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Abstract. 3D human pose estimation is fundamental to understanding human
behavior. Recently, promising results have been achieved by graph convolutional
networks (GCNs), which achieve state-of-the-art performance and provide rather
light-weight architectures. However, a major limitation of GCNs is their inability
to encode all the transformations between joints explicitly. To address this is-
sue, we propose a novel spectral GCN using the Möbius transformation (Möbius-
GCN). In particular, this allows us to directly and explicitly encode the transfor-
mation between joints, resulting in a significantly more compact representation.
Compared to even the lightest architectures so far, our novel approach requires
90–98% fewer parameters, i.e. our lightest MöbiusGCN uses only 0.042M train-
able parameters. Besides the drastic parameter reduction, explicitly encoding the
transformation of joints also enables us to achieve state-of-the-art results. We
evaluate our approach on the two challenging pose estimation benchmarks, Hu-
man3.6M and MPI-INF-3DHP, demonstrating both state-of-the-art results and
the generalization capabilities of MöbiusGCN.

1 Introduction

Estimating 3D human pose helps to analyze human motion and behavior, thus enabling
high-level computer vision tasks such as action recognition [30], sports analysis [49,
64], augmented and virtual reality [15]. Although human pose estimation approaches
already achieve impressive results in 2D, this is not sufficient for many analysis tasks,
because several 3D poses can project to exactly the same 2D pose. Thus, knowledge of
the third dimension can significantly improve the results on the high-level tasks.

Estimating 3D human joint positions, however, is challenging. On the one hand,
there are only very few labeled datasets because 3D annotations are expensive. On
the other hand, there are self-occlusions, complex joint inter-dependencies, small and
barely visible joints, changes in appearance like clothing and lighting, and the many
degrees of freedom of the human body.

To solve 3D human pose estimation, some methods utilize multi-views [50, 70],
synthetic datasets [46], or motion [25, 55]. For improved generalization, however, we
follow the most common line of work and estimate 3D poses given only the 2D estimate
of a single RGB image as input, similar to [27, 33, 45]. First, we compute 2D pose joints
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Fig. 1: Our MöbiusGCN accurately learns the transformation (particularly the rotation) between joints by leveraging the
Möbius transformation given estimated 2D joint positions from a single RGB image. The spectral GCN puts a scalar-valued
function on each node of the graph and compares the graph signal with the graph filter on the eigenspace of the graph
Laplacian matrix and returns it to the spatial domain. We define the Möobius transformation as our scalar-valued function.
Möbius transformation is mainly the composition of the rotation function and translation functions. Thus, it is capable of
encoding the transformation between the human body joints.

given RGB images using an off-the-shelf architecture. Second, we approximate the 3D
pose of the human body using the estimated 2D joints.

With the advent of deep learning methods, the accuracy of 3D human pose estima-
tion has significantly improved, e.g. [33, 45]. Initially, these improvements were driven
by CNNs (Convolutional Neural Networks). However, these assume that the input data
is stationary, hierarchical, has a grid-like structure, and shares local features across the
data domain. The convolution operator in the CNN assumes that the nodes have fixed
neighbor positions and a fixed number of neighbor nodes. Therefore, CNNs are not
applicable to graph-structured data. The input to 3D pose estimation from 2D joint po-
sitions, however, is graph-structured data. Thus, to handle this irregular nature of the
data, GCNs (Graph Convolutional Networks) have been proposed [4].

GCNs are able to achieve state-of-the-art performance for 2D-to-3D human pose
estimation with comparably few parameters, e.g. [71]. Nevertheless, to the best of our
knowledge, none of the previous GCN approaches explicitly models the inter-segmental
angles between joints. Learning the inter-segmental angle distribution explicitly along
with the translation distribution, however, leads to encoding better feature representa-
tions. Thus, we present a novel spectral GCN architecture, MöbiusGCN, to accurately
learn the transformation between joints and to predict 3D human poses given 2D joint
positions from a single RGB image. To this end, we leverage the Möbius transformation
on the eigenvalue matrix of the graph Laplacian. Previous GCNs applied for estimating
the 3D pose of the human body are defined in the real domain, e.g. [71]. Our Möbius-
GCN operates in the complex domain, which allows us to encode all the transformations
(i.e. inter-segmental angles and translation) between nodes simultaneously (Figure 1).

An enriched feature representation achieved by encoding the transformation distri-
bution between joints using a Möbius transformation provides us with a compact model.
A light DNN architecture makes the network independent of expensive hardware setup,
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enabling the use of mobile phones and embedded devices at inference time. This can be
achieved by our compact MöbiusGCN architecture.

Due to a large number of weights that need to be estimated, fully-supervised state-
of-the-art approaches need an enormous amount of annotated data, where data annota-
tion is both time-consuming and requires expensive setup. Our MöbiusGCN, on the
contrary, requires only a tiny fraction of the model parameters, which allows us to
achieve competitive results with significantly fewer annotated data.

