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Abstract. Semantics-guided self-supervised monocular depth estima-
tion has been widely researched, owing to the strong cross-task cor-
relation of depth and semantics. However, since depth estimation and
semantic segmentation are fundamentally two types of tasks: one is re-
gression while the other is classification, the distribution of depth feature
and semantic feature are naturally different. Previous works that lever-
age semantic information in depth estimation mostly neglect such rep-
resentational discrimination, which leads to insufficient representation
enhancement of depth feature. In this work, we propose an attention-
based module to enhance task-specific feature by addressing their feature
uniqueness within instances. Additionally, we propose a metric learn-
ing based approach to accomplish comprehensive enhancement on depth
feature by creating a separation between instances in feature space. Ex-
tensive experiments and analysis demonstrate the effectiveness of our
proposed method. In the end, our method achieves the state-of-the-art
performance on KITTI dataset.

Keywords: Monocular depth estimation, self-supervised learning, fea-
ture metric learning, representation enhancement

1 Introduction

Depth estimation is one of the fundamentals in many computer vision appli-
cations such as robotics, augmented reality and autonomous driving. A depth
map reflects the distance between image plane and corresponding objects in real
world. Such depth map can be acquired from various sensor setups. Owing to the
low cost of single camera setup, monocular depth estimation has been actively
researched. Although conventional methods, using SfM or SLAM algorithm [11,
36, 39], fail to produce satisfying results, deep-learning based methods [63, 1,
17, 14, 29] have achieved significant improvement. Still, estimating depth from
monocular image remains challenging.
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Deep-learning based monocular depth estimation can be generally catego-
rized into supervised and self/un-supervised learning. Currently, supervised meth-
ods [14, 29, 12, 41] have yielded satisfying advancement in monocular depth es-
timation. However, since acquiring accurate pixel-level annotations is expensive
and limited, self-supervised learning has gained attention because of its inde-
pendence from annotations and better scalability in data. Under self-supervised
settings, monocular depth and egomotion are jointly estimated from separate
networks [63, 16, 17, 42, 57, 59, 1], whose training process is self-supervised by
photometric loss [51]. Recently, since depth and semantics are spatially aligned,
some approaches attempt to leverage semantic information in depth estima-
tion via direct feature fusion [27, 20, 18] or representational enhancement [25, 6].
However, depth estimation and semantic segmentation are two different tasks.
Thus, their feature distributions are significantly different as shown in Fig 1.
Such cross-task feature inconsistency exists between instances and within an in-
stance. Thus, enhancing depth feature solely from cross-task spatial consistency
is not sufficient. Task-specific representational uniqueness should be identified.

(a) (b) (c)

Fig. 1: The visualizations of feature heatmap for depth and semantic segmen-
tation. (a)Colored image. (b)Semantic feature heatmap from Deeplabv3 [3].
(c)Feature heatmap of depth feature heatmap from Monodepth2 [16].

To address task-specific feature uniqueness within an instance, we design
a novel and efficient intra/cross-task multi-head attention module (IC-MHA)
that adequately fuses task-specific representational uniqueness with cross-task
spatial consistency. Inspired by the recent success of vision transformers [33, 21,
9, 58], task-specific representational uniqueness is addressed as window-based
self-attention mechanism on task-specific feature. Additionally, the similarity
between depth feature and semantic feature is computed using cross-attention
mechanism [25], which represents cross-task spatial consistency. A simple fusion
layer is implemented to incorporate the generated task-specific self attention and
cross attention with input task-specific feature.

To further enhance depth feature by addressing its representational unique-
ness between instances, we propose a hardest non-boundary triplet loss whose
anchors, positives and negatives are sampled with minimum-distance based can-
didate mining strategy. Such triplet loss achieves comprehensive enhancement on
depth feature over all regions of an image. Extensive experiments and analysis
prove the effectiveness of our proposed method, which achieves the state-of-the-
art self-supervised monocular depth prediction on KITTI Eigen split [10]. Here,
we summarize our contribution in three-fold.
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– A novel and efficient intra/cross-task multi-head attention module is pro-
posed to enhance task-specific features by emphasizing their representational
uniqueness within instances while preserving their cross-task spatial consis-
tency.

