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1 Boundary Triplet Margin Loss with Patch-Based
Sampling Strategy in [2]
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Fig. 1. The visualization of patch-based sampling strategy from [2]. Semantic labels are
firstly divided by kernel of size K ×K to formulate triplets for computing semantics-
guided triplet loss. Within a patch, green pixel represent the anchor, gray pixels are
its positives and black pixels are its negatives. The yellow line represents the semantic
boundary within this patch. With the sampled triplets, the positive distance d+b and
negative distance d−b for this anchor are computed with the normalized depth features.

Semantic labels are firstly divided into patches by a kernel of size K × K
and stride of one. The centers of patches are sampled as anchors, PB . Within
each patch, for its anchor, b ∈ PB , positives, P+

b , are sampled from pixels of
the same class as anchor b, while negatives, P−b are sampled from pixels of
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different classes from anchor b. The visualization of patch-based sampling process
is shown in Fig 1. A triplet margin loss is computed with sampled triplets. Given
the normalized depth feature Fd, positive distance d+b /negative distance d−b are
defined as the distance between anchor and positives/negatives in feature space:

d+b =
1

|P+
b |

∑
b+∈P+

b

(
√

(Fd(b)− Fd(b+))2) (1)

d−b =
1

|P−b |
∑

b−∈P−
b

(
√

(Fd(b)− Fd(b−))2) (2)

Then, for each boundary anchor b ∈ PB , a triplet marginal loss is defined as:

L(Pb) = max(0,m + (d+b − d−b )) (3)

where m = 0.3 is the margin to separate positive distance, d+b , and negative
distance, d−b , which are defined in Eq 1 and Eq 2. Concurrently, a boundary
region mask, B, is generated to solve misclassification problem. At anchor b,
the value of boundary mask is one if the number of positives and negatives of
anchor b are larger than threshold T in a patch: B(b) = I[|P+

b |, |P
−
b | > T ]. The

final semantics-guided boundary triplet margin loss is applied only on boundary
regions, which is defined as:

LBT =
∑
b∈PB

I[|P+
b |, |P

−
b | > T ] · L(Pb)

I[|P+
b |, |P

−
b | > T ]

(4)

where I is the indicator function, and T = K − 1 with K = 5 as that in [2].
The generated boundary region mask, B, is employed to assist our proposed
minimum-distance based candidate sampling strategy by identifying the non-
boundary region of each instance.

2 Cross-Task Similarity Computation Process

The visualization of cross-task similarity computation [2] is shown in Fig 2.
Since such cross-task similarity is computed from the the feature of depth and
segmentation at the same spatial location, it adequately helps aligning semantic
boundaries with depth boundaries. Such alignment between semantic boundaries
and depth boundaries can be affected by extra local neighboring information.
Thus, applying window partition on the input query-key-value triplet could blur
depth boundary, which might further lead to error at the boundaries of semantic
segmentation. Therefore, we maintain the computation process as that in [2].
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Fig. 2. The visualization of cross-task similarity computation [2]. Here, this computa-
tion process is illustrated on depth feature. The inputs are the key-value pair of depth
feature and the query of semantic feature.
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Fig. 3. The Detailed Schematic of IC-MHA block. Output Channel dimension:
out ch = in ch × num head × exp ratio, where num head is the number of atten-
tion heads and exp ratio is the expansion ration of each head.
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3 Detailed Schematic of IC-MHA module.

Detailed Schematic of IC-MHA module is shown in Fig 3.

4 Additional Discussions

4.1 Discussion on Proposed IC-MHA Module

The Role of Query-key-value Triplets in Our IC-MHA Module. Inside
of our proposed IC-MHA module, intra-task local attention and cross-task at-
tention is computed from projected query-key-value triplet of task-specific fea-
tures. Only one query-key-value triplet is linearly projected for the feature of
each task. The reason, besides computational efficiency, is that we would like
the value of task-specific feature, {Vt|t ∈ {D,S}}, to serve as the private infor-
mation of each task, which can also be viewed as the representation for task-
specific feature uniqueness. Then, the query and key of task-specific feature,
{(Qt,Kt)|t ∈ {D,S}} serves as the public information for computing intra-task
local similarity and cross-task similarity.

