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Abstract. Reconstruction networks for well-ordered data such as 2D images and
1D continuous signals are easy to optimize through element-wised squared er-
rors, while permutation-arbitrary point clouds cannot be constrained directly be-
cause their points permutations are not fixed. Though existing works design al-
gorithms to match two point clouds and evaluate shape errors based on matched
results, they are limited by pre-defined matching processes. In this work, we pro-
pose a novel framework named PCLossNet which learns to train a point cloud
reconstruction network without any matching. By training through an adver-
sarial process together with the reconstruction network, PCLossNet can better
explore the differences between point clouds and create more precise recon-
struction results. Experiments on multiple datasets prove the superiority of our
method, where PCLossNet can help networks achieve much lower reconstruction
errors and extract more representative features, with about 4 times faster train-
ing efficiency than the commonly-used EMD loss. Our codes can be found in
https://github.com/Tianxinhuang/PCLossNet.
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1 Introduction

To reconstruct a series of data, a network such as auto-encoder is usually adopted to
predict an output as similar to the original data as possible, which is usually trained
with reconstruction errors between original data and the network output. Reconstruction
errors for 2D images or 1D signals are quite easy to calculate directly with element-
wised mean squared errors (MSE) because their elements such as pixels are arranged
in a certain order. However, matching algorithms are required to synchronize different
data when calculating reconstruction errors for point clouds because permutations of
input and output point sets in reconstruction networks may be different.

Different matching algorithms match points between point clouds according to dif-
ferent rules. Fig. 1-(a) and (b) illustrate the matching processes adopted by two com-
monly used structural losses: the Chamfer Distance (CD) and the Earth Mover’s Dis-
tance (EMD) [4]. CD matches points in one point set with their nearest neighbors in
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Fig. 1. (a) and (b) denote two matching processes of commonly-used CD and EMD losses, while
(c) illustrates the PCLossNet framework.

the other set, while EMD optimizes to find a points bijection with the approximated
minimum matching distance between point clouds. Many works [5,8,19,31,29,13] aims
at improving the network structures to learn more representative features or construct
better shapes, while all of them use the Chamfer Distance (CD) and the Earth Mover’s
Distance (EMD) as basic shape constraints. However, matching processes adopted by
either CD or EMD are actually approximations for the shape differences. Converg-
ing well under matching may not mean the point cloud shapes are totally the same.
Inevitable shape defects may exist due to biases between the pre-defined matching pro-
cess and true shape differences. As illustrates in Fig. 1-(a) and (b), CD may create
non-uniform surfaces because the its matching pays attention to the average neighbor
distances, which allows one point to be neighbors of multiple points of another point set
and lacks constraints for uniformity. Though EMD constructs bijection to create more
uniform reconstructed results, the optimization processes to approximate the minimum
matching distance may have biases and create distortions sometimes. Though some
works introduce discriminator networks on point clouds [13,22,11] to enhance details,
they still use CD or EMD to constrain basic structures of point clouds and are limited
by the matching processes. In this condition, we want to get rid of the limitations of
matching processes by replacing them with a differentiable network structure, in which
way we can learn to train a reconstruction network without matching. In this work,
we propose a novel struture named Point Cloud reconstruction Loss Network (PCLoss-
Net) to train the reconstruction network without matching. As illustrated in Fig. 1-(c),
PCLossNet extracts comparison matrices Mi and Mo from point clouds and evaluate
their shape differences with distances between comparison matrices. To train the net-
works, parameters of the reconstruction network and PCLossNet are updated by turns
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in a generative-adversarial process. Intuitively speaking, in each iteration, PCLossNet
explores the regions with larger reconstruction errors by maximizing distances between
Mi andMo, while the reconstruction network is optimized by minimizing the distances.
The reconstruction network and PCLossNet promote each other to stimulate the poten-
tial of networks. Note that our work is different from existing GAN-based discrimina-
tor constraints because we design PCLossNet not only to improve reconstruction per-
formances simply, but also to replace the pre-defined matching process. More relative
discussions can be found in Sec. 3. Our contributions can be summarized as follows:

– We propose a new differentiable structure named PCLossNet to transform shape
differences between point clouds to errors between extracted comparison matrices.

– By training with a generative adversarial process, PCLossNet can dynamically
search for shape differences between point clouds and constrain the reconstruction
network without any pre-defined matching process;

– Experiments on multiple datasets demonstrate that networks trained with PCLoss-
Net can achieve better reconstruction performances and extract more representative
features with higher classification accuracy.