We summarize our main contributions as follows:

– We introduce a novel spectral GCN architecture leveraging the Möbius transforma-
tion to explicitly encode the pose, in terms of inter-segmental angles and transla-
tions between joints.

– We achieve state-of-the-art 3D human pose estimation results, despite requiring
only a fraction of the model parameters (i.e. 2–9% of even the currently lightest
approaches).

– Our light-weight architecture and the explicit encoding of transformations lead to
state-of-the-art performance compared to other semi-supervised methods, by train-
ing only on a reduced dataset given estimated 2D human joint positions.

2 Related Work

Human 3D Pose Estimation. The classical approaches addressing the 3D human pose
estimation task are usually based on hand-engineered features and leverage prior as-
sumptions, e.g. using motion models [57] or other common heuristics [18, 48]. Despite
good results, their major downside is the lack of generality.

Current state-of-the-art approaches in computer vision, including 3D human pose
estimation, are typically based on DNNs (Deep Neural Networks), e.g. [24, 29, 31,
52]. To use these architectures, it is assumed that the statistical properties of the input
data have locality, stationarity, and multi-scalability [16], which reduces the number of
parameters.

Although DNNs achieve state-of-the-art in spaces governed by Euclidean geom-
etry, a lot of the real-world problems are of a non-Euclidean nature. For these prob-
lem classes, GCNs have been introduced. There are two types of GCNs: spectral GCN
and spatial GCN. Spectral GCNs rely on the Graph Fourier Transform, which analyzes
the graph signals in the vector space of the graph Laplacian matrix. The second cate-
gory, spatial GCN, is based on feature transformations and neighborhood aggregation
on the graph. Well-known spatial GCN approaches include Message Passing Neural
Networks [12] and GraphSAGE [14].

For 3D human pose estimation, GCNs achieve competitive results with comparably
few parameters. Pose estimation with GCNs has been addressed, e.g. in [27, 66, 71]. Xu
and Takano [66] proposed Graph Stacked Hourglass Networks (GraphSH), in which
graph-structured features are processed across different scales of human skeletal repre-
sentations. Liu et al. [27] investigated different combinations of feature transformations
and neighborhood aggregation of spatial features. They also showed the benefits of
using separate weights to incorporate a node’s self-information. Zhao et al. [71] pro-
posed semantic GCN (SemGCN), which currently represents the lightest architecture
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(0.43M). The key idea is to learn the adjacency matrix, which lets the architecture en-
code the graph’s semantic relationships between nodes. In contrast to SemGCN, we can
further reduce the number of parameters by an order of magnitude (0.042M) by explic-
itly encoding the transformation between joints. The key ingredient to this significant
reduction is the Möbius transformation.

Möbius Transformation. The Möbius transformation has been used in neural net-
works as an activation function [32, 39], in hyperbolic neural networks [11], for data
augmentation [73], and for knowledge graph embedding [37]. Our work is the first to
introduce Möbius transformations for spectral graph convolutional networks. To utilize
the Möbius transformation, we have to design our neural network in the complex do-
main. The use of complex numbers (analysis in polar coordinates) to harness phase in-
formation along with the signal amplitude is well established in signal processing [32].
By applying the Möbius transformation, we let the architecture encode the transforma-
tions (i.e. inter-segmental angle and translation) between joints explicitly, which leads
to a very compact architecture.

Handling Rotations. Learning the rotation between joints in skeletons has been
investigated previously for 3D human pose estimation [2, 40, 75]. Learning the rota-
tion using Euler angles or quaternions, however, has obvious issues like discontinu-
ities [53, 77]. Continuous functions are easier to learn in neural networks [77]. Zhou
et al. [77] tackle the discontinuity by lifting the problem to 5 and 6 dimensions. An-
other direction of research focuses on designing DNNs for inverse kinematics with the
restricted assumption of putting joint angles in a specific range to avoid discontinuities.
However, learning the full range of rotations is necessary for many real-world prob-
lems [77]. Our MöbiusGCN is continuous by definition and thus, allows us to elegantly
encode rotations.

Data Reduction. A major benefit of light architectures is that they require smaller
datasets to train. Semi-supervised methods require a small subset of annotated data
and a large set of unannotated data for training the network. These methods are ac-
tively investigated in different domains, considering the difficulty of providing anno-
tated datasets. Several semi-supervised approaches for 3D human pose estimation ben-
efit from applying more constraints over the possible space solutions by utilizing multi-
view approaches using RGB images from different cameras [35, 50, 51, 63, 69]. These
methods need expensive laboratory setups to collect synchronized multi-view data.

