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1 More Details for the Proposed Method

1.1 More Details for Uncalibrated Photometric Stereo

We adopted a recent uncalibrated photometric stereo (UPS) method, called
SDPS-Net [2], to estimate coarse surface normals and light directions. SDPS-
Net is trained with a synthetic dataset, and we used the publicly available code
and model for inference1.

For each view, SDPS-Net takes the multi-light images and the object mask as
input, and estimate a surface normal map, light directions and light intensities.

1.2 More Details for Stage I

Network Architecture The network architecture of our Stage I is the same
as UNISURF [9].
Training Details We use Adam as optimizer and set learning rate as 0.0001.
For loss weight, we empirically adopt {1, 0.05, 0.005} for α1−3. Different from
UNISURF [9], we utilized the normals estimated by SDPS-Net [2] to regularize
the normals derived from the density field. The normal regularization loss was
added after 1K iterations to stabilize the training. We trained Stage I for 100K
iterations, which took about 12 hours to converge.

1.3 More Details for Stage II

Network Architecture We use 4-layer MLPs with width 128 for normal and
albedo estimation, and a 2-layer MLPs with width 64 for predicting weights of
specular SG basis. An 8-layer MLP with width 256 is used for visibility estima-
tion. We add skip connection for normal, albedo and visibility MLPs at 2-th,
2-th and 4-th layer. We choose ReLU as the activation function.

⋆ Corresponding author
1 https://github.com/guanyingc/SDPS-Net
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Figure S1 shows the detailed network architecture of the four MLPs used in
Stage II. We applied positional encoding with 10 frequency components to embed
both input point x and light direction wi into a higher dimensional space. The
positional encoding is similar to [8]:
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The input of the four MLPs are the encoded point location γ(x) and encoded
light direction γ(wi).
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Fig. S1. Network architecture of the four MLPs in Stage II.

Training Details We use Adam as optimizer for stage II and set learning
rate as 0.0005. For loss weight, we empirically adopt {1, 1, 1, 0.05, 0.01} for β1−5.
To stabilize the training process, we first trained the normal MLP and visibility
MLP for 5000 iterations, fixing weights of other MLPs and light parameters. We
then jointly trained the normal, visibility, albedo, and specular MLPs, as well as
optimize light parameters. We trained Stage II for 150K iterations, which took
about 10 hours to converge.
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2 More Details for the Comparison

2.1 Discussion for the Result on COW

Table 2 of the paper shows that our method performs slightly worse than PJ16 [10]
on COW in the metric of Chamfer distances (i.e., 10.21 vs. 9.25). The main rea-
son is that the camera poses in DiLiGenT-MV benchmark are located at the
upper-hemisphere and slightly look downward, and the objects are placed on
a desk with bottom part invisible. As a result, accurate reconstruction for the
bottom part from images is impossible. Moreover, the bottom surface of COW )
is slightly concave, which further enlarges the final mesh error.

Figure S2 visualizes the mesh reconstruction error. We can see that our
method achieves more accurate reconstruction on the visible surfaces, and most
of the error are in the bottom regions.
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Fig. S2. Visualization of mesh reconstruction errors on COW. We can see that our
method has larger errors on the bottom region, which is invisible in observed images
and cannot be reconstructed accurately.

2.2 Discussion for the Mask Used in MAE Calculation

For fair comparison between different methods or analysis cases, we used the
overlapped mask region for calculating the metrics. Therefore, there may be
some small differences between the values shown in different tables.

In Table 2 of the paper, we measure the mean angular error (MAE) of the
normal estimation using the intersection of input mask and our predicted mask.
This is because our method reconstructs the full shape in a radiance field and
uses projection to get image normals, the boundary regions might not be well
aligned with the ground-truth mask. Figure S3 visualizes that when measures
the normal estimation error with the ground-truth mask, our results will have a
large error on the boundary region which has a thickness of about 1 pixel.

We also show the normal MAE results measured on the ground-truth mask in
Table S1. Despite having larger errors on the boundary, our method still achieves
the lowest average MAE on DiLiGenT-MV benchmark, which clearly verifies the
effectiveness of our method.
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Fig. S3. Normal estimation error measured on the ground-truth mask and the computed
mask of our method. As the computed mask is generate from the density field, there
is a slight misalignment in the boundary region which increases the normal estimation
error of our method.

Table S1. Results of normal MAE calculated with GT mask.

Method BEAR BUDDHA COW POT2 READING Average
PJ16 [10] 12.63 14.58 13.24 15.31 12.23 13.60
LZ20 [7] 4.45 11.64 4.13 6.79 8.74 7.15
Ours 4.39 11.31 4.79 6.29 8.89 7.13

2.3 More Comparisons with Neural Rendering Methods

More Qualitative Comparisons Figure S4 and Figure S5 show the vi-
sual comparisons on two objects from DiLiGenT-MV benchmark. Our method
achieves the best rendering and normal reconstruction results.