– An effective hardest non-boundary triplet loss using minimum-distance based
candidate mining strategy is proposed to further enhance depth feature by
addressing its representational uniqueness between instances.

– Our proposed method outperforms previous state-of-the-art self-supervised
monocular depth estimation works on KITTI Eigen split.

2 Related Work

2.1 Self-supervised Monocular Depth Estimation

As a pioneering work in self-supervised monocular depth estimation, SfMLearner
[63] jointly estimates pose and depth information using two networks, which
are self-supervised by photometric loss [51]. Later, under this framework, many
approaches are proposed to tackle occlusions [16, 1], dynamic objects [30, 24],
low-texture regions [42, 57] and scale-inconsistency [49, 59]. Furthermore, some
approaches attempt to utilize consistency between consecutive frames [1, 52, 38]
or between various SfM tasks [59, 55, 66]. Also, a couple of better encoders [19, 62]
are implemented to improve depth estimation. Considering that depth and se-
mantics of an image are spatially aligned, some recent works propose to improve
depth prediction by targeting dynamic objects [27] or exploiting semantics-aware
depth feature [20, 6, 32, 25]. In our work, since task-specific feature has its unique
distribution, we propose to further refine depth feature by efficiently fusing task-
specific representational uniqueness with cross-task spatial consistency.

2.2 Vision Transformer

Inspired by [46], various vision transformers [21] have been proposed and demon-
strated superior performance on many tasks such as image recognition [9, 4],
object detection [2, 45, 60] and semantic segmentation [50, 61]. Amongst them,
some works propose to perform local attention inside of image patches [9] or
windows [33]. Inspired by window-based vision transformer [33], we propose to
address the uniqueness of task-specific feature as multi-head self-attention within
locally partitioned windows, which is then efficiently fused with cross-task spatial
consistency.

2.3 Deep Metric Learning

Deep metric learning [28, 48, 44] aims to cluster samples with similar charac-
teristics closer in feature space using proper candidate mining strategy. It has
proven its success in various fields like face recognition [23], image retrieval [48,
44], keypoint detection [54, 7, 43] and depth estimation [25]. To further refine
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depth feature, we propose a hardest non-boundary triplet loss whose positives
and negatives are sampled based on the distance between their anchor sample
and semantic boundary.

3 Methods

3.1 Proposed Model

To properly emphasize task-specific representational uniqueness and cross-task
spatial consistency, we propose an intra-/cross-task multi-head attention (IC-
MHA) module to enhance features for two task: depth estimation and semantic
segmentation. Our overall pipeline is shown in Fig 2. Following [25, 16, 63, 42],
a 6-DoF T ∈ SE(3) is estimated from PoseNet, whose input is a concatenated
consecutive image pair. Taking the target image of size [H,W ] as input, our
DepthSegNet consists of a shared encoder, task-specific decoders and our pro-
posed IC-MHA modules. The IC-MHA module, whose input features’ spatial di-
mension is [H2s ,

W
2s ], is inserted between task-specific decoders at multiple levels s.

Inside of IC-MHA module, task-specific representational uniqueness is addressed
as intra-task local attention, and cross-task spatial consistency is represented by
cross-task attention [25].
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Fig. 2: An overview of our pipeline. DepthSegNet and PoseNet are implemented
separately. Proposed IC-MHA module is inserted between task-specific decoders
at multiple levels. LTr

is the metric learning loss, consisting of boundary triplet
loss LBT in [25] and proposed hardest non-boundary triplet loss LNBT in Eq 8.

Intra-/Cross-task Multi-Head Attention(IC-MHA) Module. The ar-
chitecture of IC-MHA module is shown in Fig 3. At each level s < 4, the
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upsampled task-specific features from level s + 1 are fed into IC-MHA mod-
ule. Within each IC-MHA module, linear projections with expansion ratio r,
{Ψ jt : RH×W×C → RH×W×(r×C)|t ∈ {D,S}, j ∈ {Q,K, V }}, are applied on
task-specific features, {F st |t ∈ {D,S}, s < 4}, to generate a query-key-value
triplet for each task, {(Qt,Kt, Vt)|t ∈ {D,S}}. Following [46], we implement
these linear projections on multiple heads H. In each head, the intra-task local
attention and cross-task attention are computed in parallel. Here, to save com-
putational cost, only one query-key-value triplet is projected for each feature to
compute intra-task local attention and cross-task attention. For simplicity, we
illustrate such computation on depth feature as an example. Then, the same
process is symmetrically identical on semantic feature.
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Fig. 3: An overview of our proposed IC-MHA module. Query-key-value triplet
of depth and semantic feature firstly projected with Ψ jt . Then, intra-task local
attention and cross-task attention are computed.

