scale feature representations by progressively
up-sampling F using deconvolution layers [20] and bilinear interpolation. We
also utilize skip connections [26] to better preserve the geometric information.
The elements in the generated multi-scale feature maps then encode patches of
different sizes in I, which enables multi-scale patch-level image comparison.
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To perform image retrieval, one nonetheless needs to compute a single simi-
larity score for a pair of images. To this end, we compare the pairwise multi-scale
feature maps and fuse the resulting local similarities into a single score expressed
as

s = f(g(F1
src,F

1
ref ), g(F

2
src,F

2
ref ), · · · , g(FS

src,F
S
ref )), (1)

where Fsrc and Fref represent the feature maps of Isrc and Iref , respectively,
and S denotes the number of scales. A straightforward solution to estimate s is
to compute the per-element cosine similarity for all pairs (Fi

src,F
i
ref ), with i ∈

{1, 2, · · · , S}, and average the resulting local similarities. However, this strategy
would not be robust to outlier patches, such as those dominated by background
content. Therefore, we introduce an adaptive fusion strategy illustrated in the
right part of Fig. 3. Following the same formalism as above, it computes an
image similarity score as

s = f(cat [g(F∗
i ⊙wi)] , ψ), i ∈ {1, 2, · · · , S}, (2)

where cat indicates the concatenation process, g : RH×W×C → RC denotes the
summation over the spatial dimensions, F∗

i represents the local similarities ob-
tained by computing the cosine similarities between the corresponding elements
in Fi

src and Fi
ref , ⊙ indicates the Hadamard product, and ψ represents the

learnable parameters of the fully connected layers (FCs) f(·). The weights wi

encode a confidence map over F∗
i to account for outliers, and are computed as

wi =
exp(h(F∗

i , ω))⊙ sigmoid(q(F∗
i , θ))∑

exp(h(F∗
i , ω))⊙ sigmoid(q(F∗

i , θ))
, (3)

where ω and θ are learnable parameters of the convolutional layers h(·) and
q(·), respectively. This formulation accounts for both the individual confidence
of each element in F∗

i via the sigmoid function, and the relative confidence w.r.t.
all elements jointly via the softmax-liked function. As such, it models both the
local and global context of F∗

i , aiming to decrease the confidence of the outliers
while increases that of the inliers. Our experimental results in Section 4.5 show
that our adaptive fusion yields better results than the straightforward averaging
process described above, even when trained in an unsupervised manner.

To further reduce the effects of object-related patterns in local regions and
synthetic-to-real domain gap, we pre-process I via a local normalization. Each
pixel pij in the normalized image is computed as

pij =
pij − µ

σ
, (4)

where pij is the corresponding pixel in I, and

µ =
1

r2

∑
i′ ,j′

pi′ j′ , σ =

√√√√ 1

r2

∑
i′ ,j′

(pi′ j′ − µ)
2
, (5)

with i
′ ∈ [i± r/2], j

′ ∈ [j ± r/2], and r denoting the window size.
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Fig. 4. Fast retrieval. The location of the source image in the reference database is
initialized by comparing the source image with a set of anchors. Îref is dynamically
updated based on the similarity scores of the references within a local region around
the current Îref estimate.

3.4 Fast Retrieval

Although the proposed patch-level image comparison integrates more local geo-
metric information than the image-level methods [35,28], and as will be shown
by our experiments thus yields better generalization to unseen objects, it suffers
from a high retrieval time. Indeed, a näıve image retrieval strategy compares Isrc
with every reference in the database. Given N objects with R reference images
each, the cost of O(NR) quickly becomes unaffordable as N and R increase. This
could be remedied by parallel computing, but at the cost of increasing memory
consumption. Here, we therefore introduce a fast retrieval method that balances
effectiveness and efficiency.

As illustrated in Fig. 4, instead of comparing Isrc with all the references one-
by-one, we first roughly locate Isrc in the reference database and then iteratively
refine this initial location. Our method is summarized in Algorithm 1. We omit
some subscripts for convenience. Specifically, for each object, we first sample kac
anchors from Iref using farthest point sampling (FPS), which leads to a good
coverage [25] of Iref . This is done using the geodesic distance of the correspond-
ing 3D rotation matrices as a metric in FPS. The anchor with the largest score s
computed from Eq. 2 is taken as the initial point Îref . Subsequently, we perform
retrieval using the method described in Section 3.3 within a local region centered
at the current Îref , and update Îref based on the similarity scores. Such updates
are performed until convergence.