Pavllo et al. [45] phrase the loss over the back-projected estimated 3D human pose
to 2D human pose space conditioned on time. Tung et al. [61] use generative adversar-
ial networks to reduce the required annotated data for training the architecture. Iqbal
et al. [19] relax the constraints using weak supervision; they introduce an end-to-end
architecture that estimates 2D pose and depth independently, and uses a consistency
loss to estimate the pose in 3D.

Our compact MöbiusGCN achieves competitive state-of-the-art results with only
scarce training samples. MöbiusGCN does not require any multi-view setup or tempo-
ral information. Further, it does not rely on large unlabeled datasets. It just requires a
small annotated dataset to train. In contrast, the previous semi-supervised methods re-
quire complicated architectures and a considerable amount of unlabeled data during the
training phase.
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3 Spectral Graph Convolutional Network
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Fig. 2: The complete pipeline of the proposed MöbiusGCN architecture; The output of the off-the-shelf stacked hourglass
architecture [38], i.e. estimated 2D joints of the human body, is the input to the MöbiusGCN architecture. The MöbiusGCN
architecture locally encodes the transformation between the joints of the human body. SVD is the singular value decom-
position of the normalized Laplacian matrix. Function gθ is the Möbius transformation applied on the eigenvalues of the
eigenvalue matrix independently. x is the graph signal and ω are the learnable parameters, both in the complex domain.

3.1 Graph Definitions

Let G(V,E) represent a graph consisting of a finite set of N vertices, V = {υ1, . . . , υN},
and a set of M edges E = {e1, . . . , eM}, with ej = (υi, υk) where υi, υk ∈ V . The
graph’s adjacency matrix AN×N contains 1 in case two vertices are connected and 0
otherwise. DN×N is a diagonal matrix where Dii is the degree of vertex υi. A graph
is directed if (υi, υk) ̸= (υk, υi), otherwise it is an undirected graph. For an undirected
graph, the adjacency matrix is symmetric. The non-normalized graph Laplacian matrix
is defined as L = D − A, and can be normalized to L̄ = I − D− 1

2AD− 1
2 , where I

is the identity matrix. L̄ is real, symmetric, and positive semi-definite. Therefore, it has
N ordered, real, and non-negative eigenvalues {λi : i = 1, . . . , N} and corresponding
orthonormal eigenvectors {ui : i = 1, . . . , N}.

A signal x defined on the nodes of the graph is a vector x ∈ RN , where its i-th
component represents the function value at the i-th vertex in V . Similarly, X ∈ RN×d

is called a d-dimensional graph signal on G [56].

3.2 Graph Fourier Transform

Graph signals x ∈ RN admit a graph Fourier expansion x =
∑N

i=1⟨ui,x⟩ui, where
ui, i = 1, . . . , N are the eigenvectors of the graph Laplacian [56]. Eigenvalues and
eigenvectors of the graph Laplacian matrix are analogous to frequencies and sinusoidal
basis functions in the classical Fourier series expansion.
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3.3 Spectral Graph Convolutional Network

Spectral GCNs [5] build upon the graph Fourier transform. Let x be the graph signal
and y be the graph filter on graph G. The graph convolution ∗G can be defined as

x ∗G y = U(U⊤x⊙U⊤y) (1)

where the matrix U contains the eigenvectors of the normalized graph Laplacian and ⊙
is the Hadamard product. This can also be written as

x ∗G gθ = Ugθ(Λ)U⊤x, (2)

where gθ(Λ) is a diagonal matrix with the parameter θ ∈ RN as a vector of Fourier
coefficients.

3.4 Spectral Graph Filter

Based on the corresponding definition of gθ in Eq. (2), spectral GCNs can be classified
into spectral graph filters with smooth functions and spectral graph filters with rational
functions.

Spectral Graph Filter with Smooth Functions. Henaff et al. [16] proposed defin-
ing gθ(Λ) to be a smooth function (smoothness in the frequency domain corresponds
to the spatial decay), to address the localization problem.

Defferrard et al. [9] proposed defining the function gθ in such a way to be directly
applicable over the Laplacian matrix to address the computationally costly Laplacian
matrix decomposition and multiplication with the eigenvector matrix in Eq. (2).

Kipf and Welling [21] defined gθ(L) to be the Chebychev polynomial by assuming
all the eigenvalues in the range of [−1, 1]. Computing the polynomials of the Cheby-
chev polynomial, however, is computationally expensive. Also, considering polynomi-
als with higher orders causes overfitting. Therefore, Kipf and Welling [21] approxi-
mated the Chebychev polynomial with its first two orders.

Spectral Graph Filter with Rational Functions. Fractional spectral GCNs, unlike
polynomial spectral GCNs, can model sharp changes in the frequency response [3].
Levie et al. [23] put the eigenvalues of the Laplacian matrix on the unit circle by ap-
plying the Cayley transform on the Laplacian matrix with a learned parameter, named
spectral coefficient, that lets the network focus on the most useful frequencies.