The overall process is shown in Fig 4. Inspired by [33], the self-attention
mechanism is applied inside locally partitioned windows to properly compute
intra-task local attention. In contrast to [33], in each head, query-key-value
triplet, (QhD,K

h
D, V

h
D), of depth feature is partitioned by a square window of

size wh, instead of depth feature itself. Additionally, we apply windows of differ-
ent sizes on different heads instead of uniform window size on all heads in [33],
such that our proposed self-attention mechanism can incorporate information
from various local region efficiently and effectively. Denoting partitioned query,
key, value as (Q̂hD, K̂

h
D, V̂

h
D), the intra-task local attention is computed as:

FhSD
(i) =

e(Q̂h
D(i)(K̂h

D(i))T/
√
C′ )∑

i′<w2
h
e(Q̂h

D(i′ )(K̂h
D(i′ ))T/

√
C′ )
· V̂ hD(i) (1)

where i, i
′ ∈ N is the local index of feature map within one window and C

′
= r·C.

Then, the local attention of each head is reversed back to the spatial dimension
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of the inputs and concatenated along channel dimension. The concatenated local
attention map is projected back to the feature dimension of the inputs, C, to
form the final intra-task local attention map FSD

.
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Fig. 4: The computation process of our proposed intra-task local attention. Here,
we draw one head as an example. Query-key-value triplet of depth feature is
firstly partitioned by a window of size wh. Then, intra-task local attention is
computed as in Eq 1. In the end, local attention of each head is reversed back
to the spatial resolution of inputs, [H

′
,W

′
].

To represent cross-task spatial consistency, we compute cross-task attention
[25] from the key-value pair of depth feature and the query of semantic feature.
Here, we do not apply window partition on the input query, key and value
because the purpose of addressing such consistency is to align depth boundaries
with semantic boundaries. Thus, computing cross-task attention directly from
query-key-value triplets of depth feature and semantic feature is more optimal.
Then, for each head, such attention is computed as:

FhCD
(j) =

e(Qh
S(j)(Kh

D(j))T/
√
C′ )∑

h′<H e
(Qh
′

S (j)(Kh
′

D (j))T/
√
C′ )
· V hD(j) (2)

where j is the spatial index of feature map and h ∈ N and C
′

= r · C. Then,
the cross attention is summed over head h and projected back to the feature
dimension of the inputs, C. The process for computing cross-task attention is
visualized is in Fig 2 of Supplementary Material.

Later, a linear projection is applied on the concatenated feature [FSD
, FCD

]
to generate the final attention map, FAD

. In the end, a fusion layer, consisting of
two convolution layers, is implemented to incorporate attention map, FAD

, with
input depth feature of IC-MHA module. The output of IC-MHA module is fed
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into depth decoder to generate depth estimation of this level. Detailed schematic
of IC-MHA module is shown in Sec 3 of Supplementary Material.

3.2 Photometric Loss and Edge-aware Smoothness Loss.

Given a pair of consecutive color images, Is and It, estimated pose T ∈ SE(3)
and estimated dense depth map Dt, the reconstructed target image Ît can be
generated from source image It via:

Ît(p) = Is(p̂), p̂ = KTDtK
−1p (3)

where p is pixel’s homogeneous coordinate in target image It, p̂ is transformed
coordinate of p, and K ∈ R3×3 is a known camera intrinsic. Then, the pho-
tometric loss [16, 42, 25, 59] is the weighted sum of structural similarity index
measure(SSIM) [51] and L1-loss [17]:

Lph =
∑
p∈It

(α
1− SSIM(Is(p̂), It(p))

2
+ (1− α)|Is(p̂)− It(p)|) ·M(p) (4)

where α = 0.85. Following [16], two pairs of consecutive images, [It0 , It−1
] and

[It0 , It1 ], are used, and minimum reprojection with auto-masking is applied,
which is M in Eq 4. To further encourage depth prediction aligned with edges
of objects in an image, an edge-aware smoothness loss [63, 16] is computed as:

Lsm =
∑
p∈It

∑
i∈{x,y}

|∂id∗t |e−|∂iIt| (5)

where d∗t = dt/d̄t is the mean-normalized inverse depth from [47].