The straightforward application of this strategy would be prone to local op-
tima. Intuitively, this can be addressed by increasing the size of the local region,
but this would come at a higher computational cost. Therefore, we determine
a search space and further make use of FPS to select anchors within the space,
because FPS covers a larger region than KNN with the same number of samples.
At each iteration, we decrease the radius of the search space to further improve
efficiency.
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Algorithm 1: Fast Retrieval

Input: Isrc, Iref , Rref = {R1,R2, · · · ,RR}, kac, R
Output: Îref , Rsrc

1 Sample kac anchors from Iref using FPS;
2 Estimate similarities using Eq. 2;

3 Initialize Îref as the most similar anchor;
4 j = 1;
5 repeat

6 Define a search space around Îref with a radius of ⌊R/2j⌋;
7 Compute anchors using FPS;
8 Estimate similarities using Eq. 2;

9 Update Îref ;
10 j++;

11 until Îref converges;

12 Determine Rsrc as R̂ref ∈ Rref .

3.5 Training and Testing

In the training stage, we follow the infoNCE contrastive learning formalism [4].
We associate each training sample (source image) in a mini-batch with its closest
reference to form a positive pair. To better cover the entire training set, we also
group each positive pair with a random sample, leading to a triplet. Note that
in the standard infoNCE loss [4] for contrastive learning, all samples except
for the most similar one are treated as negative. In our context, all reference
images would be penalized equally, except for the one from the same category
and with the closest 3D orientation. Their 3D orientation difference is thus not
differentiated. To better account for the continuous nature of the 3D orientation
difference and avoid over-penalizing some references, we introduce a weighted-
infoNCE loss

ℓij = −log
exp(sij/τ) · wij∑3B

k=1 exp(sik/τ) · wik

, (6)

where sij is the similarity score of the positive pair (Ii, Ij), τ = 0.1 denotes a
temperature parameter [4], B is the size of a mini-batch, and wij (and similarly
wik) represents a weight computed as

wij =

{
arccos(

tr(RT
i Rj)−1
2 )/π if Cj = Ci

1 else
. (7)

In the testing phase, we store the features of the reference images and sample
the initial anchors offline; we recognize the object categories and predict the 3D
orientation online. More specifically, we first compare Isrc with kac anchors for
each Ii

ref , and take Csrc to be the category of the anchor with the largest simi-
larity score. This process reduces the complexity of object category recognition
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from O(NR) to O(Nkac). Subsequently, we restrict the search for Îref in our
fast retrieval process to the references depicting the recognized object. Rsrc is
finally taken as the corresponding rotation matrix R̂ref .

4 Experiments

4.1 Implementation Details

In our experiments, we set the window size for local normalization and the
number of anchors for fast retrieval to r = 32 and kac = 1024, respectively. We
train our network for 200 epochs using the Adam [17] optimizer with a batch
size of 16 and a learning rate of 10−4, which is divided by 10 after 50 and 150
epochs. Training takes around 20 hours on a single NVIDIA Tesla V100.

4.2 Experimental Setup

Following the standard setting [35,28,38,27], we assume to have access to 3D
object models, which provide us with canonical frames, without which the object
orientation in the camera frame would be ill-defined. Note that the 3D object
models are also used to generate the reference images. We generate R = 10, 000
reference images for each object by rendering the 3D model with different 3D
orientation. We randomly sampleRref using a 6D continuous representation [40],
which results in better coverage of the orientation space. Following [35,23,27],
we crop the objects from the source images using the provided bounding boxes.

We compare our method with both a hand-crafted approach, i.e., HOG [8],
and deep learning ones, i.e., LD [35], NetVLAD [1], PFS [38], MPE [27], and
GDR-Net [33]. Note that DeepIM [19] and LatentFusion [23] are not evaluated
since DeepIM requires an object pose initialization and LatentFusion needs ad-
ditional depth information. We also exclude [28] because it requires training
a separate autoencoder for every object, and thus cannot be used to estimate
orientation for an unseen object without training a new autoencoder.

