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1 Implementation Details

In this section, we describe the implementation details of RAFT-SLAM and
present a simple mechanism to handle SLAM failures.

1.1 RAFT-SLAM

Our system utilizes ROS as the agent for cross-language communication. Con-
secutive frames are fed into the RAFT network [22] to get pair-wise flow pre-
dictions, including both the forward and the backward flows. For all our exper-
iments, we use the RAFT flow model that is pretrained on FlyingThings3D,
i.e., raft-things.pth downloaded from https://github.com/princeton-vl/RAFT.
In the monocular mode, after the system successfully initializes, we continu-
ously align the map points and camera poses to CNN depth for five steps to
make their scales consistent to each other.

1.2 Model Selection

We choose DPT as the main baseline for depth refinement due to two reasons:
1) it’s one of the most recent works (in ICCV’21); 2) it has exceptional gener-
alizability so that our GeoRefine can be deployed in any unseen environments
without additional finetuning. It is also feasible to adopt other benchmark algo-
rithms. For instance, we experiment with a more recent baseline DNet [1] and
report results on two randomly selected sequences from the ScanNet test set in
Tab. 7. We can see that our GeoRefine achieves consistent improvement over
this baseline as well.

1.3 SLAM Failures

It is hard to ensure RAFT-SLAM never encounters failure cases. We observe
that it fails occasionally on sequences with strong motion blur and significant
rolling-shutter artifacts. In the event of SLAM failures, we want the depth model
to be rarely disrupted and the system is supposed to continue to run after the
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Fig. 1: Qualitative results on TUM-RGBD. From left to right: input images,
depth maps by DPT, depth maps by our GeoRefine. Our method is able to
eliminate many artifacts and erroneous predictions compared to DPT.

SLAM module recovers. To this end, we employ a simple strategy, i.e., after the
depth refinement module receives a signal of SLAM failure, the system clears the
queues both for keyframe and per-frame data. In this case, the keyframe depth
refinement process is paused, but the per-frame depth inference can still run if
depth maps for all frames are demanded.

2 EuRoC

In this section, we include additional depth and pose results on EuRoC. More
qualitative results can be found in the attached videos.

2.1 GeoRefine-MD2

We present depth results of GeoRefine using a self-supervised model, i.e., Mon-
odepth2 [8], as the base model on EuRoC. We take monocular and stereo images
from five sequences (MH 01, MH 02, MH 04, V1 01, and V1 02) as the train-
ing set to train the base model Monodepth2. Since stereo images with a known
baseline distance are used, the pretrained Monodepth2 is scale-aware. The quan-
titative depth results are shown in Tab. 3, from which we can see that our system,
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Table 1: pRGBD SLAM results on EuRoC (RMSE ATE in meters).
Method MH 01 MH 02 MH 03 MH 04 MH 05 V1 01 V1 02 V1 03 V2 01 V2 02 V2 03 Mean

ORB-SLAM3 [2] 0.016 0.027 0.028 0.138 0.072 0.033 0.015 0.033 0.023 0.029 x -
Ours-pRGBD 0.025 0.023 0.031 0.064 0.060 0.033 0.015 0.023 0.022 0.016 0.034 0.031
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Fig. 2: Visualized trajectory results on EuRoC MH sequences. Best viewed on
screen with zoom-in.

Table 2: Ablation study on EuRoC Sequence V2 03 in pRGBD mode

Method
Depth Odometry

MAE ↓ Abs Rel ↓ RMSE ↓ δ1 ↑ δ2 ↑ δ3 ↑ RMSE ATE ↓
DPT [20] 0.283 0.099 0.366 0.905 0.979 0.994 -
Our BaseSystem 0.216 0.076 0.288 0.933 0.989 0.998 0.176
+ Refined Depth 0.199 0.065 0.268 0.958 0.995 0.999 0.133
+ RAFT-flow 0.171 0.056 0.237 0.972 0.995 0.998 0.069
+ Remove BA Term 0.152 0.051 0.214 0.975 0.997 0.999 0.034

denoted as “Ours-MD2”, improves over Monodepth2 by a significant margin in
all three SLAM modes.

2.2 Odometry and Ablation

Tab. 1 and Tab. 2 report the odometry results of our proposed RAFT-SLAM
in the pRGBD mode and the corresponding ablation study. It’s evident that
our pRGBD RAFT-SLAM outperforms the baseline, i.e., ORB-SLAM3, both in
terms of robustness and accuracy, and each proposed new component contributes
to the improvement. Note that “Our BaseSystem” uses only the pretrained depth
from DPT to form a pRGBD mode. Fig. 2 shows the visualized trajectories on
EuRoC MH sequences.
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Table 3: Quantitative depth evaluation on EuRoC using Monodepth2.