Our proposed MöbiusGCN is also a fractional GCN which applies the Möbius trans-
formation on the eigenvalue matrix of the normalized Laplacian matrix to encode the
transformations between joints.

4 MöbiusGCN

A major drawback of previous spectral GCNs is that they do not encode the transfor-
mation distribution between nodes explicitly. We address this by applying the Möbius
transformation function over the eigenvalue matrix of the decomposed Laplacian ma-
trix. This simultaneous encoding of the rotation and translation distribution in the com-
plex domain leads to better feature representations and fewer parameters in the network.
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The input to our first block of MöbiusGCN are the joint positions in 2D Euclidean
space, given as J = {Ji ∈ R2|i = 1, . . . , κ}, which can be computed directly from
the image. Our goal is then to predict the corresponding 3D Euclidean joint positions
Ŷ = {Ŷi ∈ R3|i = 1, . . . , κ}.

We leverage the structure of the input data, which can be represented by a con-
nected, undirected and unweighted graph. The input graphs are fixed and share the
same topological structure, which means the graph structure does not change, and each
training and test example differs only in having different features at the vertices. In con-
trast to pose estimation, tasks like protein-protein interaction [62] are not suitable for
our MöbiusGCN, because there the topological structure of the input data can change
across samples.

4.1 Möbius Transformation

The general form of a Möbius transformation [32] is given by f(z) = az+b
cz+d where

a, b, c, d, z ∈ C satisfy ad − bc ̸= 0. The Möbius transformation can be expressed as
the composition of simple transformations. Specifically, if c ̸= 0, then:

– f1(z) = z + d/c defines translation by d/c,
– f2(z) = 1/z defines inversion and reflection with respect to the real axis,
– f3(z) =

bc−ad
c2 z defines homothety and rotation,

– f4(z) = z + a/c defines the translation by a/c.

These functions can be composed to form the Möbius transformation

f(z) = f4 ◦ f3 ◦ f2 ◦ f1(z) =
az + b

cz + d
,

where ◦ denotes the composition of two functions f and g as f ◦ g(z) = f(g(z)).
The Möbius transformation is analytic everywhere except at the pole z = −d

c .
Since a Möbius transformation remains unchanged by scaling with a coefficient [32],
we normalize it to yield the determinant 1. We observed that in our gradient-based opti-
mization setup, the Möbius transformation in each node converges into the fixed points.
In particular, the Möbius transformation can have two fixed points (loxodromic), one
fixed point (parabolic or circular), or no fixed point. The fixed points can be computed

by solving az+b
cz+d = z, which gives γ1,2 =

a−d+
√

(a−d)2−4bc

2c .

4.2 MöbiusGCN

To predict the 3D human pose, we explicitly encode the local transformations between
joints, where each joint corresponds to a node in the graph. To do so, we define gθ(Λ) in
Eq. (2) to be the Möbius transformation applied to the Laplacian eigenvalues, resulting
in the following fractional spectral graph convolutional network

x ∗G gθ(Λ) = U Möbius(Λ)U⊤x =

N−1∑
i=0

Möbiusi(λi)uiu
⊤
i x , (3)
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where
Möbiusi(λi) =

aiλi + bi
ciλi + di

, (4)

with ai, bi, ci, di, λi ∈ C.
Applying the Möbius transformation over the Laplacian matrix places the signal in

the complex domain. To return back to the real domain, we sum it up with its conjugate

Z = 2ℜ{w U Möbius(Λ)U⊤x}, (5)

where w is the shared complex-valued learnable weight to encode different transforma-
tion features. This causes the number of learned parameters to be reduced by a factor
equal to the number of joints (nodes of the graph). The inter-segmental angles between
joints are encoded by learning the rotation functions between neighboring nodes.

We can easily generalize this definition to the graph signal matrix X ∈ CN×d with
d input channels (i.e. a d-dimensional feature vector for every node) and W ∈ Cd×F

feature maps. This defines a MöbiusGCN block

Z = σ(2ℜ{UMöbius(Λ)U⊤XW}+ b), (6)

where Z ∈ RN×F is the convolved signal matrix, σ is a nonlinearity (e.g. ReLU [36]),
and b is a bias term.

To encode enriched and generalized joint transformation feature representations, we
make the architecture deep by stacking several blocks of MöbiusGCN. Stacking these
blocks yields our complete architecture for 3D pose estimation, as shown in Figure 2.

To apply the Möbius transformation over the matrix of eigenvalues of the Laplacian
matrix, we encode the weights of the Möbius transformation for each eigenvalue in four
diagonal matrices A,B,C,D and compute

UMöbius(Λ)U⊤ = U(AΛ+B)(CΛ+D)−1U⊤. (7)

4.3 Why MöbiusGCN is a Light Architecture

As a direct consequence of applying the Möbius transformation for the graph filters in
polar coordinates, the filters in each block can encode the inter-segmental angle features
between joints in addition to the translation features explicitly. By applying the Möbius
transformation, the graph filter scales and rotates the eigenvectors of the Laplacian ma-
trix in the graph Fourier transform simultaneously. This leads to learning better feature
representations and thus, yields a more compact architecture.