4.3 Experiments on LineMOD and LineMOD-O

We first conduct experiments on LineMOD [13] and LineMOD-O [3]. We split
the cropped data into three non-overlapping groups, i.e., Split #1, Split #2, and
Split #3, according to the depicted objects. Deep learning models are trained on
LineMOD and tested on both LineMOD and LineMOD-O. We augment training
data by random occlusions when the evaluation is performed on LineMOD-O.
In the case of unseen objects, we select one of the three groups as the testing
set. We remove all images belonging to this group from training data, which
ensures that no testing objects are observed in the training stage. In the case
of seen objects on LineMOD, we separate 10% from each group of this dataset
for testing. We assume the object category to be unknown during testing, and
therefore employ the evaluated methods to classify the object and then predict
its 3D orientation.
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We thus evaluate the tested methods in terms of both object classification
accuracy and 3D orientation estimation accuracy. These are computed as

Class. Acc. =

{
1 if Ĉref = Csrc

0 otherwise
(8)

and

Rota. Acc. =

{
1 if d(R̂ref ,Rsrc) < λ and Ĉref = Csrc

0 otherwise
, (9)

respectively, with λ = 30◦ a predefined threshold [38] and d(R̂ref ,Rsrc) the
geodesic distance [35] between two rotation matrices. This distance is defined as

d(R̂ref ,Rsrc) = arccos(
tr(RT

srcR̂ref )− 1

2
)/π. (10)

We provide the results for LineMOD and LineMOD-O in Table 1 and Table 2,
respectively. As PFS assumes the object category is known, we only report its 3D
orientation estimation accuracy. We replace the detection module in GDR-Net
with the ground-truth bounding boxes in the presence of unseen objects since this
detector cannot be used to detect unseen objects. Therefore, the classification
accuracy of GDR-Net is not reported in this case. Being a traditional method,
HOG does not differentiate seen and unseen objects, and thus achieves compa-
rable results in both cases. However, its limited accuracy indicates that HOG
suffers from other challenges, such as the appearance difference between real and
synthetic images, and the presence of background and of occlusions. The previ-
ous retrieval-based methods, i.e, LD, NetVLAD, and MPE, achieve remarkable
performance in the case of seen objects, but their accuracy significantly drops in
the presence of unseen ones. This evidences that the global descriptors utilized
in these approaches are capable of encoding 3D orientation information, but the
described patterns are object specific, thus limiting the generalization ability of
these methods to unseen objects. The performance of both PFS and GDR-Net
also drops dramatically in the presence of unseen objects because the features
extracted from 2D observations or 3D shapes remain strongly object dependent.
Our method outperforms the competitors by a considerably large margin in the
case of unseen objects, which demonstrates that the proposed patch-level image
comparison framework generalizes better to unseen objects than previous works.
This is because our use of patch-level similarities makes the network focus on
local geometric attributes instead of high-level semantic information.

4.4 Experiments on T-LESS

To further evaluate the generalization ability to unseen objects, we conduct an
experiment on T-LESS [14]. In this case, all deep learning approaches, including
ours, were trained on LineMOD, and tested on the Primesense test scenes of T-
LESS. As the objects’ appearance and shape in T-LESS are significantly different
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Table 1. Experimental results on LineMOD [13].

Split #1 Split #2 Split #3 Mean
Seen Unseen Seen Unseen Seen Unseen Seen Unseen

C
la
ss
.
A
c
c
.
(%

) HOG [8] 39.57 41.26 30.24 32.65 36.19 35.19 35.33 36.37
LD [35] 99.17 52.53 99.02 47.85 97.94 30.60 98.71 43.66
NetVLAD [1] 100.00 68.36 100.00 52.30 100.00 47.22 100.00 55.96
PFS [38] - - - - - - - -
MPE [27] 98.75 57.25 83.29 69.98 97.73 87.57 93.26 71.60
GDR-Net [33] 100.00 - 100.00 - 100.00 - 100.00 -
Ours 100.00 97.90 99.44 92.47 98.03 88.93 99.16 93.10

R
o
ta

.
A
c
c
.
(%

) HOG [8] 38.89 40.17 28.21 30.74 31.02 28.48 32.71 33.13
LD [35] 94.50 8.63 89.57 12.47 91.47 5.22 91.85 8.77
NetVLAD [1] 100.00 36.11 98.66 20.33 99.35 23.38 99.34 26.61
PFS [38] 100.00 6.31 99.19 6.65 99.46 5.54 99.55 6.17
MPE [27] 91.94 38.96 66.47 41.46 87.72 61.62 82.04 47.35
GDR-Net [33] 99.89 4.61 99.28 4.82 99.31 5.02 99.49 4.82
Ours 97.49 89.55 94.90 79.04 93.67 75.96 95.35 81.52

Table 2. Experimental results on LineMOD-O [3].