Method
Monocular Visual-Inertial pRGBD

MAE ↓ AbsRel ↓ RMSE ↓ δ1 ↑ MAE ↓ AbsRel ↓ RMSE ↓ δ1 ↑ MAE ↓ AbsRel ↓ RMSE ↓ δ1 ↑
V1 03

Monodepth2 [8] 0.305 0.111 0.413 0.886 0.360 0.132 0.464 0.815 0.305 0.111 0.413 0.886
Ours-MD2 0.184 0.066 0.272 0.960 0.178 0.062 0.255 0.972 0.178 0.059 0.251 0.966

V2 01

Monodepth2 [8] 0.423 0.153 0.581 0.800 0.490 0.181 0.648 0.730 0.423 0.153 0.581 0.800
Ours-MD2 0.202 0.063 0.306 0.960 0.169 0.059 0.265 0.968 0.191 0.060 0.295 0.958

V2 02

Monodepth2 [8] 0.597 0.191 0.803 0.723 0.769 0.233 0.963 0.562 0.597 0.191 0.803 0.723
Ours-MD2 0.218 0.065 0.350 0.955 0.193 0.060 0.320 0.964 0.199 0.059 0.327 0.962

V2 03

Monodepth2 [8] 0.601 0.211 0.784 0.673 0.764 0.258 0.912 0.498 0.601 0.211 0.784 0.673
Ours-MD2 0.192 0.064 0.266 0.956 0.171 0.059 0.251 0.968 0.207 0.069 0.297 0.951

Fig. 3: Qualitative pose results of our system under the pRGBD mode on TUM-
RGBD. Best viewed on screen with zoom-in.

Table 4: Odometry results on TUM-RGBD in terms of RPE [m/s]. “X” means
no pose output due to system failure and “(X)” means partial pose results.

Method f2/desk f2/pio 360 f2/pio slam f3/cbnet f3/l o h val f3/ns t nr lp f3/str nt f f3/str nt n mean

ORB-SLAM3 [2] 0.039 0.155(X) X 0.160(X) 0.024 0.604 X X -
Li [13] 0.158 0.201 0.176 0.213 0.133 0.159 0.104 0.207 0.169

Ours-Mono 0.025 0.075 0.161 0.079 0.022 0.028 0.107 0.195(X) 0.089
Ours-pGRBD 0.033 0.092 0.133 0.023 0.028 0.031 0.042 0.092 0.059

3 TUM-RGBD

We evaluate our GeoRefine on a few more sequences from the TUM-RGBD
dataset. We adopt the same settings as in the main paper and use the DPT
model [20] pretrained on NYUv2 as our initial model. The quantitative depth
results are shown in Tab. 5, from which we can observe consistent and significant
improvements by our GeoRefine over the pretrained model. Qualitative results
can be found in Fig. 1, Fig. 5 and the attached video.

In addition, we compare with [13] and show odometry results in terms of
relative pose error (RPE) on TUM-RGBD in Tab. 4. Compared to the baseline
ORB-SLAM3 [2], the improved odometry results by our system verify that using
RAFT makes the SLAM system more robust and accurate. In particular, our
method in both the monocular and pRGBD modes outperforms a recent deep
odometry method [13] by a significant margin. See Fig. 3 for qualitative pose
results of our system under the pRGBD mode.
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Table 5: Quantitative depth evaluation on additional TUM-RGBD sequences.

Method
Monocular pRGBD

MAE ↓ AbsRel ↓ RMSE ↓ δ1 ↑ δ2 ↑ δ3 ↑ MAE ↓ AbsRel ↓ RMSE ↓ δ1 ↑ δ2 ↑ δ3 ↑
freiburg3 long office household

DPT [20] 0.366 0.129 0.762 0.833 0.926 0.955 0.366 0.129 0.762 0.833 0.926 0.955
Ours-DPT 0.175 0.078 0.349 0.926 0.973 0.993 0.146 0.065 0.315 0.947 0.989 0.997

freiburg3 long office household validation

DPT [20] 0.350 0.136 0.750 0.836 0.924 0.948 0.350 0.136 0.750 0.836 0.924 0.948
Ours-DPT 0.171 0.078 0.380 0.930 0.965 0.976 0.151 0.071 0.341 0.941 0.977 0.993

freiburg3 nostructure texture near withloop

DPT [20] 0.129 0.103 0.163 0.914 0.999 1.000 0.129 0.103 0.163 0.914 0.999 1.000
Ours-DPT 0.028 0.024 0.039 0.996 1.000 1.000 0.028 0.024 0.039 1.000 1.000 1.000

Fig. 4: Global reconstruction on ScanNet (scene0228 00) using the refined depth
maps by GeoRefine.

