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Fig. 1: We present an online depth refinement system for geometrically-consistent
dense mapping from monocular data. Our system starts with geometric SLAM
that is made robust by incorporating learning-based priors. Together with map
points and camera poses from SLAM, a depth CNN is continuously updated
using self-supervised losses. A globally consistent map is finally reconstructed
from refined depth maps via an off-the-shell TSDF fusion method.

Abstract. We present a robust and accurate depth refinement sys-
tem, named GeoRefine, for geometrically-consistent dense mapping from
monocular sequences. GeoRefine consists of three modules: a hybrid
SLAM module using learning-based priors, an online depth refinement
module leveraging self-supervision, and a global mapping module via
TSDF fusion. The proposed system is online by design and achieves
great robustness and accuracy via: (i) a robustified hybrid SLAM that
incorporates learning-based optical flow and/or depth; (ii) self-supervised
losses that leverage SLAM outputs and enforce long-term geometric con-
sistency; (iii) careful system design that avoids degenerate cases in online
depth refinement. We extensively evaluate GeoRefine on multiple public
datasets and reach as low as 5% absolute relative depth errors.

1 Introduction

Over the years, monocular geometric methods have been continuously improved
and become very accurate in recovering 3D map points. Representative open-
source systems along this line include COLMAP [43] – an offline SfM system,
and ORB-SLAM [35,36,5] – an online SLAM system.

Recently, deep-learning-based methods [9,14,16] have achieved impressive re-
sults in predicting a dense depth map from a single image. Those models are
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either trained in a supervised manner [9,40,39] using ground-truth depths, or
through a self-supervised framework [14,16] leveraging photometric consistency
between stereo and/or monocular image pairs. During inference, with the prior
knowledge learned from data, the depth models can generate dense depth images
even in textureless regions. However, the errors in the predicted depths are still
relatively high.

A few methods [54,33] aim to get the best out of geometric systems and deep
methods. Tiwari et al. [54] let monocular SLAM and learning-based depth pre-
diction form a self-improving loop to improve the performance of each module.
Luo et al. [33] adopt a test-time fine tuning strategy to enforce geometric con-
sistency using outputs from COLMAP. Nonetheless, both methods pre-compute
and store sparse map points and camera poses from SfM or SLAM in an offline
manner, which is not applicable to many applications where data pre-processing
is not possible. For example, after we deploy an agent to an environment, we
want it to automatically improve its 3D perception capability as it moves around.
In such a scenario, an online learning method is more desirable.

In this paper, we propose to combine geometric SLAM and a single-image
depth model within an online learning scheme (see Fig. 1). The depth model can
be any model that has been pretrained either with a self-supervised method [16]
or a supervised one [40,39]. Our goal is then to incrementally refine this depth
model on the test sequences in an online manner to achieve geometrically con-
sistent depth predictions over the entire image sequence. Note that SLAM in
itself is an online system that perfectly fits our online learning framework, but
on the other hand, front-end tracking of SLAM often fails under challenging con-
ditions (e.g., with fast motion and large rotation). We propose to enhance the
robustness of geometric SLAM with learning-based priors, e.g., RAFT-flow [52],
which has been shown to be both robust and accurate in a wide range of unseen
scenes [25,64,53]. We then design a parallel depth refinement module that opti-
mizes the neural weights of depth CNN with self-supervised losses. We perform
a careful analysis of failure cases of self-supervised refinement and propose a
simple yet effective keyframe mechanism to make sure that no refinement step
worsens depth results. We further propose a novel occlusion-aware depth consis-
tency loss to promote long-term consistency over temporally distant keyframes.
We perform detailed ablation study to verify the effectiveness of each new com-
ponent of our proposed GeoRefine, and conduct extensive experiments on several
public datasets [3,49,7,15], demonstrating state-of-the-art performance in terms
of dense mapping from monocular images.

2 Related Work

Geometric Visual SLAM. SLAM is an online geometric system that recon-
structs a 3D map consisting of 3D points and simultaneously localizes camera
poses w.r.t. the map [4]. According to the methods used in front-end track-
ing, SLAM systems can be roughly classified into two categories: (i) direct
SLAM [11,10,44], which directly minimizes photometric error between adjacent
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frames and optimizes the geometry using semi-dense measurements; (ii) feature-
based (indirect) SLAM [47,35,36,5], which extracts and tracks a set of sparse fea-
ture points and then computes the geometry in the back-end using these sparse
measurements. Geometric SLAM systems have become accurate and robust due
to a number of techniques developed over the years, including robust motion es-
timation [12], keyframe mechanism [23], bundle adjustment [55], and pose-graph
optimization [26]. In our work, we build our system upon one of the state-of-the-
art feature-based systems, i.e., ORB-SLAM [5]. We use ORB-SLAM because
it is open-source, delivers accurate 3D reconstructions, and supports multiple
sensor modes.