Split #1 Split #2 Split #3 Mean
Seen Unseen Seen Unseen Seen Unseen Seen Unseen

C
la
ss
.
A
c
c
.
(%

) HOG [8] 0.60 0.60 0.23 0.23 36.20 36.20 12.34 12.34
LD [35] 80.61 65.72 84.56 58.45 66.94 46.34 77.37 56.84
NetVLAD [1] 85.27 56.46 74.37 47.73 90.33 66.32 83.32 56.84
PFS [38] - - - - - - - -
MPE [27] 83.29 56.07 55.26 45.08 70.72 57.55 69.76 52.90
GDR-Net [33] 84.48 - 83.81 - 89.19 - 85.83 -
Ours 83.22 83.99 78.69 74.42 82.44 75.06 81.45 77.82

R
o
ta

.
A
c
c
.
(%

) HOG [8] 0.60 0.60 0.18 0.18 5.25 5.25 2.01 2.01
LD [35] 32.21 6.25 26.56 3.26 24.57 4.57 27.78 4.69
NetVLAD [1] 51.60 24.32 42.20 18.05 36.56 18.84 43.45 20.40
PFS [38] 71.40 6.25 60.88 13.15 54.67 4.68 62.32 8.73
MPE [27] 40.47 22.56 27.31 5.20 35.06 18.22 34.28 15.33
GDR-Net [33] 63.37 3.12 55.31 2.97 49.91 2.39 56.20 2.83
Ours 64.92 60.75 56.51 52.41 52.47 37.85 57.97 50.34

from the ones in LineMOD, this experiment provides a challenging benchmark to
evaluate generalization. As in [15,28,27], we use errvsd ≤ 0.3 as a metric on this
dataset. Note that we do not use the refinement module in [28,27] since it could
be applied to all evaluated methods and thus is orthogonal to our contributions.
As we concentrate on 3D object orientation estimation, we only consider the
error of rotation matrices when computing errvsd.

The results of all the methods are provided in Table 3. For this dataset, the 3D
orientation estimates of all the previous deep learning methods are less accurate
than those of the traditional approach, i.e., HOG. This shows that the models
pretrained on LineMOD are unreliable when tested on T-LESS. By contrast,
our method outperforms both hand-crafted and deep learning competitors. It
evidences that our method can still effectively estimate 3D orientation for unseen
objects even when the object’s appearance and shape entirely differ from those
in the training data.

4.5 Ablation Studies

Local Comparisons. One of the key differences between our method and exist-
ing works [35,1,27] is our use of the local comparisons during retrieval. Fig. 5(a)
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Table 3. Experimental results on T-LESS [14]. All deep learning methods were
trained on LineMOD and tested on the Primesense test scenes of T-LESS. We use
errvsd ≤ 0.3 as a metric.

Method HOG [8] LD [35] NetVLAD [1] PFS [38] MPE [27] GDR-Net [33] Ours
Rota. Acc. (%) 74.22 24.19 56.46 17.92 66.88 11.89 78.73

17.12

87.54 87.08 87.13 88.06 89.55

(a)

Reference

128 x 128 32 x 32

16 x 16 13 x 13
(b)

Fig. 5. Importance of local comparisons. (a) Results of our method with different
scale configurations on the unseen objects of LineMOD Split #1. “Global” indicates a
baseline that averages the smallest feature map into a global descriptor (R13×13×C →
RC) for retrieval while maintaining the other components, except for the adaptive
fusion, unchanged. (b) Feature maps used for retrieval.

demonstrates the importance of local features in our framework. We start from
a “global” baseline in which we average the smallest feature map along the spa-
tial dimensions to form a global descriptor (R13×13×C → RC), which is used
to compute the cosine similarity for retrieval. We keep the other components
unchanged, except for the adaptive fusion. This baseline shows inferior gener-
alization to unseen objects, while the performance significantly increases when
local features are utilized. This observation indicates the importance of local
comparisons for the unseen-object generalization. Moreover, the combination
of multi-scale features also positively impacts the results, because it yields the
ability to mix local geometric information at different scales, as illustrated by
Fig. 5(b).