Fig. 5: Global reconstruction on TUM-RGBD (freiburg3 long office household)
using the refined depth maps by GeoRefine.

4 ScanNet

ScanNet [4] is an indoor RGB-D dataset consisting of more than 1500 scans. This
dataset was captured by a handheld device, so motion blur exists in most of the
sequences, posing challenges both for monocular SLAM and depth refinement.
Moreover, camera translations in this dataset are small as most of the sequences
are from small rooms (e.g., bathrooms and bedrooms). To test our GeoRefine, we
sample three sequences that have relatively larger camera translations and run
our system using NYUv2-pretrained DPT [20] as the base model. The results are
summarized in Tab. 6. The pretrained DPT model performs well on ScanNet,
reaching Abs Rel of 6.3% to 8.0%, probably due to dataset similarity between
ScanNet and NYUv2. Our GeoRefine continues to improve the depth results in
most of the metrics. In particular, on scene0228 00, our system reduces Abs Rel
from 8.0% to 5.0% and increases δ1 from 93.1% to 97.9%. Qualitative results can
be found in Fig. 4 and the attached video.

Without loss of generality, we also experiment with a different baseline DNet [1]
for online depth refinement and conduct comparisons with both its monocu-
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Table 6: Quantitative depth evaluation on ScanNet.

Method
Monocular pRGBD

MAE ↓ AbsRel ↓ RMSE ↓ δ1 ↑ δ2 ↑ δ3 ↑ MAE ↓ AbsRel ↓ RMSE ↓ δ1 ↑ δ2 ↑ δ3 ↑
scene0084 00

DPT [20] 0.118 0.072 0.164 0.959 0.994 0.999 0.118 0.072 0.164 0.959 0.994 0.999
Ours-DPT 0.099 0.062 0.137 0.967 0.993 1.000 0.089 0.052 0.145 0.983 0.995 0.997

scene0228 00

DPT [20] 0.205 0.080 0.380 0.931 0.986 0.998 0.205 0.080 0.380 0.931 0.986 0.998
Ours-DPT 0.132 0.050 0.272 0.979 0.996 0.999 0.141 0.051 0.361 0.980 0.996 0.998

scene0451 05

DPT [20] 0.184 0.080 0.252 0.947 0.997 1.000 0.184 0.080 0.252 0.947 0.997 1.000
Ours-DPT 0.164 0.065 0.248 0.961 0.995 0.999 0.153 0.061 0.237 0.967 0.996 0.999

lar and multi-view stereo (MVS) models (MaGNet) on two randomly selected
ScanNet test sequences, which is reported in Tab. 7. Note that, different from
MVS methods, our system uses multi-views only in the losses, not the input to
depth models. Therefore, GeoRefine is still a monocular-based method. Com-
paring with MVS methods is only to illustrate its robustness. As known that
MVS methods highly rely on perfect poses which are not always available in
practice, to verify this, we test two versions of MaGNet: one with groundtruth
poses (denoted as “+GtPose”) and the other with poses from our GeoRefine (as
“+OurPose”). We can see that MaGNet suffers from a notable performance drop
under “+OurPose” and our strategy outperforms both versions of MaGNet.

Table 7: Depth evaluation on the ScanNet test set.
Scene Method MAE ↓ AbsRel ↓ RMSE ↓ δ1 ↑ δ2 ↑ δ3 ↑

0782 00
DNet (Mono) [1] 0.283 0.088 0.392 0.914 0.993 1.000

MaGNet (MVS) [1]+GtPose 0.223 0.072 0.323 0.946 0.995 1.000
MaGNet (MVS) [1]+OurPose 0.299 0.098 0.387 0.915 0.991 1.000

Ours-DNet-pRGBD 0.132 0.046 0.202 0.981 0.997 1.000

0793 00
DNet (Mono) [1] 0.232 0.083 0.331 0.933 0.993 0.999

MaGNet (MVS) [1]+GtPose 0.154 0.056 0.239 0.972 0.997 0.999
MaGNet (MVS) [1]+OurPose 0.229 0.085 0.324 0.928 0.991 0.999