Why Applying Multi-size Window Partition Process for Local Atten-
tion Computation. For both tasks, the feature within local neighborhood of
the same instance is similar. Thus, both tasks could gain performance boost
from local feature similarity within the same window. But, if the feature within
a window is from different objects, such local feature similarity could be erro-
neous. One solution for this issue is to apply smaller windows at cross-instance
region and bigger windows within an instance. Therefore, we firstly perform the
projection of query-key-value triplet and then apply multi-size window parti-
tion on the projected triplets of each head, which is different from that in [3]:
applying uniform-size window partition on input features then projecting the
query-key-value triplet. To form the final attention map, our local attention,
which is computed using different window size, is adaptively incorporated by a
projection layer. From the perspective of depth estimation, the local depth vari-
ation for different objects is dissimilar: the depth variation for close-to-camera
objects within a window is naturally smaller than that for far-away objects with
the window of the same size. This implies that partitioning depth feature with
smaller windows are more optimal for close-to-camera objects, while for far-
away objects, larger windows are more suitable. Therefore, applying multi-size
window partition on local attention computation encourages the distribution of
depth feature closer to that of the actual depth value.

4.2 Discussion on Proposed Minimum-distance Based Candidate
Mining Strategy

The Relationship of Sampled Boundary and Non-boundary Triplets.
The core idea of our proposed minimum-distance based candidate mining strat-
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egy is to encourage the distribution of depth feature more aligned with that
of depth value within each instance. Since the prerequisite for refining depth
feature at non-boundary region is a clear feature separation between boundary
region of neighboring instances, the boundary triplets [2] are preserved. Then,
the positives and negatives for non-boundary anchors are sampled from their
closest boundary anchors’ positives and negatives. In this way, the feature of non-
boundary anchors are more similar to that of boundary pixels without damaging
the cross-instance feature separation at boundary regions. The visualization of
non-boundary triplet and its corresponding boundary triplet is shown in Fig 4.

b

b

Fig. 4. The visualization of final triplets for boundary triplet loss LBT [2](dark green
box) and proposed hardest non-boundary triplet loss LNBT (red triangle). Yellow dot
represents non-boundary anchor, and green dot represents boundary anchor, which
is also the center of the patch. Brown dot and red dot are the hardest negative and
positive for non-boundary anchor, not for boundary anchor.

Why Employ Hardest Sample Strategy for Non-Boundary Triplet.
The main reason for employing the hardest sample strategy [1] is to decouple
non-boundary anchors’ features from boundary anchors’ features. If the hardest
sample strategy is not adopted, the positives and negatives of non-boundary
anchors will overlap with that of their corresponding boundary anchors. This
could lead to the uniformity of all features within an instance, which is against
the core idea of proposing minimum-distance based candidate mining strategy.
Employing hardest sample strategy on non-boundary anchors can mitigate this
problem, because such strategy forces an non-boundary anchor only focusing on
its most dissimilar positive and most similar negative. At the same time, the cor-
responding boundary anchor remains utilizing all positives and negatives. Thus,
there is a separation between each non-boundary anchor and its corresponding
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boundary anchor in feature space. This prevents the uniformity between bound-
ary features and non-boundary features.