2 Related Works

2.1 Optimization-based Matching Losses

Point clouds are permutation-invariant, which means the data is irrelevant with the or-
der of single points. Mean Square Error (MSE) commonly used in the reconstruction
of 2D images or 1D signals is not appropriate for point clouds because the order of
reconstructed point clouds may be quite different with the ground truths. Since the raise
of PointNet [17] and PointNet++ [18], more and more works [19,31,14,9] have been
developed to improve the reconstruction performances on point clouds. All of them are
trained based on the Chamfer Distance or the Earth Mover’s Distance [4]. The Chamfer
Distance (CD) is defined as

LCD(S1, S2) =
1

2
(

1

|S1|
∑
x∈S1

min
y∈S2

‖x− y‖2 +
1

|S2|
∑
x∈S2

min
y∈S1

‖x− y‖2), (1)

where S1 and S2 are two point sets. CD is actually the average distance from points in
one set to their nearest neighbors in another set. A same nearest neighbor is allowed for
multiple points for the calculation of CD. With the matching by nearest neighbors, CD
concentrates on the differences between point clouds contours. But it usually constructs
non-uniform surfaces because it lacks constraints for local uniformity.

The Earth Mover’s Distance (EMD) can be presented as

LEMD(S1, S2) = min
φ:S1→S2

1

|S1|
∑
x∈S1

‖x− φ(x)‖2, (2)

where S1 and S2 are two point sets. EMD aims to find an one-to-one optimal bijec-
tion φ from one point set to another by optimizing the minimum matching distances
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between point sets. An optimization process is needed to construct the bijection in each
iteration. In practice, exact computation of EMD is too expensive for deep learning,
even on graphics hardware. In this work, we follow [4] to conduct a (1 + ε) approx-
imation scheme for EMD. The algorithm is easily parallelizable on GPU. EMD can
create more uniform shapes by constructing bijection, while the optimized matching
may cause distortions. Besides, EMD can only be applied to reconstructed output with
the same number of points as input to solve the bijection, which limits its application.
Some recent works [16,25] try different methods to improve CD or EMD, while their
performances are still limited by the matching algorithms. Though DPdist [20] is a
fully-network based training loss without any matching, it is proposed for registration
instead of reconstruction, which is also inflexible due to the requirements of appropriate
pre-training process.

2.2 Generative Adversarial Network

The Generative adversarial network [6] is an appropriate framework to train a network
with another network. They are created to learn a transformation from a prior distribu-
tion such as the Gaussian distribution to the distribution of ground truths. In this way,
sampling from the prior distribution can construct new data. A discriminator is adopted
to judge if the generated data satisfy the same distribution as ground truths. The training
strategy for a basic GAN can be presented as

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))], (3)

where pdata and pz are the distributions of real data and input noise variables, respec-
tively. G is a generation network to transform sampled noise to fake but realistic gener-
ated data, whileD is a discriminator network to distinguish generated data and real data.
Many GANs [3,7,15] have been developed based on the basic generative adversarial
framework. Discriminator proposed in GANs [6] is sometimes introduced to improve
the detail preserved ability on reconstruction-related tasks [22,11,21] of point clouds.
Nevertheless, existing works only use the discriminator as a supplement for structural
losses CD or EMD to improve the reconstruction performances. They are still influ-
enced by the pre-defined matching processes.

3 Methodology

In this section, we introduce the core ideas of our method. The whole pipeline of our
algorithm is shown in Fig. 2. We propose a framework named PCLossNet to extract
comparison matrices Mi and Mo from point clouds Si and So and evaluate their dif-
ferences by errors between corresponding comparison matrices. Details of PCLossNet
are presented in sec 3.1. It is trained together with the reconstruction network in a
generative-adversarial process. The training process is further demonstrated in Alg. 1.
Besides, we also conduct a simple theoretical analysis of our method in sec 3.3.
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Fig. 2. The whole pipeline to train the reconstruction network with PCLossNet which transforms
point clouds differences to the errors between comparison matrices Mi and Mo. Ni and No are
the points numbers of point clouds Si and So, while Nc denote the number of distributions to
extract Mi and Mo, j ∈ {1, 2, ..., Nc}. A.Aggregation Controller and Aggregation processor are
components of PCLossNet, while A.1 and A.2 are two different implements of A.Aggregation
Controller. c© and +© denote the concatenation and element-wise addition, respectively.

3.1 The Architecture of PCLossNet

As illustrated in Fig. 2, PCLossNet plays the important role of extracting comparison
matrices from point clouds. Existing point-based discriminators such as [13,22] predict
scores to evaluate the similarities from point clouds with deep neural networks, which
are totally non-linear structures. By running an adversarial training, the discriminators
are expected to evaluate the shapes differences with the scores. However, same score
may come from different outputs because the mapping from point clouds to scores is
totally non-linear with unlimited searching spaces. Therefore, all existing point-based
discriminators need a matching process to constrain reconstructed point clouds to sim-
ilar shapes with original point clouds, which can reduce the searching spaces of dis-
criminators and avoid the ambiguity of predicted scores as much as possible. They are
actually limited by the biases between matching losses and true shapes differences.

