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Abstract. In this supplementary document, we first describe our custom
differentiable rendering function (Section 1). Then, we present additional
model insights (Section 2) as well as quantitative evaluation details (Sec-
tion 3). Finally, we provide implementation details (Section 4), including
network architectures, design choices and training details.

1 Custom differentiable rendering

Our output images correspond to the soft rasterization of a textured mesh on top
of a background image. We observe divergence results when learning geometry
from raw photometric comparison with the standard SoftRasterizer [11] and thus
propose two key changes. In the following, given a mesh M and a background
B, we describe our rendering function R producing the image Î = R(M,B). We
first present SoftRasterizer formulation and its limitations, then introduce our
modifications. In the following, we write pixel-wise multiplication with � and
the division of image-sized tensors corresponds to pixel-wise division.

SoftRasterizer formulation. Given a 2D pixel location i, the influence of a
face j is modeled by an occupancy function:

OSR(i, j) = sigmoid
(ν(i, j)

σ

)
, (1)

where σ is a temperature, ν(i, j) is the signed Euclidean distance between pixel i
and projected face j. Let us call L− 1 the maximum number of faces intersecting
the ray associated to a pixel and sort, for each pixel, the intersecting faces by
increasing depth. Image-sized maps for occupancy O`, color C` and depth D` are
built associating to each pixel the `-th intersecting face attributes. Background
is modeled as additional maps such that OL = 1,CL = B, and DL = dbg is a
constant, far from the camera. The SoftRasterizer’s aggregation function CSR

merges them to render the final image Î:

CSR(O1:L,C1:L,D1:L) =

L∑
`=1

O` � exp(D′`/γ)∑
kOk � exp(D′k/γ)

�C`, (2)

where γ is a temperature parameter, D′` = dfar−D`

dfar−dnear and dnear, dfar correspond

to near/far cut-off distances. This formulation hence relies on 5 hyperparameters
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(σ, γ, dnear, dfar, dbg) and default values are σ = γ = 10−4, dnear = 1, dfar = 100

and
dfar−dbg

dfar−dnear
= ε = 10−3.

The formulation introduced in Equation (2) has one main limitation: gradients
don’t flow well through O1:L obtained by soft rasterization, and thus vertex
positions cannot be optimized by raw photometric comparison. The simple case
of a single face on a black background gives:

Î =
O1 � eD

′
1/γ

O1 � eD
′
1/γ + eε/γ

�C1 ≈
O1 � eD

′
1/γ

O1 � eD
′
1/γ
�C1 = C1, (3)

for almost all O1,D
′
1. Indeed, considering x, η > 0, we have xe(ε+η)/γ � eε/γ

iif x � e−η/γ. Even in the best case where η = ε = 10−3 (i.e., the object is
close to dfar), this holds for all x � e−10 ≈ 4 × 10−5! We found that tuning γ
was not sufficient to mitigate the issue, one would have to tune γ, dnear, dfar, dbg

simultaneously to enable the optimization of the vertex positions.

Our layered formulation. Inspired by layered image models [9,14], we propose
to model the rendering of a mesh as the layered composition of its projected
face attributes. More specifically, given occupancy O1:L and color C1:L maps, we
render an image Î through the classical recursive alpha compositing:

C(O1:L,C1:L) =

L∑
`=1

[ L∏
k<`

(1−Ok)
]
�O` �C`. (4)

This formulation has a clear interpretation where color maps are overlaid on top of
each other with a transparency corresponding to their occupancy map. Note that
we choose to drop the explicit depth dependency as all 3D coordinates (including
depth) of a vertex already receive gradients by 3D-to-2D projection. Our layered
aggregation used together with the SoftRasterizer’s occupancy function OSR

results in face inner-borders that are visually unpleasant. We thus instead use
the occupancy function introduced in [3] defined by:

O(i, j) = exp(min(0,
ν(i, j)

σ
)). (5)

Compared to OSR, this function yields constant occupancy of 1 inside the faces.
In addition to its simplicity, our differential renderer has two main advantages
compared to SoftRasterizer. First, gradients can directly flow through occupancies
O1:L and the vertex positions can be updated by photometric comparison. Second,
our formulation involves only one hyperparameter (σ) instead of five, making it
easier to use.

2 Model insights

2.1 Progressive conditioning

Figure 1 shows the results obtained on CompCars [18] at the end of each stage
of the training. Given an input image (leftmost column), we show for each
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Fig. 1: Progressive conditioning on CompCars [18]. Given an input image (leftmost
column), we show for each training stage, from left to right, a side view of the predicted
shape, the texture image and the background image.

training stage the predicted outputs. From left to right, they correspond to a
side view of the shape, the texture image and the background image. We can
observe that all shape, texture and background models gradually specialize to
the instance represented in the input. In particular, this allows us to start with
a weak background model to avoid degenerate solutions and to end up with a
powerful background model to improve the reconstruction quality. Also note how
all the texture images are aligned.