3.3 Hardest non-boundary Triplet Loss with Minimum-distance
Based Candidate Mining Strategy

Although IC-MHA module identifies task-specific representational uniqueness
and cross-task spatial consistency, it can only identifies task-specific representa-
tional uniqueness within instances because of its local windowed attention mech-
anism. Thus, further enhancement on depth feature can be achieved by creating
separation in feature space between various instances using deep metric learning
techniques. In [25], Jung et al. propose semantics-guided triplet loss using pseudo
semantic labels. Here, we name such triplet loss as boundary triplet loss, LBT .
Such boundary triplet loss is effective but not sufficient since the depth feature at
non-boundary region remains unrefined. This leads to higher prediction error for
pixels that are away from the boundary, shown in Fig 8. Therefore, we propose
a triplet loss that aims to fine-grain the depth feature at non-boundary region.
However, where to sample an anchor in a non-boundary triplet requires careful
design. Within an image, objects from the same semantic class might have var-
ious depth value, and one object can be separated or occluded, e.g, a turning
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car is sliced into parts by traffic signs. Moreover, how to sample a non-boundary
triplet’s positives and negatives should be properly handled. Considering that
instances in a scene are either static or rigidly moving, depth value or feature
of distant pixels in the same objects could be different or dissimilar, e.g., cen-
ters and edges of road. Thus, incorrect sampling strategy could result in overly
similarity between depth feature within the same object. To overcome these
two issues, we propose a minimum-distance based candidate mining strategy to
properly sample anchors, positives and negatives for non-boundary-triplet loss.

Minimum-distance based Candidate Mining Strategy. To correctly mine
non-boundary triplet, anchors and their positives should be sampled from the
same instance, which is defined as a group of connected pixels with the same
semantic labels. Such instances, denoted as I, can be generated by applying
labeling algorithm [13, 53] on pixels with the same semantic label, shown as (a)
in Fig 5, and then over all semantic classes in an image. Concurrently, a boundary
mask B is generated using patch-based sampling strategy1 [25] to identify non-
boundary region, shown as (b) in Fig 5, along with boundary anchors PB . For
each boundary anchor, b ∈ PB , we denote its positives as P+

b and its negatives as
P−b . With these information, our sampling strategy within each instance Ii ∈ I
is described as follow.

1. Mask out non-boundary pixels in each instance Ii and randomly sample
non-boundary anchors PiNB with |PiNB | = Ns

i from them .
2. Mask out boundary pixels in the same instance Ii, denoted as PiB . Here, PiB

is a subset of boundary anchors PB .
3. For every sampled non-boundary anchor j ∈ PiNB in Step 1, find its spatially

nearest boundary anchor bj ∈ PiB from Step 2.
4. Then, for each non-boundary anchor j ∈ PiNB , its set of positives P+

j and

its set of negatives P−j are sampled from the positives, P+
bj

, and negatives,

P−bj , of its nearest boundary anchor bj from Step 3.

Visualizations of above process are shown as (c) and (d) in Fig 5.
In above mining process, we do not randomly sample positives from the same

instance and negatives from other semantic classes because depth value within
an object might change greatly. Such sampling process will lead to overly similar-
ity between depth features within the same object. Therefore, it is more optimal
to sample positives and negatives of each non-boundary anchor from its closet
boundary region. The intuition behind this is that we would like to encourage
non-boundary anchors’ features more similar to spatially nearest boundary pix-
els’ features and to decouple the features of non-boundary anchors from that of
boundary anchors concurrently. For computational efficiency, the non-boundary
anchors is sampled randomly. For each instance Ii at each level s, the total num-

ber of non-boundary anchors sampled is Ns
i , with Ns

i = N0

4s

|Ii|
H′W ′

. Here, N0 is

1 Detailed patch-based sampling process and LBT [25] is in Sec 1 of Supplementary
Material.
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Fig. 5: An Overview of Mining strategy and triplet distance. Inside the
left gray box is the minimum-distance based candidate sampling process.
Here we visualize such process on one non-boundary anchor as an example:
(a)generate instances; (b)generate boundary mask B; (c)Mask out one instance
Ii; (d)Randomly sample one non-boundary anchor j ∈ PiNB(yellow dot), and
find its closest boundary anchor bj (green dot). The black region in blue box are
the set of negatives P−j , and the dark gray region in blue box are the set of posi-