In this condition, we decouple the non-linear discriminator structures into non-linear
Aggregation Controller(AC) module to preserve the adversarial ability, and Aggrega-
tion processor (AP) module extracting comparison matrices Mi and Mo totally based
on 3D Euclidean Space to naturally limit the searching spaces of comparison matrices.
AP module extracts comparison codes Mi and Mo by weighting points with multiple
distributions, while the centers and widths of these distributions are controlled with ag-
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gregation centers C and decay radii R predicted by AC module with MLPs from Si and
So. The number of weighting distributions is defined as Nc in this work. During the
training process, C and R are dynamically adjusted to search for differences between
Si and So. The operations to aggregate points/features by weights in PCLossNet are
similar as those in NetVLAD [2], while they have obvious differences on the specific
network structures. NetVLAD uses a separate group of parameters for the aggregation
around each clustering center, while PCLossNet uses a group of parameters in AC mod-
ule to adjust aggregations around all centers. Besides, NetVLAD is trained end-to-end
by loss, while PCLossNet is adversarially optimized to search for shape differences.
More discussions about AC module and AP module are presented below.

Aggregation Controller. In the Aggregation Controller (AC) module, features from
input Si and reconstructed So are extracted with parameter-shared Multi Layer Percep-
trons (MLPs) and symmetric pooling operations. To search for the differences between
point clouds, we introduce two implements of AC modules: AC module with the SAm-
pling head (ACSA) and AC module with the Fully Connected head (ACFC) to C and
R controlling the positions and widths of distributions to extract comparison matrices.
Structures of ACSA and ACFC are presented in Fig. 2-A.1 and A.2.

Let input be Si, output be So, sampling operation be sam(·), the combination of
MLPs and pooling operation be f(·), the concatenation operation be g(·).

We can present the ACSA as
seeds = sam(Si),

C=seeds+MLPs(g(f(g(f(Si),f(So),seeds)),seeds)),

R =MLPs(g(f(g(f(Si), f(So), seeds)), seeds)),

(4)

while the ACFC can be described as

C,R=FCs(g(f(Si),f(So))), (5)

where C and R are the predicted aggregation centers and corresponding decay radii,
respectively. FCs(·) and MLPs(·) denote the fully-connected layers and MLPs, re-
spectively. Note that we provide two simple organized networks ACSA and ACFC as
examples of AC modules in this work. More effective networks can be designed to
futher improve the performance of PCLossNet.

Aggregation processor. Aggregation processor (AP) module aggregates compari-
son matrices from point clouds on 3D Euclidean Space with multiple distributions con-
trolled by aggregation centers C and decay radii R from AC module. Note that there is
not any network structure in AP module. With provided centers C, decay radii R, and
point cloud S, we can define AP module as follows.

(1) We build the graph G = (V,E), where

V = C ∪ S,E = {< c, s > |∀c ∈ C, ∀s ∈ S}, (6)

when < c, s >= s− c exists for point clouds without direct edge information.
(2) Then we can aggregate the comparison matrices M from G by the distributions

decided by aggregation centers C and decay radii R as

M = {m|m =

N∑
k=1

exp(− ‖e
j
k
‖2

Rj+σ
)∑N

k=1 exp(−
‖ej
k
‖2

Rj+σ
) + δ

· ejk, j ∈ {1 · · ·Nc}}, (7)
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Algorithm 1 Training Process
Input: Dataset Si, the number of iterations iter, the reconstruction network RecNet(·)
for n = 1 to iter do

Calculate output of the reconstruction network:
Sno = RecNet(Sni ).
Fix the parameter of reconstruction network and update PCLossNet by descending gradient:
∇θLLPCLossNet(S

n
o , Sni ).

Fix PCLossNet and update the reconstruction network by descending gradient:
∇θT TPCLossNet(S

n
o , Sni ).

end for

where ejk =< cj , s
k > and ejk ∈ E. N is the points number of S, while Nc is the

number of distributions aggregating comparison matrices, also the number of centers
in C. σ is a tiny constant to ensure the equation still works when Rj → 0. δ is a tiny
constant to protect weights from going out of bounds when the denominator is small.