For a better understanding, consider the following analogy with the classical Fourier
transform: While it can be hard to construct an arbitrary signal by a linear combination
of basis functions with real coefficients (i.e., the signal is built just by changing the
amplitudes of the basis functions), it is significantly easier to build a signal by using
complex coefficients, which change both the phase and amplitude.

In previous spectral GCNs, specifically [21], the Chebychev polynomials are only
able to scale the eigenvectors of the Laplacian matrix, in turn requiring both more pa-
rameters and additional nonlinearities to encode the rotation distribution between joints
implicitly.
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4.4 Discontinuity

Our model encodes the transformation between joints in the complex domain by learn-
ing the parameters of the normalized Möbius transformation. In the definition of the
Möbius transformation, if ad − bc ̸= 0, then the Möbius transformation is an injec-
tive function and thus, continuous by the definition of continuity for neural networks
given by [77]. MöbiusGCN does not suffer from discontinuities in representing inter-
segmental angles, in contrast to Euler angles or quaternions. Additionally, this leads to
significantly fewer parameters in our architecture.

Protocol #1 # Param. Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Average
Martinez et al. [33] 4.2M 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9

Tekin et al. [59] n/a 54.2 61.4 60.2 61.2 79.4 78.3 63.1 81.6 70.1 107.3 69.3 70.3 74.3 51.8 63.2 69.7
Sun et al. [58] n/a 52.8 54.8 54.2 54.3 61.8 67.2 53.1 53.6 71.7 86.7 61.5 53.4 61.6 47.1 53.4 59.1

Yang et al. [68] n/a 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6
Hossain and Little [17] 16.9M 48.4 50.7 57.2 55.2 63.1 72.6 53.0 51.7 66.1 80.9 59.0 57.3 62.4 46.6 49.6 58.3

Fang et al. [10] n/a 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4
Pavlakos et al. [43] n/a 48.5 54.4 54.5 52.0 59.4 65.3 49.9 52.9 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2

SemGCN [71] 0.43M 48.2 60.8 51.8 64.0 64.6 53.6 51.1 67.4 88.7 57.7 73.2 65.6 48.9 64.8 51.9 60.8
Sharma et al. [54] n/a 48.6 54.5 54.2 55.7 62.2 72.0 50.5 54.3 70.0 78.3 58.1 55.4 61.4 45.2 49.7 58.0
GraphSH [66] ∗ 3.7M 45.2 49.9 47.5 50.9 54.9 66.1 48.5 46.3 59.7 71.5 51.4 48.6 53.9 39.9 44.1 51.9

Ours (HG) 0.16M 46.7 60.7 47.3 50.7 64.1 61.5 46.2 45.3 67.1 80.4 54.6 51.4 55.4 43.2 48.6 52.1
Ours (HG) 0.04M 52.5 61.4 47.8 53.0 66.4 65.4 48.2 46.3 71.1 84.3 57.8 52.3 57.0 45.7 50.3 54.2

Liu et al. [27] (GT) 4.2M 36.8 40.3 33.0 36.3 37.5 45.0 39.7 34.9 40.3 47.7 37.4 38.5 38.6 29.6 32.0 37.8
GraphSH [66] (GT) 3.7M 35.8 38.1 31.0 35.3 35.8 43.2 37.3 31.7 38.4 45.5 35.4 36.7 36.8 27.9 30.7 35.8
SemGCN [71] (GT) 0.43M 37.8 49.4 37.6 40.9 45.1 41.4 40.1 48.3 50.1 42.2 53.5 44.3 40.5 47.3 39.0 43.8

Ours (GT) 0.16M 31.2 46.9 32.5 31.7 41.4 44.9 33.9 30.9 49.2 55.7 35.9 36.1 37.5 29.07 33.1 36.2
Ours (GT) 0.04M 33.6 48.5 34.9 34.8 46.0 49.5 36.7 33.7 50.6 62.7 38.9 40.3 41.4 33.1 36.3 40.0

Table 1: Quantitative comparisons w.r.t. MPJPE (in mm) on Human3.6M [18] under Protocol #1. Best in bold, second-best
underlined. In the upper part, all methods use stacked hourglass (HG) 2D estimates [38] as inputs, except for [66] (which
uses CPN [7], indicated by ∗). In the lower part, all methods use the 2D ground truth (GT) as input.