tives set P+
j . The white curve inside of the red box is the boundary region of this

instance. Inside the right gray box is the positive and negative distance in Eq 6:
hardest positive(red dot) and hardest negative(brown dot) for the non-boundary
anchor(yellow dot)

the total number of non-boundary anchors sampled at level s = 0 and [H
′
,W

′
]

is the spatial resolution of depth feature at level s.

Hardest Non-Boundary Triplet Loss. For each non-boundary anchor j ∈
PiNB in instance Ii, a set of positives P+

j and a set of negatives P−j are sampled
with the process described above. Inspired by [7], we select the hardest positives
and negatives to compute positive distance d+

j and negative distance d−j , i.e. the

most dissimilar positive feature in P+
j and most similar negative feature in P−j ,

shown in the right gray box in Fig 5:

d+
j = max

j+∈P+
j

(‖FD(j)− FD(j+)‖2), d−j = min
j−∈P−j

(‖FD(j)− FD(j−)‖2) (6)

where FD is the normalized depth feature, j+ and j− are the positives or
negatives of non-boundary anchor i. Thus, the triplet margin loss for all non-
boundary anchors j ∈ PiNB in one instance Ii is

L(PiNB) =

∑
j∈Pi

NB
max(0, d+

j +m− d−j )

|PiNB |
(7)

where m = 0.3 is the margin for feature separation. In practice, instances gener-
ated by labeling algorithm could be false because of misclassification in pseudo-
labels, shown as red circle in instance mask after process (a) in Fig 5. Thus, our
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final hardest non-boundary triplet loss is the mean of L(PiNB) over all instances,
I, whose number of non-boundary pixels is larger than a threshold δ.

LNBT =

∑
Ii∈I I{|Ii| > δ} · L(PiNB)∑

Ii∈I I{|Ii| > δ}
(8)

where I is the indicator function. Our final training loss is the weighted sum
of photometric loss Lph, edge-aware smoothness loss Lsm, boundary triplet loss
LBT , hardest non-boundary triplet loss LNBT and semantic cross-entropy loss
LCE :

L =
∑
s∈S

(Lph + β · Lsm + γ · LCE) +
∑
s∈SBT

η · LBT +
∑

s∈SNBT

κ · LNBT (9)

where β, γ, η, κ are control parameters and s represents the output level.

4 Experiments

4.1 Datasets.

To ensure fair comparison with previous state-of-the-art works, we conduct ex-
periments on widely-used KITTI dataset [15]. Following [63, 1, 16], we use the
Eigen split [10] for depth training and evaluation, which consists of 39,810 images
for training, 4,424 images for validation and 697 images for evaluation.

For the supervision of semantic segmentation, following [25], pseudo-labels for
the training and validation set of Eigen split are generated using a well-trained
segmentation network [65]. To evaluate semantic segmentation, the training set
of the KITTI 2015 [35] is used, which contains 200 images with fine-annotated
semantic labels.

4.2 Implementation Details

The encoders of DepthSegNet and PoseNet are implemented with ResNet-18
[22] with pretrained weight from ImageNet [8] loaded at initialization. For both
PoseNet and DepthSegNet, input image is resized to 192 × 640. In addition,
for fair comparison with previous state-of-the-art works, we also implement our
DepthSegNet with ResNet-50 [22] whose input image is of various resolution:
192× 640 and 320× 1024.

For our IC-MHA module, the number of heads is set to be four(H = 4) at
each level with size of the window for each head wh = [2, 2, 4, 4]. Within each
head, the expansion ratio is set as: r = 2. We implement of our IC-MHA module
at four levels, i.e. s = [0, 1, 2, 3].

For hyperparameters of our final training loss L in Eq 9, we set them as
β = 0.001, γ = 0.3, η = 0.1, κ = 0.1. S and SBT is set to be {3, 2, 1, 0}, and
SNBT is {1, 0}. Additionally, we set the threshold for pixel number in Eq 8 as:
δ = 80. And the total number of non-boundary anchors at s = 0, i.e. N0, is
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8000. The non-boundary mining process is only employed only during training
process, not at inference time.