To ensures each point gets enough weight from distributions, we use the uniformity
constraint to shorten distances between points and their nearest aggregation centers as

LUC = mean
∀s∈S

min
<c,s>∈E

‖c− s‖2. (8)

Besides, we restrain the decay radius R to reduce the decay radii around each center as

LR = ‖R‖22. (9)

3.2 Training of the Reconstruction Network

To train a point cloud reconstruction network, we update parameters of the reconstruc-
tion network and PCLossNet in a generative-adversarial process. Our training algorithm
is presented in Alg. 1. θL and θT are parameters of PCLossNet and the reconstruction
network, respectively. Loss function for the updating of the reconstruction network is

TPCLossNet(Si, So)=‖Mi,Mo‖2 + ε ∗ LUC , (10)

while loss function for the updating of PCLossNet is

LPCLossNet(Si, So) = −log(‖Mi,Mo‖2 + σL) + LUC + ε1 ∗ LR, (11)

where Mi and Mo, LUC and LR are comparison matrices, uniformity constraint and
decay radii constraint mentioned in Sec 3.1. σL is a tiny constant to prevent the gra-
dient of LPCLossNet from explosion when ‖Mi,Mo‖2 → 0. ε and ε1 are weights for
components.LUC is defined in Eq. 10 to ensure each point in reconstructed point clouds
get enough weights to be constrained.

Loss function for the reconstruction network is designed to reduce the error between
comparison matrices, while the loss function for PCLossNet tries to explore more dif-
ferences by increasing that error. We adopt log(·) to adjust the updating of PCLossNet
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dynamically, in which case the gradient would decrease as ‖Mi,Mo‖2 increases. In this
way, PCLossNet is updated slowly when the reconstruction network is weak, fast when
the reconstruction network works well and reaches a small reconstruction error.

3.3 Algorithm Analysis

To intuitively analyze our method, the training process can be modeled as a process of
solving equations. As illustrated in Sec. 3.1, reconstructed output and the ground truths
are abstracted into comparison matrices through Eq. 7. Let ski ∈ Si and sko ∈ So be
k-th point in input and output, c ∈ C and r ∈ R be aggregation center and decay radii.
Then, for the input and reconstructed point clouds in each iteration, we have

‖
∑Ni
k=1 w(ski ,c1,r1)

· ski −
∑No
k=1 w(sko ,c1,r1)

· sko‖2 = σ1
n

‖
∑Ni
k=1 w(ski ,c1,r1)

· ski −
∑No
k=1 w(sko ,c1,r1)

· sko‖2 = σ2
n

...
‖
∑Ni
k=1 w(ski ,cNc ,rNc )

· ski −
∑No
k=1 w(sko ,cNc ,rNc )

· sko‖2 = σNcn ,

(12)

where w(ski ,cj ,rj)
=

exp(−
‖ski −cj‖2
rj+σ

)∑Ni
k=1 exp(−

‖sk
i
−cj‖2
rj+σ

)+δ
as Eq. 7. Nc is the number of aggregation

centers, whileNi andNo are the number of input and reconstructed points, respectively.
σjn is the corresponding distance between comparison matrices around j-th aggregation
center after n-th iteration. We can see that Eqs. 12 is undetermined in a single iteration
because we usually have Nc < Ni and Nc < No to reduce the computational cost.

In each later iteration, a new group of equations are added. For LPCLossNet in
Eq. 11, −log(‖Mi,Mo‖2) searches for equations as independent as possible from for-
mer ones during subsequent iterations, whileLUC andLR improves local independence
in the group of equations. LUC would like to provide a near aggregation center for each
point, while LR tends to shrink the decay radii and concentrates bigger weights on
fewer points. They will lead to uniform spatial positions of aggregation centers and
smaller intersections between their neighbors, which will improve the local indepen-
dence in each group of equations. As a result, the set of equations will approach to be
determined after multiple iterations, which can constrain all points without matching.

4 Experiments

4.1 Datasets and Implementation Details

In this work, three point cloud datasets: ShapeNet [28], ModelNet10 (MN10) and Mod-
elNet40 (MN40) [26] are adopted. Each model consists of 2048 points randomly sam-
pled from the surfaces of original mesh models.

We train networks on train splits of ShapeNet part dataset following FoldingNet [27]
and evaluate performances on both the test split of ShapeNet and MN40 to provide a
robust and exhaustive evaluation. We optimize the reconstruction network by Adam Op-
timizer [12] with a learning rate of 0.0001, while PCLossNet is trained with a learning
rate of 0.005. We compare commonly-used matching losses Chamfer Distance (CD)
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Fig. 3. Qualitative Comparison with matching losses on point clouds. We can see that our methods
have great improvements on reconstruction details over CD and EMD with matching priors.

and Earth Mover’s Distance (EMD) mentioned in Sec. 2.1 with two implements of
PCLossNet: PCLossNet with ACFC (LNFC) and PCLossNet with ACSA (LNSA),
where ACFC and ACSA are defined in Sec. 3.1.