5 Experimental Results

5.1 Datasets and Evaluation Protocols

We use the publicly available motion capture dataset Human3.6M [18]. It contains 3.6
million images produced by 11 actors performing 15 actions. Four different calibrated
RGB cameras are used to capture the subjects during training and test time. Same as
previous works, e.g. [33, 43, 54, 58, 59, 66, 71], we use five subjects (S1, S5, S6, S7,
S8) for training and two subjects (S9 and S11) for testing. Each sample from the differ-
ent camera views is considered independently. We also use MPI-INF-3DHP dataset [34]
to test the generalizability of our model. MPI-INF-3DHP contains 6 subjects for test-
ing in three different scenarios: studio with a green screen (GS), studio without green
screen (noGS), and outdoor scene (Outdoor). Note that for experiments on MPI-INF-
3DHP we also only trained on Human3.6M.

Following [33, 58, 59, 66, 71], we use the MPJPE protocol, referred to as Proto-
col #1. MPJPE is the mean per joint position error in millimeters between predicted
joint positions and ground truth joint positions after aligning the pre-defined root joints
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(i.e. the pelvis joint). Note that some works (e.g. [27, 45]) use the P-MPJPE met-
ric, which reports the error after a rigid transformation to align the predictions with
the ground truth joints. We explicitly select the standard MPJPE metric as it is more
challenging and also allows for a fair comparison to previous related works. For the
MPI-INF-3DHP test set, similar to previous works [28, 66], we use the percentage of
correct 3D keypoints (3D PCK) within a 150 mm radius [34] as evaluation metric.

5.2 Implementation Details

2D Pose Estimation. The inputs to our architecture are the 2D joint positions estimated
from the RGB images for all four cameras independently. Our method is independent
of the off-the-shelf architecture used for estimating 2D joint positions. Similar to pre-
vious works [33, 71], we use the stacked hourglass architecture [38] to estimate the
2D joint positions. The hourglass architecture is an autoencoder architecture that stacks
the encoder-decoder with skip connections multiple times. Following [71], the stacked
hourglass network is first pre-trained on the MPII [1] dataset and then fine-tuned on
the Human3.6M [18] dataset. As described in [45], the input joints are scaled to image
coordinates and normalized to [−1, 1].

3D Pose Estimation. The ground truth 3D joint positions in the Human3.6M dataset
are given in world coordinates. Following previous works [33, 71], we transform the
joint positions to the camera space given the camera calibration parameters. Similar to
previous works [33, 71], to make the architecture trainable, we chose a predefined joint
(the pelvis joint) as the center of the coordinate system. We do not use any augmenta-
tions throughout all our experiments.

We trained our architecture using Adam [20] with an initial learning rate of 0.001
and used mini-batches of size 64. The learning rate is dropped with a decay rate of 0.5
when the loss on the validation set saturates. The architecture contains seven Möbius-
GCN blocks, where each block, except the first and the last block with the input and
the output channels 2 and 3 respectively, contains either 64 channels (leading to 0.04M
parameters) or 128 channels (leading to 0.16M parameters). We initialized the weights
using the Xavier method [13]. During the test phase, the scale of the outputs is cal-
ibrated by forcing the sum of the length of all 3D bones to be equal to a canonical
skeleton [42, 74, 76]. To help the architecture differentiate between different 3D poses
with the same 2D pose, similar to Poier et al. [47], we provide the center of mass of the
subject to the architecture as an additional input. Same as [33, 71], we predict 16 joints
(i.e. without the ’Neck/Nose’ joint).

Also, as in previous works [27, 33, 42, 71], our network predicts the normalized
locations of 3D joints. We did all our experiments on an NVIDIA GeForce RTX 2080
GPU using the PyTorch framework [41]. For the loss function, same as previous works
e.g. [33, 45], we use the mean squared error (MSE) between the 3D ground truth joint
locations Y and our predictions Ŷ , i.e.

L(Y, Ŷ) =

κ∑
i=1

(Yi − Ŷi)
2. (8)

Complex-valued MöbiusGCN. In complex-valued neural networks, the data and
the weights are represented in the complex domain. A complex function is holomorphic
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(complex-differentiable) if not only their partial derivatives exist but also satisfy the
Cauchy-Riemann equations. Complex neural networks have different applications, e.g.
Wolter and Yao [65] proposed a complex-valued recurrent neural network which helps
solving the exploding/vanishing gradients problem in RNNs. Complex-valued neural
networks are easier to optimize than real-valued neural networks and have richer rep-
resentational capacity [60]. Considering the Liouville theorem [32], designing a fully
complex differentiable (holomorphic) neural network is hard as only constant functions
are both holomorph and bounded. Nevertheless, it was shown that in practice full com-
plex differentiability of complex neural networks is not necessary [60].