During the training of our network, the data preprocessing in [16] is applied.
We implement our proposed method on PyTorch [37], and the Adam optimizer
[26] is used with initial learning rate as 1.5× 10−4 for 20 epoches. At epoch 10
and 15, the learning rate is decayed to 1.5 × 10−5 and 1.5 × 10−6 respectively.
The batch size for training is 12.

4.3 Evaluation Metrics.

For depth prediction, we firstly set its maximum to be 80m and conduct median-
scaling using ground-truth as that in [16]. Then, the depth is evaluated by seven
standard metrics [16, 63, 42, 25], which are AbsRel, SqRel, RMSE, RMSElog, δ1,
δ2, δ3. For semantic segmentation, we evaluate it with the mean intersection over
union(mIoU), which is the standard evaluation metric for this task.

Table 1: Comparison with recent state-of-the-art works in self-supervised monoc-
ular depth estimation. All methods are trained with monocular video sequences.
Methods with (*) utilize semantic information

Methods Input Res. BackBone
lower is better higher is better

AbsRel SqRel RMSE RMSElog δ1 δ2 δ3

SfMLearner [63] 128× 416 R18 0.208 1.768 6.958 0.283 0.678 0.885 0.957
SC-SfMLearner [1] 128× 416 R18 0.137 1.089 5.439 0.217 0.830 0.942 0.975

(*)SceneNet [5] 256× 512 DRN [56] 0.118 0.905 5.096 0.211 0.839 0.945 0.977
MonoDepth2 [16] 192× 640 R18 0.115 0.903 4.863 0.193 0.877 0.959 0.981

(*)Guizilini et al. [20] 192× 640 R18 0.117 0.854 4.714 0.191 0.873 0.963 0.981
(*)SGDepth [27] 192× 640 R18 0.113 0.835 4.693 0.191 0.873 0.963 0.981

R-MSFM [64] 192× 640 R18 0.112 0.806 4.704 0.191 0.878 0.960 0.981
(*)Lee et al. [30] 256× 832 R18 0.112 0.777 4.772 0.191 0.872 0.959 0.982
Poggi et al. [40] 192× 640 R18 0.111 0.863 4.756 0.188 0.881 0.961 0.982
Patil et al. [38] 192× 640 R18 0.111 0.821 4.650 0.187 0.883 0.961 0.982
(*)SAFENet [6] 192× 640 R18 0.112 0.788 4.582 0.187 0.878 0.963 0.983
Zhao et al. [59] 256× 832 R18 0.113 0.704 4.581 0.184 0.871 0.961 0.984
HRDepth [34] 192× 640 R18 0.109 0.792 4.632 0.185 0.884 0.962 0.983

Wang et al. [49] 192× 640 R18 0.109 0.779 4.641 0.186 0.883 0.962 0.982

(*)FSRE [25]† 192× 640 R18 0.107 0.730 4.530 0.182 0.886 0.964 0.984
(*)FSRE [25] 192× 640 R18 0.105 0.722 4.547 0.182 0.886 0.964 0.984

(*)Ours 192× 640 R18 0.104 0.690 4.473 0.179 0.886 0.965 0.984

(*)SGDepth [27] 192× 640 R50 0.112 0.833 4.688 0.190 0.884 0.961 0.981
(*)Guizilini et al. [20] 192× 640 R50 0.113 0.831 4.663 0.189 0.878 0.971 0.983

MonoDepth2 [16] 192× 640 R50 0.110 0.831 4.642 0.187 0.883 0.962 0.982
(*)Li et al. [31] 192× 640 R50 0.103 0.709 4.471 0.180 0.892 0.966 0.984
(*)FSRE [25] 192× 640 R50 0.102 0.675 4.393 0.178 0.893 0.966 0.984

(*)Ours 192× 640 R50 0.102 0.656 4.339 0.175 0.892 0.967 0.985

PackNet [19] 375× 1224 PackNet 0.104 0.758 4.386 0.182 0.895 0.964 0.982
FeatDepth [42] 320× 1024 R50 0.104 0.729 4.481 0.179 0.893 0.965 0.984