Metrics. To provide a clear and accurate evaluation for the reconstruction perfor-
mance, we adopt multi-scale Chamfer Distance (MCD) proposed by [9] and Hausdorff
distance (HD) following [24] as metrics in this work. Let input point cloud be Si, re-
constructed output point cloud be So, MCD can be defined as

MCD = ξ · CD(Si, So) +
1

|K|
∑
∀k∈K

1

|C|
∑
∀c∈C

CD(Sc,ki , Sc,ko ), (13)

where C denotes centers of evaluated local regions, which is acquired with farthest
point sampling (FPS) [18] from Si, So. CD(·) denotes the Chamfer Distance. K is
a list including multiple k values to control the local region scales. Sc,ki means the
local region on Si with k points around center c. We can see that MCD evaluates both
local and global reconstruction errors with Chamfer Distance, while ξ is a parameter
to control their weights. Here, we have K = {4, 8, 16, 32, 64} around 256 sampled C.
HD can be defined as

HD =
1

2
(max
x∈Si

min
y∈So

‖x− y‖22 +max
x∈So

min
y∈Si
‖x− y‖22). (14)

We can see that HD measures the global worst reconstruction distortions. We use MCD
to comprehensively consider global and local structural differences, and HD to compare
the most obvious shape distortions. In this work, all metrics are multiplied with 102.

Reconstruction Networks. AE [1] and FoldingNet [27] are two classic and com-
monly used point cloud reconstruction networks, which have been used in many works
[19,10,13,30]. In this work, We apply PointNet [17], PointNet++ [18] and DGCNN [23]
to the encoder parts of AE [1] and FoldingNet [27] to construct diverse reconstruction
networks. We use 128-dim bottleneck layers in the encoder parts following AE [1]. Be-
sides, to build stronger reconstruction networks, we divide point clouds into multiple
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Data ShapeNet ModelNet40

RecNet AE Folding
AE

(PN++)
Folding
(PN++)

AE
(DGCNN)

Folding
(DGCNN)

LAE LFolding AE Folding
AE

(PN++)
Folding
(PN++)

AE
(DGCNN)

Folding
(DGCNN)

LAE LFolding

CD MCD 0.32 0.42 0.37 0.34 0.30 0.52 0.31 0.28 0.75 0.83 0.88 0.79 0.76 0.75 0.44 0.39
HD 1.87 4.20 2.50 3.37 1.88 3.84 1.02 1.20 6.08 7.35 7.38 7.55 6.40 7.03 1.69 2.16

EMD MCD 0.25 - 0.26 - 0.21 - 0.23 0.21 0.61 - 0.66 - 0.56 - 0.33 0.32
HD 2.23 - 2.51 - 2.09 - 2.48 2.40 6.18 - 6.47 - 5.66 - 3.82 3.88

LNFC MCD 0.23 0.32 0.25 0.33 0.21 0.69 0.15 0.15 0.58 0.75 0.68 0.76 0.56 1.04 0.23 0.22
HD 1.66 2.71 1.98 2.84 1.65 4.26 1.27 1.22 5.43 6.80 6.32 6.94 5.35 8.08 2.05 1.98

LNSA MCD 0.23 0.33 0.24 0.31 0.20 0.43 0.13 0.14 0.59 0.75 0.66 0.74 0.60 0.74 0.17 0.19
HD 1.66 2.57 1.87 2.50 1.51 3.10 0.65 0.76 5.30 6.65 6.04 6.75 5.30 6.55 1.05 1.37

Table 1. Quantitative Comparisons with matching-based losses on reconstruction networks.
AE(f(·)) or Folding(f(·)) denotes reconstruction networks replacing the encoder parts of AE
or Folding with f(·). For example, AE(PN++) denotes AE network with PN++ encoder. Bold
values denote the best values.

local regions following PointNet++ [18] and apply AE and FoldingNet in each region to
construct Local AE (LAE) and Local FoldingNet (LFolding) networks. To make a fair
evaluation, we retrain all networks under same settings with different training losses.

4.2 Comparisons with Basic Matching-based Losses

In this section, we conduct comparisons on multiple kinds of reconstruction networks
trained with two basic matching-based losses CD and EMD. We do not introduce extra
constraint in this part to make a comparison only between basic structural losses with
matching and our method without matching.

Comparisons on reconstruction errors. The qualitative and quantitative results
are presented in Fig. 3 and Table 1, respectively. We can see that our methods can
achieve lowest reconstruction errors in most conditions and reconstruct models details
much better than CD and EMD, which confirms that they can better constrain shape
differences between point clouds. LNSA usually has better performances than LNFC
because the sampling head adopted in LNSA may be easier to acquire aggregation
centers around complicated shapes than the fully-connected head used in LNFC.

Besides, LNSA has greater improvements on LAE and LFolding networks, which
means that it can tap into greater potential when the reconstruction network is stronger.