3 More Analysis for the Proposed Method

3.1 Improvement of Light Estimation

In Stage II, our method jointly optimizes the lights, normals and BRDFs. Ta-
ble S2 shows the refinement of light direction and light intensity over the ini-
tialization estimated by SDPS-Net [2]. Our method significantly improves the
estimation of SDPS-Net, reducing the the average MAE of light direction from
6.89 to 2.95, and average relative error of light intensity from 0.08 to 0.04.

3.2 Effect of Different Combinations of View and Light Number

To further analyze the effect of input view and light numbers, we trained our
method with three different view numbers (i.e., 5, 10, and 15). The camera dis-
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Fig. S4. More comparison with neural rendering methods on BUDDHA from DiLiGenT-
MV benchmark.
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Fig. S5. More comparison with neural rendering methods on READING from
DiLiGenT-MV benchmark.

Table S2. Improvement of light direction and intensity estimation compared to SDPS-
Net [2].

Light Direction MAE↓ Light Intensity Error↓
Method BEAR BUDDHA COW POT2 READING Average BEAR BUDDHA COW POT2 READING Average
SDPS-Net 4.90 7.17 8.55 4.73 9.09 6.89 0.10 0.06 0.11 0.05 0.10 0.08
Ours 2.27 2.75 2.59 2.89 4.26 2.95 0.04 0.03 0.06 0.05 0.03 0.04
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tribution of the DiLiGenT-MV benchmark and the synthetic dataset are shown
in Fig. S6.

For each input view number, we experimented with four different light num-
bers (i.e., 2, 4, 8, and 16). Note that the test camera views are the same for all
experiments.

Table S3 shows the normal estimation results of our method on two chal-
lenging objects (one real object READING and one synthetic object BUNNY )
with different number of views and lights. We can see that given more input
views and/or light numbers can improve the shape reconstruction results, and
our method can achieve robust performance using just a sparse number of views
and lights.

Take results on READING as an example, give 5 views and 8 lights, our
method achieves a MAE of 11.52, which significantly outperforms existing neural
rendering methods trained with 15 views (see Table 4 of the paper, where the
best performing method UNISURF [9] achieves a MAE of 19.72).

5 views 10 views 15 views

(a) Camera distribution in DiLiGenT-MV benchmark

(b) Camera distribution in the synthetic dataset

Fig. S6. Visualization of the camera distributions for setups with different input views.
Training and testing views are shown in blue and red color, respectively.

Table S3. Results of our method on normal estimation error with different combinations
of view and light numbers.

READING BUNNY
# Lights 5 Views 10 Views 15 Views 5 Views 10 Views 15 Views

2 24.48 18.33 18.52 19.20 14.52 13.39
4 14.75 11.58 11.58 9.66 7.98 6.74
8 11.52 9.63 9.99 7.37 6.05 5.38
16 11.09 9.17 9.44 7.05 5.20 5.28
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3.3 Effect of Different BRDF Parameterizations

As we found it difficult to model the specular effects of real-world objects by
directly estimating the roughness parameter of the Microfacet model, we model
the specular reflectance with a weighted combination of specular basis follow-
ing [3,6]. Table S4 compares the results of methods using Microfacet model and
specular basis on DiLiGenT-MV benchmark. We can see that the method using
specular basis achieves better results in both image quality and shape recon-
struction, which justifies the design of our method.

Table S4. Results of our method on DiLiGenT-MV benchmark with BRDF parame-
terizations.

BRDF BEAR BUDDHA COW POT2 READING BUNNY Average
Modeling PSNR↑ SSIM↑ MAE↓ PSNR↑ SSIM↑ MAE↓ PSNR↑ SSIM↑ MAE↓ PSNR↑ SSIM↑ MAE↓ PSNR↑ SSIM↑ MAE↓ PSNR↑ SSIM↑ MAE↓ PSNR↑ SSIM↑ MAE↓
Microfacet 35.59 0.9836 3.21 28.96 0.9641 10.28 31.19 0.9754 4.21 39.45 0.9840 5.75 24.37 0.9692 9.07 22.76 0.9817 6.44 30.39 0.9763 6.49
Ours 35.67 0.9837 3.25 29.58 0.9670 10.20 37.06 0.9890 4.12 40.01 0.9860 5.73 24.89 0.9725 8.87 25.88 0.9871 5.24 32.18 0.9809 6.24

3.4 Effect of Different Material Types

To further investigate the results of our method on materials with different
levels of specularity, we evaluated our method on BUNNY rendered with four
strengths of specularity, ranging from diffuse to highly specular (denoted as A,
B, C, and D). Table S5 and Fig. S7 show the results of our method on these
four materials. We can see that our method achieves similar results on these four
objects, indicating that our method is robust to different material types.