2.2 Neighbor reconstruction

When computing the neighbor reconstructions, we explicitly find neighbors that
have a viewpoint different from the predicted viewpoint. More specifically, for a
given input, we compute the angle between the predicted rotation matrix and
all rotation matrices of the memory bank. Following standard conventions, such
an angle lies in [0◦, 180◦]. Then, we select a target angle range as follows: we
split the range of angles [20◦, 180◦] into a partition of V uniform and continuous
bins, and we uniformly sample one of the V angle ranges. Finally, we look for
neighbors in the subset of instances having an angle within the selected range.
In all experiments, we use V = 5.

We use a total angle range of [20◦, 180◦] instead of [0◦, 180◦] to remove
instances having a similar pose. Note that we first tried to find neighbors of
different poses without further constraint (which amounts to using V = 1) but
we found that learned latent codes were specialized by viewpoints, e.g ., front /
back view images corresponding to a shape mode with unrealistic side views, and
side view images corresponding to a shape mode with unrealistic front / back
views.
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(a) Optimization in [8] (b) Optimization in [4, 7, 17]

Fig. 2: Prior optimizations for joint 3D/pose learning.

2.3 Joint 3D and pose learning

We analyze prior works on joint 3D and pose learning, illustrated in Figure 2, and
compare them with our proposed optimization scheme, illustrated in Figure 3.
Prior optimization schemes can be split in two groups: (i) learning through
the minimal error reconstruction [8], and (ii) learning through an expected
error [4, 7, 17].

In [8], all reconstructions associated to the different pose candidates are
computed and both 3D and poses are updated using the reconstruction yielding
the minimal error (see Figure 2a). We identified two major issues. First, because
the other poses are not updated for a given input, we observed that a typical
failure case corresponds to a collapse mode where only a single pose (or a small
subset of poses) is used for all inputs. Indeed, there is no particular constraint
that encourages the use of all pose candidates. Second, inference is not efficient
as the object has to be rendered from all poses to find the correct object pose.

In [4, 7, 17], 3D and poses are updated using an expected reconstruction loss
(see Figure 2b). While this allows to constrain the use of all pose candidates
with a regularization on the predicted probabilities, we identified one major
weakness common to these frameworks. Because the 3D receives gradients from
all views, we observed a typical failure case where the 3D tries to fit the target
input from all pose candidates yielding inaccurate texture and geometry. We
argue such behaviour was not observed in previous works as they typically use a
symmetry prior which prevents it from happening. Note that CMR [4] proposes
to directly optimize for each training image a set of parameters corresponding
to the pose candidates. This procedure not only involves memory issues as the
number of parameters scales linearly with the number of training images, but also
inference problems for new images. To mitigate the issue, they propose to use
the learned poses as ground-truth to train an additional network that performs
pose estimation given a new image.

In contrast, our proposed alternate optimization, illustrated in Figure 3,
leverages the best of both worlds: (i) 3D receives gradients from the most likely
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(a) 3D-step (b) P-step

Fig. 3: Our alternate 3D / pose optimization. Compared to prior works, we propose
an optimization that alternates between 2 steps. (a) We update the 3D using the most
likely pose candidate (3D-step). (b) We update the pose candidates and associated
probabilities using the expected loss (P-step).

reconstruction, and (ii) all poses are updated using an expected loss. In practice,
we alternate the optimization every new batch of inputs, and we define one
iteration as either a a 3D-step or a P-step.

3 Quantitative evaluation

3.1 ICP alignment for better 3D evaluation

In the main paper, we align shapes using our gradient-based version of the
Iterative Closest Point (ICP) [1] with anisotropic scaling before evaluating 3D
reconstructions. For consistency, we use the same protocol across benchmarks
and advocate to do so for future comparisons. First, meshes are centered and
normalized so that they exactly fit inside the cube of unit length [−0.5, 0.5]3; this
is important to obtain results that are comparable. Second, we sample 100k points
on the mesh surfaces. Third, we run our ICP implementation which minimizes
by gradient descent the Chamfer-L2 distance between the point clouds by jointly
optimizing 3 translation parameters, 6 rotation parameters [19] and 3 scaling
parameters. In practice, we use Adam optimizer [10], a learning rate of 0.01 and
100 iterations. Note that we use this gradient-based version of ICP instead of the
classical iterative formulation as we found it to diverge when optimizing scale.