Comparisons on unsupervised classification. To further explore the effectiveness
of PCLossNet, we also conduct a comparison on unsupervised classification follow-
ing AE [1] and FoldingNet [27]. Specifically speaking, we train multiple auto-encoders
with different loss methods and use the encoder parts to extract features from point
clouds. Features extracted from train splits of MN10 and MN40 are adopted to train
Supported Vector Machines (SVMs), whose classification accuracies are measured on
test splits to evaluate the distinguishability of features. The results are presented in Ta-
ble 2. We can see that our LNSA and LNFC can cover all best performed cases with
higher classification accuracies, which means that PCLossNet can help the reconstruc-
tion network learn more representative features.
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RecNet AE Folding AE(PN++) Folding(PN++) AE(DGCNN) Folding(DGCNN)

Dataset MN10 MN40 MN10 MN40 MN10 MN40 MN10 MN40 MN10 MN40 MN10 MN40

Methods

CD 90.60 85.92 91.03 85.22 90.38 88.03 91.48 87.01 91.04 87.95 90.81 87.18
EMD 89.49 85.47 - - 90.15 88.07 - - 90.48 87.78 - -
LNFC 91.15 86.08 89.93 84.82 90.71 88.19 91.04 87.26 91.81 87.91 91.26 86.12
LNSA 91.48 86.36 91.70 85.35 92.04 87.54 91.48 86.73 92.37 88.11 91.81 87.50

Table 2. Classification comparisons on MN10 and MN40.

Data SP MN40

RecNet AE Folding LAE LFolding AE Folding LAE LFolding

Metrics MCD HD MCD HD MCD HD MCD HD MCD HD MCD HD MCD HD MCD HD

PUGAN* 19.83 50.37 20.84 54.01 1.61 2.62 1.59 2.67 23.12 50.95 23.92 56.27 2.41 3.89 2.40 3.94
PFNet* 20.15 50.66 20.18 50.65 1.62 2.63 1.59 2.63 23.48 51.28 23.51 51.33 2.43 3.89 2.40 3.89
CRN* 14.36 50.63 20.18 50.65 1.44 2.65 3.10 5.72 17.22 49.26 23.51 51.33 2.16 3.89 3.69 6.92

PUGAN 0.32 1.88 0.36 3.83 0.32 1.02 0.27 1.11 0.73 5.85 0.77 7.29 0.45 1.71 0.38 1.97
PFNet 0.32 1.87 0.41 4.14 0.31 0.99 0.26 0.97 0.74 6.28 0.88 7.55 0.44 1.69 0.35 1.69
CRN 0.31 1.86 0.34 3.17 0.31 1.00 0.26 0.99 0.71 5.66 0.76 7.24 0.44 1.69 0.35 1.76
LNFC 0.23 1.66 0.32 2.71 0.15 1.27 0.15 1.22 0.58 5.43 0.75 6.80 0.23 2.05 0.22 1.98
LNSA 0.23 1.66 0.33 2.57 0.13 0.65 0.14 0.76 0.59 5.30 0.75 6.65 0.17 1.05 0.19 1.37

Table 3. Comparison with existing GAN discriminator losses on point clouds reconstruction. The
symbol * denotes training with only the discriminator and no matching loss.

4.3 Comparisons with Discriminators-based Losses

Some recent works such as PFNet [11], CRN [22] and PUGAN [13] also use dis-
criminators to enhance the reconstruction performances. However, these works are
quite different from PCLossNet because they still use matching-based CD or EMD
loss to constrain basic structural differences. In this section, we make a comparison
with discriminator-based losses from these works in Table 3. We can see that existing
discriminator-based losses show inferior performances over our methods, while they
cannot work without matching-based losses. Our work, especially LNSA can achieve
obvious improvements over even these existing discriminator-based losses, which con-
firms it can break the limitation of existing matching-based reconstruction losses.

4.4 Comparisons on Training Efficiency

In this section, we evaluate the training efficiencies of different loss functions on AE
networks [1], which are measured by the time consumed training a single iteration. The
results are presented in Table 4. We can see that our method LNSA can achieve the best
reconstruction performances while getting nearly 4 times faster than EMD. Though CD
and PFNet loss are faster than LNSA, they get the worst reconstruction results.

To explore the efficiency potential of our method, we also conduct a fast implement
of LNSA named FLNSA. From Alg. 1 we can see that there are two back propagation
processes in an iteration step of LNSA, which actually decreases the training efficiency.
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Fig. 4. Comparisons of the training processes.

In this condition, we randomly give single back propagation process in each iteration to
improve the efficiency. In details, we assign 0.7 probability to train PCLossNet and 0.3
to train the reconstruction network. We can see that FLNSA would get same time ef-
ficiency with CD while getting much better reconstruction performances, which shows
our potential on training efficiency.