Adaptive Fusion. To analyze the importance of the adaptive fusion module in
our method, we introduce the following three baselines. “Avg” consists of replac-
ing the adaptive fusion with a simple averaging process, estimating the image
similarity score by averaging all per-element similarities over the pairs of feature
maps. Furthermore, “Sigmoid” and “Softmax” involve using only the sigmoid
or softmax function in Eq. 3, respectively. As shown in Fig. 6(a), our approach
yields an 8.7% increase in Rota. Acc. over “Avg”, which demonstrates the su-
periority of our adaptive fusion strategy. The reason behind this performance
improvement is that our module assigns different confidence weights to the local
similarities, as illustrated in Fig. 6(b), which makes it possible to distinguish the
useful information from the useless one. Moreover, the performance decreases
(from 89.55% to 88.57% and 89.03%) when separately employing sigmoid and
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Fig. 6. (a) Our adaptive fusion significantly outperforms a simple averaging strategy,
and yields a boost over the “Sigmoid” and “Softmax” alternatives. (b) Confidence
map depicting the weights in Eq. 3 obtained from the feature maps of the source and
reference on the left. Yellow dots indicate local similarities with high confidence.

Table 4. Comparison between the fast retrieval and greedy search. We report
the 3D orientation accuracy and the test time on the unseen objects of LineMOD Split
#1.

Method Fast Retrieval Greedy Search

Rota. Acc. (%) 89.55 95.93
Time (s) 0.42 30.74

softmax functions in Eq. 3, which indicates the effectiveness of combining local
and global context.

Fast Retrieval. We further conduct an experiment comparing the fast retrieval
with a greedy search strategy. The greedy search compares the source image with
every reference in the database during retrieval. To achieve a fair comparison,
we divide all references into different groups with a group size of 1024 and per-
form parallel estimation over the data in each group for the greedy search. As
shown in Table 4, although the greedy search achieves a better 3D orientation
estimation accuracy, the time consumption (30.74s) is not affordable in prac-
tice. Note that LineMOD contains 13 objects and we generate 10, 000 reference
images for each object. Therefore, the image comparison is performed 130, 000
times for each source image in the greedy search, which results in an enormous
time consumption. Note that we could not execute the comparisons w.r.t. all
references in parallel because the NVIDIA Tesla V100 GPU could not store all
the 130, 000× 3 feature maps. By contrast, our fast retrieval algorithm reduces
the number of comparisons in two aspects: First, Isrc is only compared with the
initial anchors of each object for category recognition, reducing the complexity
from O(NR) to O(Nkac); second, the retrieval within the references that contain
the recognized object for 3D orientation estimation only compares Isrc with dy-
namically updated anchors, which reduces the complexity from O(R) to O(kac).

Number of References. Intuitively, we expect the number of reference images
to be positively correlated with the 3D object orientation estimation accuracy
while negatively correlated with the retrieval speed. To shed more light on the
influence of the number of reference images, we evaluate our method with a
varying number of references. As shown in Fig. 7, as expected, as the number of
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Fig. 7. Influence of the number of references. We vary the number of references
for each object and report the results on the unseen objects of LineMOD Split #1.

Table 5. Influence of the individual components.

Local Norm. Weighted infoNCE Rota. Acc. (%)

✗ ✗ 85.91
✓ ✗ 89.25
✗ ✓ 87.14
✓ ✓ 89.55

reference images increases, Rota. Acc. increases while FPS decreases. Therefore,
one can flexibly adjust the number of references in practice according to the
desired accuracy and efficiency.

Effectiveness of the individual components. Finally, we conduct an abla-
tion study to further understand the importance of the other individual com-
ponents in our method, i.e., local normalization and the weighted-infoNCE loss.
As shown in Table 5, each of these two components has a positive impact on the
3D orientation estimation accuracy, and the optimal performance is achieved by
leveraging both of them.

5 Conclusion

In this paper, we have presented a retrieval-based 3D orientation estimation
method for previously-unseen objects. Instead of representing an image as a
global descriptor, we convert it to multiple feature maps at different resolutions,
whose elements represent local patches of different sizes in the original image.
We perform retrieval based on patch-level similarities, which are adaptively fused
into a single similarity score for a pair of images. We have also designed a fast
retrieval algorithm to speed up our method. Our experiments have demonstrated
that our method outperforms both traditional and previous learning-based meth-
ods by a large margin in terms of 3D orientation estimation accuracy for unseen
objects. In future work, we plan to extend our method to full 6D pose estimation
of unseen objects.
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