Ours-DNet-pRGBD 0.145 0.052 0.232 0.976 0.996 0.999

5 KITTI

We show the depth results on KITTI in Tab. 8. The motion threshold for
keyframes (or per-frame) is set to 0.25 m (or 0.05 m), λm to 0.01, and three
frames (i.e., 0, -1, 1) are used to build the loss; other parameters remain the
same as in the main paper. Compared to the base model Monodepth2, our Geo-
Refine reduces Abs Rel by 1% and improves δ1 by 2.8%. However, due to moving
objects in KITTI, the improvement by our system is not as significant as in
non-dynamic indoor environments.
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Table 8: Depth evaluation results on the KITTI Eigen split test set. M: self-
supervised monocular supervision; S: self-supervised stereo supervision; D: depth
supervision; Align: scale alignment; Y: Yes; N: No. ‘-’ means the result is not
available from the paper. Best numbers in each block is marked in bold.

Method Train Align
Error Metric Accuracy Metric

Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3

S
u
p
er
v
is
ed

Eigen [5] D N 0.203 1.548 6.307 0.282 0.702 0.890 0.890
Liu [14] D N 0.201 1.584 6.471 0.273 0.680 0.898 0.967
Kuznietsov [11] DS N 0.113 0.741 4.621 0.189 0.862 0.960 0.986
SVSM FT [15] DS N 0.094 0.626 4.252 0.177 0.891 0.965 0.984
Guo [9] DS N 0.096 0.641 4.095 0.168 0.892 0.967 0.986
DORN [6] D N 0.072 0.307 2.727 0.120 0.932 0.984 0.994

S
el
f-
S
u
p
er
v
is
ed

Yang [28] M Y 0.182 1.481 6.501 0.267 0.725 0.906 0.963
Mahjourian [17] M Y 0.163 1.240 6.220 0.250 0.762 0.916 0.968
Klodt [10] M Y 0.166 1.490 5.998 - 0.778 0.919 0.966
DDVO [25] M Y 0.151 1.257 5.583 0.228 0.810 0.936 0.974
GeoNet [29] M Y 0.149 1.060 5.567 0.226 0.796 0.935 0.975
DF-Net [31] M Y 0.150 1.124 5.507 0.223 0.806 0.933 0.973
Ranjan [21] M Y 0.148 1.149 5.464 0.226 0.815 0.935 0.973
EPC++ [15] M Y 0.141 1.029 5.350 0.216 0.816 0.941 0.976
Struct2depth(M) [3] M Y 0.141 1.026 5.291 0.215 0.816 0.945 0.979
WBAF [30] M Y 0.135 0.992 5.288 0.211 0.831 0.942 0.976
pRGBD-Refined [23] M Y 0.113 0.793 4.655 0.188 0.874 0.960 0.983
Luo [16] M Y 0.130 2.086 4.876 0.205 0.878 0.946 0.970
Li [13] M Y 0.106 0.701 4.129 0.210 0.889 0.967 0.984
Garg [7] S N 0.152 1.226 5.849 0.246 0.784 0.921 0.967
3Net (R50) [19] S N 0.129 0.996 5.281 0.223 0.831 0.939 0.974
Monodepth2-S [8] S N 0.109 0.873 4.960 0.209 0.864 0.948 0.975
SuperDepth [18] S N 0.112 0.875 4.958 0.207 0.852 0.947 0.977
monoResMatch [24] S N 0.111 0.867 4.714 0.199 0.864 0.954 0.979
DepthHints [26] S N 0.106 0.780 4.695 0.193 0.875 0.958 0.980
DVSO [27] S N 0.097 0.734 4.442 0.187 0.888 0.958 0.980
UnDeepVO [12] MS N 0.183 1.730 6.570 0.268 - - -
EPC++ [15] MS N 0.128 0.935 5.011 0.209 0.831 0.945 0.979
Monodepth2 [8] MS N 0.106 0.818 4.750 0.196 0.874 0.957 0.979
Ours-MD2-Mono (S)M Y 0.096 0.766 4.436 0.177 0.902 0.963 0.982

6 Runtime

Our RAFT-SLAM and online dense mapping modules run in parallel with a
rough 1 fps runtime in total. On the RAFT-SLAM side, since we only publish one
pair image each time to the RAFT network end in a down-scaled resolution, the
per-frame tracking can be executed at 5 fps. For dense mapping, the per-frame
refinement step runs efficiently with around 10 fps when using the pretrained
Monodepth2 model in a lower resolution and or using the pretrained DPT model.
Keyframe refinement is the most time-consuming step in our system, costing
around 300 ms each time. The rest of runtime is consumed by data loading, pre-
processing, and cross-module communication, which can be further optimized in
a future version.
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