Methods CD EMD PUGAN PFNet CRN LNFC LNSA FLNSA

Time(ms) 23 216 77 45 97 56 57 23
MCD↓ 0.32 0.25 0.32 0.32 0.31 0.23 0.23 0.24
HD ↓ 1.87 2.23 1.88 1.87 1.86 1.66 1.66 1.80

Table 4. Training efficiency comparison on AE network. The comparisons are conducted based
on an NVIDIA 2080ti with a 2.9GHz i5-9400 CPU.

4.5 How is the Training Process Going?

To observe the convergence process of PCLossNet, we compare the reconstruction er-
rors on ShapeNet and AE [1] during whole training process between different methods.
The results are presented in Fig. 4. We can see that LNSA and LNFC have relatively
large errors at the beginning of iterations because they need to search for the differences
through training. But they will get lower errors than CD and EMD after enough iter-
ations, which confirms that PCLossNet can help the reconstruction network converge
better through the adversarial process.
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Fig. 5. Ablation study on the number of aggregation centers Nc. left and right vertical axises
measure MCD and HD, while left and right pictures demonstrate results evaluates on ShapeNet
and ModelNet40, respectively.

4.6 Ablation Study

Ablation for components in PCLossNet. To clarify the function of each component
in the loss, we conduct an ablation study here. Llog‖·‖ denotes log operation mentioned
in Sec. 3.2, while LUC and LR are components of the loss function defined in Sec. 3.1.
We can see each module makes sense. Removing anyone will reduce the performances.

L‖·‖ Llog‖·‖ LUC LR
SP MN40

MCD HD MCD HD

X % % % 0.26 1.91 0.66 5.95
X X % % 0.25 1.90 0.62 5.80
X X X % 0.23 1.72 0.59 5.52
X X X X 0.23 1.66 0.59 5.30

Table 5. Ablation study for components in PCLossNet.

Influence of aggregation centers number. The number of aggregation centers Nc
is actually a very important hyper-parameter in PCLossNet, which decides the num-
ber of distributions to extract comparison matrices. To choose an appropriate value for
Nc, we conduct an related ablation study based on AE [1] and LNSA, whose results
are presented in Fig. 5. We use logarithmic coordinates for vertical axises to show the
differences clearer. We can see that the reconstruction network can reach the smallest
reconstruction error when Nc is 128. Though larger Nc has close results, the computa-
tional cost also increase.

Influence of PCLossNet learning rate. The learning rate of PCLossNet is also an
interesting hyper-parameter. It should be higher than the learning rate of the reconstruc-
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elNet40, respectively.

tion network to ensure that PCLossNet can find regions with greater differences in each
iteration, which will help the reconstruction network converge well. However, too large
learning rate may also block the convergence of PCLossNet. To determine the learning
rate of PCLossNet, we conduct an ablation experiment and present it in Fig. 6. We can
see that 0.005 is an proper option for PCLossNet.

5 Conclusion

In this work, we propose a novel learning-based framework named PCLossNet to help
the point cloud reconstruction network to get rid of the limitation of commonly used
matching processes. PCLossNet transforms differences between point clouds to the er-
rors between extracted comparison matrices which are aggregated from point clouds
with multiple distributions dynamically. By decoupling the extraction process into non-
linear Aggregation Controller module and 3D Euclidean space-based Aggregation pro-
cessor, PCLossNet can get over the limitations of existing point-based discriminators
and naturally supports adversarial training. By training in a generative-adversarial pro-
cess together with the reconstruction network, PCLossNet can search for the main dif-
ferences between reconstructed results and original point clouds and train the recon-
struction network without any matching. Experiments on multiple datasets and recon-
struction networks demonstrate reconstruction networks trained with PCLossNet can
outperform those trained with matching-based losses, carrying smaller reconstruction
errors and higher feature classification accuracy.

Acknowledge

We thank all authors, reviewers and the chair for the excellent contributions. This work
is supported by the National Science Foundation 62088101.