(*)Guizilini et al. [20] 375× 1224 PackNet 0.100 0.761 4.270 0.175 0.902 0.965 0.982
(*)Ours 320× 1024 R50 0.099 0.624 4.165 0.171 0.902 0.969 0.986

† We re-trained [25] with its official implementation, since no pretrained model is available.
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4.4 Experiment Results and Ablation Study

Comparison with previous state-of-the-art methods. Comparison with
recent state-of-the-art results is shown in Table 1. The table shows that our
method achieves the state-of-the-art performance on KITTI Eigen test split.
Specifically, our proposed method outperforms previous state-of-the-art work
significantly on SqRel, RMSE, RMSElog. For AbsRel, δ1, δ2, δ3, our proposed
method yields comparable or better performance than previous state-of-the-art
methods. In addition, our method with low input resolution and lighter backbone
outperforms some previous state-of-the-art approaches with higher resolution
[59, 30] or heavier backbone [27, 20, 19]. See Table 4 for detailed timing and
parameter number of ours and previous methods. The testing device is NVidia
V100 GPU. Furthermore, our proposed method with high resolution input and
deeper network achieves significant improvement over previous state-of-the-art
methods, which indicates that our proposed approach gains performance boost
with better backbone network(ResNet-50).

Table 2: Ablations on proposed IC-MHA module and non-boundary triplet loss
LNBT . IC-MHA∗ represents IC-MHA module with intra-task attention only.
CMA LBT IC-MHA∗ IC-MHA(All) LNBT AbsRel SqRel RMSE RMSElog δ1 δ2 δ3

X X 0.107 0.730 4.530 0.182 0.886 0.964 0.984
X X 0.106 0.731 4.527 0.181 0.886 0.964 0.984
X X 0.105 0.734 4.516 0.180 0.887 0.965 0.984
X X X 0.104 0.690 4.473 0.179 0.886 0.965 0.984

Table 3: The segmentation
result of proposed methods
against baseline [25]

Methods mIoU

FSRE† [25] 55.8
Ours 56.3

Table 4: Inference time and parameter num-
ber of ours against previous methods

Time(ms) Param.#(M)
FSRE[25](R18) 10 28.6M

Ours(R18) 12 30.3M
Ours(R50) 31 45.5M

[20](PackNet) 60 70M

Table 5: Ablations on Different Loss term on proposed IC-MHA module.
Lph + Lsm LCE LBT LNBT AbsRel SqRel RMSE RMSElog δ1 δ2 δ3

X X 0.110 0.794 4.610 0.187 0.879 0.962 0.982
X X X 0.105 0.734 4.516 0.180 0.887 0.965 0.984
X X X 0.105 0.727 4.498 0.180 0.885 0.965 0.984
X X X X 0.104 0.690 4.473 0.179 0.886 0.965 0.984
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Ablation Study. Ablations on our proposed IC-MHA module and our non-
boundary triplet loss LNBT is shown in Table 2. We compare our proposed
methods with our baseline [25], which consists of CMA module and boundary
triplet loss LBT to emphasize cross-task correlation. Since no pretrained model
is available on the official implementation of [25], we re-train the model using
its official implementation for multiple times and take the best result. The ex-
periment result verifies the effectiveness of our proposed IC-MHA module and
non-boundary triplet loss LNBT . Also, the result in Table 2 shows effectiveness
of our proposed intra-task local attention. To further demonstrate the effective-
ness of our proposed method, the visualization of feature heatmap of IC-MHA
module and CMA module is shown in Fig 6. Such visualization is generated via
PCA decomposition by normalizing the summation of top principle channels,
who contributes 90% totally to feature map. It shows that our refined depth fea-
ture is much more smoothing within instances, and it is more aligned with the
actual depth distribution. The heatmap of cross-task attention and intra-task
attention is shown in Fig 7. It suggests that cross-task attention is consistent
with semantic feature, while intra-task attention is consistent with depth fea-
ture. The ablation study on different loss term on IC-MHA module is shown in
Table 5. It shows that IC-MHA module gains performance boost from LBT or
LNBT . These two loss terms together achieve best result.

(a) (b) (c)

Fig. 6: Depth feature heatmap visualization: (a)Colored image. (b)Depth feature
heatmap of IC-MHA module. (c)Depth feature heatmap of CMA module [25].