Table S5. Analysis on the effect of different material types on “BUNNY ”.

Render Normal MAE↓ Shape Light Dir MAE↓
Material Type PSNR↑ SSIM↑ LPIPS↓ SDPS Stage I Ours Chamfer Dist↓ SDPS Ours

A 27.79 0.9896 0.54 10.80 8.03 5.41 4.89 9.33 1.78
B 27.61 0.9896 0.53 10.31 7.58 5.38 4.77 9.30 2.57
C 26.97 0.9888 0.55 10.53 7.91 5.55 5.03 9.33 2.49
D 26.02 0.9879 0.67 10.69 7.86 5.22 4.92 9.33 2.08

4 More Details for the Datasets

4.1 Details of the DiLiGenT-MV Benchmark

Dataset Details DiLiGenT-MV benchmark contains five objects, called BEAR,
BUDDHA, COW, POT2, and READING. For each object, images are captured
from 20 evenly distributed cameras from the same elevation (see Fig. S8 (a)) .
For each view, 96 images are taken under different single directional lights with
different light intensities (see Fig. S8 (b)).
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Fig. S7. Results of our method on materials with different levels of specularity. From
top to bottom show the results on object A, B, C, and D. Column 1 shows the ground-
truth image, and Column 2–6 show the rendered images, estimated albedo, specular
component, visibility, and normals. Column 7–8 shows the normal estimation error and
the ground-truth normals.
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(a) Camera views (b) Distribution of light direction (left) and intensity (right)

Fig. S8. Camera and light distribution in DiLiGenT-MV benchmark. The object is
scaled up for 5× for easier visualization. (a) The object is located at the origin, and
the cones indicate the camera poses (blue for training and red for testing views). (b)
For each view, 96 images under different single light directions are captured. At the
left, the position of the red point indicates the light direction. At the right, the light
intensities are normalized to [0, 1] and visualized with pseudo color.
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Data Processing Following conventional UPS setup, we assume an unknown
white directional lights setup. As we do not have access to ground-truth light
intensities, we normalize the original images with light intensities predicted by [2]
when training Stage I. In Stage II, we will refine light intensities during the joint
optimization. To train neural rendering methods on this dataset, we normalized
images according to the ground-truth light intensities.

We cropped the original images with a resolution of 612× 512 into 400× 400
images to remove the background for each object.

4.2 Details of the Synthetic Dataset

Rendering Details We rendered two complex objects (i.e., BUNNY 2 and
ARMADILLO3) under both PS lighting, denoted as SynthPS dataset, and en-
vironment lighting, denoted as SynthEnv dataset, via Mitsuba [4]. The objects
were rescaled to within a [−1, 1] bounding box, and images with a resolution of
512× 512 were rendered.

(a) Camera distribution (b) Environment map used for SynthEnv dataset

Fig. S9. (a) Camera distribution used in the synthetic dataset, where 15 training views
are visualized in blue color and 5 testing view are in red color. (b) An environment
map used for rendering SynthEnv dataset.

Camera & Light Distribution We used the same camera distribution for
SynthEnv dataset and SynthPS dataset. We randomly sampled 20 camera views
on the upper hemi- sphere, where 15 views for training and 5 views for test-
ing (see Fig. S9 (a)). For SynthPS dataset, we use the same light distribution
as DiLiGenT-MV benchmark for each view, except that we set the same light
intensity for each light. For SynthEnv dataset, we used an indoor environment
map (see Fig. S9 (b)) for both objects.

5 Applications

Our method jointly estimates surface normals, spatially-varying BRDFs, and
lights. After optimization, the reconstructed object can be used for novel-view
2 https://www.cgtrader.com/free-3d-print-models/art/sculptures/all-your-egg-are-

belong-to-us
3 http://graphics.stanford.edu/data/3Dscanrep/
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rendering, relighting, and material editing. Figure S10 shows the scene decom-
position, material editing, and relighting results for a novel view of objects from
DiLiGenT-MV benchmark.

Please check the supplementary video for more results.

GT Image Our Image Albedo Specular Visibility Editing 1 Editing 2 Relighting 1 Relighting 2

Fig. S10. Scene decomposition results of our method and applications. Columns 1–
2 show the ground-truth and rendered images. Columns 3–5 show the reconstructed
albedo, specular component, and visibility. Columns 6–7 edit the albedo and specular
component of the objects, respectively. Columns 8–9 are two relighting results.
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