PCLossNet 15

References

1. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations and genera-
tive models for 3d point clouds. In: International conference on machine learning. pp. 40–49.
PMLR (2018)

2. Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: Netvlad: Cnn architecture for
weakly supervised place recognition. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 5297–5307 (2016)

3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein gan. arXiv preprint arXiv:1701.07875
(2017)

4. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3d object reconstruction
from a single image. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 605–613 (2017)

5. Gadelha, M., Wang, R., Maji, S.: Multiresolution tree networks for 3d point cloud processing.
In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 103–118
(2018)

6. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial networks. arXiv preprint arXiv:1406.2661
(2014)

7. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training
of wasserstein gans. In: Advances in neural information processing systems. pp. 5767–5777
(2017)

8. Han, Z., Wang, X., Liu, Y.S., Zwicker, M.: Multi-angle point cloud-vae: Unsupervised fea-
ture learning for 3d point clouds from multiple angles by joint self-reconstruction and half-to-
half prediction. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV).
pp. 10441–10450. IEEE (2019)

9. Huang, T., Liu, Y.: 3d point cloud geometry compression on deep learning. In: Proceedings
of the 27th ACM International Conference on Multimedia. pp. 890–898 (2019)

10. Huang, T., Zou, H., Cui, J., Yang, X., Wang, M., Zhao, X., Zhang, J., Yuan, Y., Xu, Y., Liu,
Y.: Rfnet: Recurrent forward network for dense point cloud completion. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision. pp. 12508–12517 (2021)

11. Huang, Z., Yu, Y., Xu, J., Ni, F., Le, X.: Pf-net: Point fractal network for 3d point cloud
completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 7662–7670 (2020)

12. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

13. Li, R., Li, X., Fu, C.W., Cohen-Or, D., Heng, P.A.: Pu-gan: a point cloud upsampling ad-
versarial network. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 7203–7212 (2019)

14. Liu, M., Sheng, L., Yang, S., Shao, J., Hu, S.M.: Morphing and sampling network for dense
point cloud completion. In: Proceedings of the AAAI Conference on Artificial Intelligence.
vol. 34, pp. 11596–11603 (2020)

15. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative ad-
versarial networks. In: Proceedings of the IEEE international conference on computer vision.
pp. 2794–2802 (2017)

16. Nguyen, T., Pham, Q.H., Le, T., Pham, T., Ho, N., Hua, B.S.: Point-set distances for learning
representations of 3d point clouds. In: Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision. pp. 10478–10487 (2021)

17. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d classi-
fication and segmentation. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 652–660 (2017)



16 Huang et al.

18. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learning on point
sets in a metric space. In: Advances in neural information processing systems. pp. 5099–5108
(2017)

19. Rao, Y., Lu, J., Zhou, J.: Global-local bidirectional reasoning for unsupervised representation
learning of 3d point clouds. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 5376–5385 (2020)

20. Urbach, D., Ben-Shabat, Y., Lindenbaum, M.: Dpdist: Comparing point clouds using deep
point cloud distance. In: European Conference on Computer Vision. pp. 545–560. Springer
(2020)

21. Wang, H., Jiang, Z., Yi, L., Mo, K., Su, H., Guibas, L.J.: Rethinking sampling in 3d point
cloud generative adversarial networks. arXiv preprint arXiv:2006.07029 (2020)

22. Wang, X., Ang Jr, M.H., Lee, G.H.: Cascaded refinement network for point cloud comple-
tion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. pp. 790–799 (2020)

23. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph
cnn for learning on point clouds. Acm Transactions On Graphics (tog) 38(5), 1–12 (2019)

24. Wu, C.H., Hsu, C.F., Kuo, T.C., Griwodz, C., Riegler, M., Morin, G., Hsu, C.H.: Pcc arena:
a benchmark platform for point cloud compression algorithms. In: Proceedings of the 12th
ACM International Workshop on Immersive Mixed and Virtual Environment Systems. pp. 1–
6 (2020)

25. Wu, T., Pan, L., Zhang, J., Wang, T., Liu, Z., Lin, D.: Density-aware chamfer distance as a
comprehensive metric for point cloud completion. arXiv preprint arXiv:2111.12702 (2021)

26. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets: A deep
representation for volumetric shapes. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 1912–1920 (2015)

27. Yang, Y., Feng, C., Shen, Y., Tian, D.: Foldingnet: Point cloud auto-encoder via deep grid de-
formation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition. pp. 206–215 (2018)

28. Yi, L., Kim, V.G., Ceylan, D., Shen, I.C., Yan, M., Su, H., Lu, C., Huang, Q., Sheffer, A.,
Guibas, L.: A scalable active framework for region annotation in 3d shape collections. ACM
Transactions on Graphics (ToG) 35(6), 1–12 (2016)

29. Yu, L., Li, X., Fu, C.W., Cohen-Or, D., Heng, P.A.: Pu-net: Point cloud upsampling network.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp.
2790–2799 (2018)

30. Yuan, W., Khot, T., Held, D., Mertz, C., Hebert, M.: Pcn: Point completion network. In: 2018
International Conference on 3D Vision (3DV). pp. 728–737. IEEE (2018)

31. Zhao, Y., Birdal, T., Deng, H., Tombari, F.: 3d point capsule networks. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1009–1018 (2019)


	Learning to Train a Point Cloud Reconstruction Network without Matching