We argue that an ICP pre-processing is crucial for an unbiased 3D reconstruc-
tion evaluation and provide real examples in Figure 4 to support our claim. Rows
correspond to different transformations of the same canonical shape, and for
each row, we show: the transformation used, the resulting 3D shape, a rendering
example as well as Chamfer-L1 distance to the canonical shape. We overlay the
visuals with green contours representing the canonical shape and the canonical
rendering for easier comparisons. We can make two important observations. First,



6 T. Monnier et al.

Fig. 4: 3D reconstruction evaluation with and without ICP. Rows correspond to
results obtained for transformed versions of a canonical shape and columns correspond
to, from left to right, the transformation used, resulting 3D shape, a rendering example
and Chamfer-L1 distance to the canonical shape. Green contours represent the shape
and rendering from the canonical object for visual comparisons.

although all the transformed shapes are excellent 3D reconstructions of the
canonical shape, they result in dramatically poor performances. As a comparison,
these performances are similar to our ShapeNet results with ICP when the model
outputs degenerate reconstructions. Pre-processing the shapes using an ICP
with anisotropic scaling mitigates this issue. Second, as shown by the rendering
examples, for all these different shapes, we can find a pose that yields almost
identical renderings. This hence emphasizes the numerous shape/pose ambiguities
that arise from a given rendered image. As a result, it is extremely unlikely that
a fully unsupervised SVR system predicting from a single image both the 3D
shape and the pose will recover the exact pair of shape/pose used for annotations.
In this case, the cameras used for rendering are the same and we do not even
consider focal variations, which raises even more ambiguities.

3.2 ShapeNet results without ICP

For completeness, we provide quantitative results obtained without ICP on the
ShapeNet benchmark in Table 1. We indicate the supervision used and visually
separate methods using multi-view supervision. In addition to methods compared
in the main paper, we report (i) results from category-agnostic versions (Cat.
agn) of DVR [16] and SoftRas [11] presented in [16] and (ii) divergence results
obtained by removing silhouette supervision from DVR and SoftRas.
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Method Ours SDF-SRN DVR DVR SoftRas DVR DVR SoftRas
Cat. agn. X X
MV X X X X X
CK X X X X X X X
S X X X X X

airplane 0.186 0.173 0.157 Div. Div. 0.151 0.190 0.149
bench 0.257 - 0.386 Div. Div. 0.232 0.210 0.241
cabinet 0.284 - 0.849 Div. Div. 0.257 0.220 0.231
car 0.251 0.177 0.282 Div. Div. 0.198 0.196 0.221
chair 0.543 0.333 0.464 Div. Div. 0.249 0.264 0.338
display 0.344 - 0.968 Div. Div. 0.281 0.255 0.284
lamp 0.987 - 0.688 Div. Div. 0.386 0.413 0.381
phone 0.456 - 1.412 Div. Div. 0.147 0.148 0.131
rifle 0.504 - 0.528 Div. Div. 0.131 0.175 0.155
sofa 0.335 - 0.665 Div. Div. 0.218 0.224 0.407
speaker 0.356 - 0.535 Div. Div. 0.321 0.289 0.320
table 0.351 - 0.442 Div. Div. 0.283 0.280 0.374
vessel 0.384 - 0.400 Div. Div. 0.220 0.245 0.233

mean 0.403 - 0.598 Div. Div. 0.236 0.239 0.266

Table 1: ShapeNet comparison without ICP. We report Chamfer-L1 ↓, supervisions
are: Multi-Views, Camera or Keypoints, Silhouettes. We separate methods using multi-
views and best results are highlighted in each group.

4 Implementation details

4.1 Modeling

Network architecture. We use the same neural network architecture for all
experiments. The encoder is composed of 4 CNN backbones followed by separate
Multi-Layer Perceptron (MLP) heads predicting a rendering parameter. More
specifically, the 4 backbones are respectively used to predict: (i) shape code zsh