Additionally, in Table 3, we compare the segmentation result of our meth-
ods with that of baseline. The mean intersection-of-union (mIoU) of proposed
method is better than that of baseline by 0.5. This verifies that addressing rep-
resentational uniqueness of task-specific feature in IC-MHA module can improve
prediction of both tasks: depth and semantic segmentation. Extra ablation study
on hyperparameters of IC-MHA module and LNBT is included in Sec 5 of Sup-
plementary Material.

Fig. 7: Heatmap of cross-task attention feature(middle) and intra-task attention
feature(right)
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4.5 Qualitative Results.

Qualitative comparison between our proposed method and previous state-of-the-
art work, FSRE [25] is shown in Fig 8. Error distribution2 uses absolute error
between reference depth and predicted depth. The maximum of the absolute er-
ror map is set to be 10, and then it is rescaled to [0, 1]. The figure proves that our
proposed method not only preserves object boundaries but improves estimation
at non-boundary region of each object as well. More qualitative examples are
shown in Supplementary Material.

0 1

Error

(a)

(b)

Fig. 8: Qualitative results of depth estimation. (a)Depth output of [25](left) and
ours(right). (b)Error map of [25](left) and ours(right).

5 Conclusions

In this work, we propose a novel method for self-supervised monocular depth esti-
mation by emphasizing task-specific uniqueness in feature space. Specifically, our
proposed IC-MHA module exploits more fine-grained features by addressing rep-
resentational uniqueness of task-specific feature within instances in parallel with
cross-task spatial consistency. Additionally, the proposed hardest non-boundary
triplet loss further enhances depth feature by addressing its uniqueness between
instances, which is a full refinement on depth feature of all regions in an image.
Our whole method is end-to-end trainable and achieves state-of-the-art perfor-
mance on KITTI Eigen test split.
Acknowledgements This work is supported by National Key R&D Program
of China(Grant No.2020AAA010400X).

2 Considering ground-truth depth is sparse, we use estimation of top-performance
supervised depth network [29] as reference
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27. Klingner, M., Termöhlen, J.A., Mikolajczyk, J., Fingscheidt, T.: Self-Supervised
Monocular Depth Estimation: Solving the Dynamic Object Problem by Semantic
Guidance. In: European Conference on Computer Vision (ECCV) (2020)

28. Kulis, B.: (2013)
29. Lee, J.H., Han, M.K., Ko, D.W., Suh, I.H.: From big to small: Multi-scale local

planar guidance for monocular depth estimation. arXiv preprint arXiv:1907.10326
(2019)

30. Lee, S., Im, S., Lin, S., Kweon, I.S.: Learning monocular depth in dynamic scenes
via instance-aware projection consistency. In: Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI) (2021)

31. Li, R., He, X., Xue, D., Su, S., Mao, Q., Zhu, Y., Sun, J., Zhang, Y.: Learning
depth via leveraging semantics: Self-supervised monocular depth estimation with
both implicit and explicit semantic guidance (2021)

32. Li, R., Mao, Q., Wang, P., He, X., Zhu, Y., Sun, J., Zhang, Y.: Semantic-guided
representation enhancement for self-supervised monocular trained depth estima-
tion (2020)

33. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows (2021)

34. Lyu, X., Liu, L., Wang, M., Kong, X., Liu, L., Liu, Y., Chen, X., Yuan, Y.: Hr-
depth: High resolution self-supervised monocular depth estimation. arXiv preprint
arXiv:2012.07356 6 (2020)



Towards Comprehensive Representation Enhancement 17

35. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: Conference
on Computer Vision and Pattern Recognition (CVPR) (2015)

36. Mur-Artal, R., Montiel, J.M.M., Tardós, J.D.: Orb-slam: A versatile and accurate
monocular slam system. IEEE Transactions on Robotics 31(5), 1147–1163 (2015)

37. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch (2017)

38. Patil, V., Van Gansbeke, W., Dai, D., Van Gool, L.: Don’t forget the past: Re-
current depth estimation from monocular video. IEEE Robotics and Automation
Letters 5(4), 6813–6820 (2020)

39. Pire, T., Fischer, T., Castro, G., De Cristóforis, P., Civera, J., Jacobo Berlles,
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