In complex-valued neural networks, the complex convolution operator is defined as

W ∗ h = (A ∗ x−B ∗ y) + i(B ∗ x+A ∗ y),

where W = A+ iB and h = x+ iy. A and B are real matrices and x and y are real
vectors. We also apply the same operators on our graph signals and graph filters. The
PyTorch framework [41] utilizes Wirtinger calculus [22] for backpropagation, which
optimizes the real and imaginary partial derivatives independently.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3: Qualitative results of MöbiusGCN on Human3.6M [18].

5.3 Fully-supervised MöbiusGCN

In the following, we compare the results of MöbiusGCN in a fully-supervised setup
with the previous state-of-the-art for 3D human pose estimation on the Human3.6M
and MPI-INF-3DHP datasets. For this, we use a) estimated 2D poses using the stacked
hourglass architecture (HG) [38] as input and b) the 2D ground truth (GT).

Comparisons on Human3.6M. Table 1 shows the comparison of our MöbiusGCN
to the state-of-the-art methods under Protocol #1 on Human3.6M dataset.

By setting the number of channels to 128 in each block of the MöbiusGCN (0.16M
parameters), given estimated 2D joint positions (HG), we achieve an average MPJPE
of 52.1mm over all actions and test subjects. Using the ground truth (GT) 2D joint
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positions as input, we achieve an MPJPE of 36.2mm. These results are on par with the
state-of-the-art, i.e. GraphSH [66], which achieves 51.9mm and 35.8mm, respectively.
Note, however, that MöbiusGCN drastically reduces the number of training parameters
by up to 96% (0.16M vs. 3.7M).

Reducing the number of channels to 64, we still achieve impressive results con-
sidering the lightness of our architecture (i.e. only 0.042M parameters). Compared
to GraphSH [66], we reduce the number of parameters by 98.9% (0.042M vs 3.7M)
and still achieve notable results, i.e. MPJPE of 40.0mm vs. 35.8mm (using 2D GT
inputs) and 54.2mm vs. 51.9mm (using the 2D HG inputs). Note that GraphSH [66] is
the only approach which uses a better 2D pose estimator as input (CPN [7] instead of
HG [38]). Nevertheless, our MöbiusGCN (with 0.16M parameters) achieves competi-
tive results. Furthermore, MöbiusGCN outperforms the previously lightest architecture
SemGCN [71], i.e. 40.0mm vs 43.8mm (using 2D GT inputs) and 54.2mm vs 60.8mm
(using 2D HG input), although we require only 9.7% of their number of parameters
(0.042M vs. 0.43M). Figure 3 shows qualitative results of our MöbiusGCN with 0.16M
parameters on unseen subjects of the Human3.6M dataset given the 2D ground truth
(GT) as input.

Method # Parameters GS noGS Outdoor All(PCK)

Martinez et al. [33] 4.2M 49.8 42.5 31.2 42.5
Mehta et al. [34] n/a 70.8 62.3 58.8 64.7
Luo et al. [28] n/a 71.3 59.4 65.7 65.6
Yang et al. [68] n/a - - - 69.0
Zhou et al. [76] n/a 71.1 64.7 72.7 69.2

Ci et al. [8] n/a 74.8 70.8 77.3 74.0
Zhou et al. [72] n/a 75.6 71.3 80.3 75.3
GraphSH [66] 3.7M 81.5 81.7 75.2 80.1

Ours 0.16M 79.2 77.3 83.1 80.0

Table 2: Results on the MPI-INF-3DHP test set [34]. Best in bold, second-best underlined.

Comparisons on MPI-INF-3DHP. The quantitative results on MPI-INF-3DHP [34]
are shown in Table 2. Although we train MöbiusGCN only on the Human3.6M [18]
dataset and our architecture is lightweight, the results indicate our strong generalization
capabilities to unseen datasets, especially for the most challenging outdoor scenario.
Figure 4 shows some qualitative results on unseen self-occlusion examples from the
test set of MPI-INF-3DHP dataset with MöbiusGCN trained only on Human3.6M.

Fig. 4: Qualitative self-occlusion results of MöbiusGCN on MPI-INF-3DHP [34] (trained only on Human3.6m).
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Though MöbiusGCN for 3D human pose estimation has comparably fewer param-
eters, it is computationally expensive, i.e. O(n3), both in the forward and backward
pass due to the decomposition of the Laplacian matrix. In practice, however, this is not
a concern for human pose estimation because of the small human pose graphs, i.e. ∼ 20
nodes. More specifically, a single forward pass takes on average only 0.001 s.

Method # Parameters MPJPE

Liu et al. [27] 4.20M 37.8
GraphSH [66] 3.70M 35.8
Liu et al. [27] 1.05M 40.1
GraphSH [66] 0.44M 39.2
SemGCN [71] 0.43M 43.8
Yan et al. [67] 0.27M 57.4

Veličković et al. [62] 0.16M 82.9
Chebychev-GCN 0.08M 110.6

Ours 0.66M 33.7
Ours 0.16M 36.2
Ours 0.04M 40.0

Table 3: Supervised quantitative comparison between GCN architectures on Human3.6M [18] under Protocol #1. Best in
bold, second-best underlined. All methods use 2D ground truth as input.