and scale s; (ii) texture code ztx; (iii) background code zbg; (iv) rotations r1:K ,
translations t1:K , and pose probabilities p1:K . Note that using a shared backbone
instead of separated ones also yields great results and is advocated for decreasing
the memory footprint and training time; the major benefit from using separated
backbones is to produce slightly more detailed textures and background. We
follow prior works in SVR [4,5,12,16] and use randomly initialized ResNet-18 [6]
as backbone. Each MLP head has the same architecture with 3 hidden layers
of 128 units and ReLU activations. The last layer of the MLP heads for shape,
texture and background codes is initialized to zero to avoid discontinuity when
increasing the size of the latent codes. The final activation of the MLP heads for
scale, rotation, and translation is a tanh function and the output is scaled and
shifted using predefined constants in order to control their range (see Table 2 for
selected ranges). The learnable parts of the decoder are the shape deformation
network sθ and the two CNN generators tθ and bθ which respectively output
64× 64 images for texture and background. The MLP modeling the deformations
has 3 hidden layers, ReLU activations and 128 units for real images; we use an
increased number of units for ShapeNet (512) which provides a small boost in
performances. The CNN generators share the same architecture which is identical
to the generator used in GIRAFFE [15]. We refer the reader to [15] for details.
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Design type ShapeNet Real-image

ellipsoid scale 0.4 0.6
camera f = 3.732 fov = 30◦

sx/sy/sz 1± 0.5 1± 0.3
tx/ty 0± 0.5 0± 0.3
tz (depth) 2.732 2.732± 0.3
ra (azimuth) [0◦, 360◦] [0◦, 360◦]
re (elevation) 30◦ [−10◦, 30◦]
rr (roll) 0◦ [−30◦, 30◦]

Table 2: Design choices. Following standard practices [11, 16] on ShapeNet [2], we
keep the default rendering values used to generate the images for the focal length f , the
distance to the camera tz and the elevation re. For real images, we keep the classical
value of 2.732 for the distance to the camera tz and use a field of view (fov) of 30◦.
Note that we did not finetune these parameters, they were selected once through visual
comparisons on a toy example.

Other design choices. In all experiments, the predefined anisotropic scaling
used to deform the icosphere into an ellipsoid is [1, 0.7, 0.7]. In Table 2, we
detail other design choices that are specific to all categories of ShapeNet [2]
(second column) or all real-image datasets (third column). This notably includes
a predetermined global scaling of the ellipsoid, a camera defined by a focal length
f or a field of view (fov), as well as scaling, translation and rotation ranges.

4.2 Training

In all experiments, we use a batch size of 32 images of size 64× 64 and Adam
optimizer [10] with a constant learning rate of 10−4 that is divided by 5 at
the very end of the training for a few epochs. The training corresponds to 4
stages where latent code dimensions are increased at the beginning of each
stage and the network is then trained until convergence. We use dimensions
0/2/8/64 for the shape code, 2/8/64/512 for the texture code, and 4/8/64/256
for the background code if any. In line with the curriculum modeling of [13], we
found it beneficial for the first stage to gradually increase the model complexity:
we first learn to position the fixed ellipsoid in the image, then we allow the
ellipsoid to be deformed, and finally we allow scale variabilities. In particular,
we found this procedure prevents the model to learn prototypical shapes with
unrealistic proportions. In the following, we describe other training details specific
to ShapeNet [2] benchmark and real-image datasets.

ShapeNet dataset. We use the same training strategy for all categories. We
train the first stage for 50k iterations, and each of the other stage for 250k
iterations, where one iteration corresponds to either a 3D-step or a P-step of
our alternate optimization. We do not learn a background model as all images
are rendered on top of a white background. However, we found that our system
learned in such synthetic setting was prone to a bad local minimum where
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the predicted textures have white regions that accommodate for wrong shape
prediction. Intuitively, this is expected as the system has no particular signal to
distinguish white background regions from white object parts. To mitigate the
issue, we constrain our texture model as follows: (i) during the first stage, the
predicted texture image is averaged to yield a constant texture, and (ii) during
the other stages, we occasionally use averaged textures instead of the real ones.
More specifically, we sample a Bernoulli variable with probability p = 0.2 at each
iteration and average the predicted texture image in case of success. We found
this simple procedure to work well to resolve such shape/texture ambiguity.

Real-image datasets. We use the same training strategy for all real-image
datasets. We train each stage for roughly 750k iterations, where one iteration ei-
ther corresponds to a 3D-step or a P-step of our alternate optimization. Learning
our structured autoencoder in such real-image scenario, without silhouette nor
symmetry constraints, is very challenging. We found our system sometimes falls
into a bad local minimum where the texture model is specialized by viewpoints,
e.g ., dark cars always correspond to a frontal view and light cars always corre-
spond to a back view. To alleviate the issue, we encourage uniform textures by
occasionally using averaged textures instead of the real ones during rendering, as
done on the ShapeNet benchmark. More specifically, we sample a Bernoulli vari-
able with probability p = 0.2 at each iteration and average the predicted texture
image in case of success. We observed that it was very effective in practice, and
we also found it helped preventing the object texture from modeling background
regions. We do not use such technique in the last stage to increase the texture
accuracy.
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