5 Additional Ablation Study on Hyperparameters
Settings

Table 1 shows the ablations on the number of head implemented in IC-MHA
module. Thus, four heads is implemented in our final IC-MHA module. To
demonstrate the excellent performance of transformer-style IC-MHA, we per-
form an ablation study on transformer based IC-MHA against skip-connection
based IC-MHA. Both structure is trained with final loss L. The result is shown
in Table 2. Skip./Trans. represent skip-connection/transformer based IC-MHA
module. Table 3 contains the ablation results on different window size used for
intra-task local attention in IC-MHA module. The results show that applying
wh = [2, 2, 4, 4] yields the best performance, which proves the effectiveness of ap-
plying windows of different size on different heads when computing the intra-task
local attention. Table 4 shows the results of different levels that our proposed
IC-MHA module is inserted. In general, inserting IC-MHA module on levels
s = 3, 2, 1, 0 yields better performance.

Table 1. Ablations on number of
head implemented in proposed IC-
MHA module

H AbsRel SqRel RMSE RMSElog
2 0.106 0.759 4.580 0.182
4 0.105 0.734 4.516 0.180
6 0.106 0.732 4.519 0.180

Table 2. Ablations on IC-MHA mod-
ule implementation base structure

s AbsRel SqRel RMSE RMSElog
Skip. 0.109 0.806 4.633 0.186
Tran. 0.104 0.690 4.473 0.179

Table 3. Ablations on window
size(wh) adopted in our proposed
IC-MHA module

wh AbsRel SqRel RMSE RMSElog
2,2,2,2 0.106 0.733 4.536 0.181
2,2,4,4 0.105 0.734 4.516 0.180
4,4,4,4 0.105 0.736 4.547 0.182

Table 4. Ablations on levels(s) that
our proposed IC-MHA module is lo-
cated

s AbsRel SqRel RMSE RMSElog
2,1,0 0.106 0.746 4.559 0.182
3,2,1 0.105 0.745 4.558 0.181
3,2,1,0 0.105 0.734 4.516 0.180

In Table 5, we compare the levels that LBT and LNBT apply on, i.e., SBT

and SNBT in final loss term L. Applying non-boundary triplet loss on low-level
feature degrades its performance, mainly because low-level features has much
lower spatial resolution. Thus, the number of non-boundary pixels is too few
leading to overly similarity between sampled non-boundary anchors’ features in
each instance. In contrast to [2], whose performance would downgrade when ap-
plying semantics-guided triplet and CMA module on level s = 0, our proposed
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non-boundary triplet loss and IC-MHA module benefit significantly from feature
at level 0. Feature at level 0 has the largest spatial resolution, which means low
percentage of boundary pixels. Thus, solely emphasizing cross-task consistency
[2] is not sufficient. In contrast, our proposed method focuses on thorough repre-
sentational enhancement by addressing task-specific representational uniqueness
and imposing extra refinement on non-boundary regions, which is the reason that
our proposed method gains performance boost from feature at level s = 0.

In Table 6, different number of non-boundary anchors sampled at level 0(N0)
is compared. It demonstrates that adequate sampling of non-boundary anchors
is necessary to avoid overly similarity of feature within the same object. So, we
choose to sample 8000 non-boundary anchors at level 0.

Table 5. Ablations on the different levels
that LNBT and LBT apply on

SNBT SBT AbsRel SqRel RMSE RMSElog
3,2,1 3,2,1 0.106 0.728 4.530 0.181
3,2,1,0 3,2,1,0 0.107 0.730 4.531 0.181
2,1,0 3,2,1,0 0.106 0.711 4.530 0.180
1,0 3,2,1,0 0.104 0.690 4.473 0.179

Table 6. Ablations on the num-
ber of non-boundary anchors
sampled(N0) at level 0

N0 AbsRel SqRel RMSE RMSElog
4k 0.106 0.715 4.513 0.180
8k 0.104 0.690 4.473 0.179
16k 0.107 0.705 4.528 0.181

6 Additional Qualitative Examples

We include additional qualitative examples of our proposed method and our
baseline [2], which is shown in Fig 5.
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Fig. 5. Extra qualitative examples. (a)Depth output of [2](left) and ours(right).
(b)Error map of [2](left) and ours(right).
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