Comparison to Previous GCNs. Table 3 shows our performance in comparison to
previous GCN architectures. Besides significantly reducing the number of required pa-
rameters, applying the Möbius transformation also allows us to leverage better feature
representations. Thus, MöbiusGCN can outperform all other light-weight GCN archi-
tectures. It even achieves better results (36.2mm vs. 39.2mm) than the light-weight
version of the state-of-the-art GraphSH [66], which requires 0.44M parameters.

We also compare our proposed spectral GCN with the vanilla spectral GCN, i.e.
Chebychev-GCN [21]. Each block of Chebychev-GCN is the real-valued spectral GCN
from [21]. We use 7 blocks, similar to our MöbiusGCN, with 128 channels each. Our
complex-valued MöbiusGCN with only 0.04M clearly outperforms the Chebychev-
GCN [21] with 0.08M parameters (40.0mm vs. 110.6mm). This highlights the rep-
resentational power of our MöbiusGCN in contrast to vanilla spectral GCNs.

Method Temp MV Input MPJPE

Rhodin et al. [50] ✗ RGB 131.7
Pavlakos et al. [44] RGB 110.7

Chen et al. [6] ✗ HG 91.9
Li et al. [26] ✗ RGB 88.8

Ours (0.16M) ✗ ✗ HG 82.3

Iqbal et al. [19] ✗ GT 62.8
Ours (0.16M) ✗ ✗ GT 62.3

Table 4: Semi-supervised quantitative comparison on Human3.6M [18] under Protocol #1. Temp, MV, GT, and HG stand for
temporal, multi-view, ground-truth, and stacked hourglass as 2D pose input respectively. Best in bold, second-best underlined.

5.4 MöbiusGCN with Reduced Dataset

A major practical limitation with training neural network architectures is to acquire suf-
ficiently large and accurately labeled datasets. Semi-supervised methods try to address
this by combining fewer labeled samples with large amounts of unlabeled data. Another
benefit of MöbiusGCN is that we require fewer training samples. Having a better fea-
ture representation in MöbiusGCN leads to a light architecture and therefore, requires
less training samples.



14 Azizi et al.

To demonstrate this, we train MöbiusGCN with a limited number of samples. In
particular, we use only one subject to train MöbiusGCN and do not need any unlabeled
data. Table 4 compares the MöbiusGCN to the semi-supervised approaches [6, 19, 26,
44, 50], which were trained using both labeled and unlabeled data. As can be seen,
MöbiusGCN performs favorably: we achieve an MPJPE of 82.3mm (given 2D HG
inputs) and an MPJPE of 62.3mm (using the 2D GT input). In contrast to previous
works, we neither utilize other subjects as weak supervision nor need large unlabeled
datasets during training.

As shown in Table 4, MöbiusGCN also outperforms methods which rely on multi-
view cues [6, 50] or leverage temporal information [26]. Additionally, we achieve better
results to [19], even though, in contrast to this approach, we do not incorporate multi-
view information or require extensive amounts of unlabeled data during training.

Table 5 analyzes the effect of increasing the number of training samples. As can
be seen, our MöbiusGCN only needs to train on three subjects to perform on par with
SemGCN [71].

Subject MöbiusGCN MöbiusGCN SemGCN [71]

S1 56.450 62.310 63.950

S1, S5 44.550 47.910 58.750

S1, S5, S6 42.350 43.110 48.550

All 36.2 36.2 43.8
# Parameters 0.16M 0.16M 0.43M

Table 5: Evaluating the effects of using fewer training subjects on Human3.6M [18] under Protocol #1 (given 2D GT inputs).
The first 3 experimental results are after 10 and 50 (full convergence) training epochs for MöbiusGCN and SemGCN, re-
spectively. Best in bold, second-best underlined.

6 Conclusion and Discussion

We proposed a novel rational spectral GCN (MöbiusGCN) to predict 3D human pose
estimation by encoding the transformation between joints of the human body, given
the human body joint positions in 2D. Our proposed method achieves state-of-the-art
result accuracy while preserving the compactness of the model with lower number of
parameters than the most compact model existing in the literature (lower number of
parameters by an order of magnitude). We verified the generalizability of our model
on the MPI-INF-3DHP dataset, where we achieve state-of-the-art results on the most
challenging in-the-wild (outdoor) scenario.

Our proposed simple and light-weight architecture requires less data for training.
This allows us to outperform the previous lightest architecture by just training our model
with three subjects on the Human3.6M dataset. We also showed promising results of our
architecture in comparison to previous state-of-the-art semi-supervised architectures
despite not using any temporal or multi-view information or large unlabeled datasets.
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