Learning-Based SLAM. CNN-SLAM [50] is a hybrid SLAM system that uses
CNN depth to bootstrap back-end optimization of sparse geometric SLAM and
helps recover metric scale 3D reconstruction. In contrast, DROID-SLAM [53]
builds SLAM from scratch with a deep learning framework and achieves un-
precedented accuracy in camera poses, but does not have the functionality of
dense mapping. TANDEM [24] presents a monocular tracking and dense map-
ping framework that relies on photometric bundle adjustment and a super-
vised multi-view stereo CNN model. CodeSLAM [2] is a real-time learning-based
SLAM system that optimizes a compact depth code over a conditional varia-
tional auto-encoder (VAE) and simultaneously performs dense mapping. Deep-
Factor [6] extends CodeSLAM by using fully-differentiable factor-graph opti-
mization. CodeMapping [34] further improves over CodeSLAM via introducing
a separate dense mapping thread to ORB-SLAM3 [5] and additionally condi-
tioning VAE on sparse map points and reprojection errors. Our system bears
the most similarity with CodeMapping in terms of overall functionalities, but is
significantly different in system design and far more accurate in dense mapping.

Supervised depth estimation. Supervised depth estimation methods dom-
inate the early trials [9,31,56,66,51,38,32] of learning-based depth estimation.
Eigen et al. [9] propose the first deep learning based method to predict depth
maps via a convolutional neural network and introduce a set of depth evalu-
ation metrics that are still widely used today. Liu et al. [31] formulate depth
estimation as a continuous conditional random field (CRF) learning problem.
Fu et al. [13] leverage a deep ordinal regression loss to train the depth network.
A few other methods combine depth estimation with additional tasks, e.g., pose
estimation [56,66,51] and surface normal regression [38].

Self-supervised depth estimation. Self-supervised depth estimation has re-
cently become popular [14,67,16,20,27,45,60,42,28]. Garg et al. [14] are the first
to apply the photometric loss between left-right stereo image pairs to train a
monocular depth model in an unsupervised/self-supervised way. Zhou et al. [67]
further introduce a pose network to facilitate using a photometric loss across
neighboring temporal images. Later self-supervised methods are proposed to
improve the photometric self-supervision. Some methods [63,69,41] leverage an
extra flow network to enforce cross-task consistency, while a few others [17,57,1]
employ new loss terms during training. A notable recent method Monodepth2 by
Godard et al. [16] achieves great improvements via a few thoughtful designs, in-
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Fig. 2: The system workflow of our GeoRefine. Our system consists of three
main modules, i.e., a RAFT-SLAM module, an Online Depth Refinement mod-
ule, and a Global Mapping module. Note that keyframe selection in Online Dense
Refinement uses a different strategy than in SLAM.

cluding a per-pixel minimum photometric loss, an auto-masking strategy, and a
multi-scale framework. New network architectures are also introduced to boost
the performance. Along this line, Wang et al. [58] and Zou et al. [68] exploit
recurrent networks for the pose and/or depth networks. Ji et al. [21] propose
a depth factorization module and an iterative residual pose module to improve
depth prediction for indoor environments. Our system is theoretically compatible
with all those methods in the pretraining stage.

Instead of ground-truth depths, some methods [30,29,40,65,54,33] obtain the
training depth data from the off-the-shell SfM or SLAM. Li and Snavely [30]
perform 3D reconstruction of Internet photos via geometric SfM [43] and then
use the reconstructed depths to train a depth network. Li et al. [29] learn the
depths of moving people by watching and reconstructing static people. Ranftl et
al. [40,39] improve generalization performance of the depth model by training the
depth network with various sources, including ground-truth depths and geomet-
rically reconstructed ones. Zhang et al. [64] extend the work of [33] to handling
moving objects by unrolling scene flow prediction. Kopf et al. [25] further by-
pass the need of running COLMAP via the use of deformation splines to estimate
camera poses. Most of those methods require a pre-processing step to compute
and store 3D reconstructions. In contrast, our system runs in an online manner
without the need of performing offline 3D reconstruction.

3 Method – GeoRefine

In this section, we present GeoRefine, a self-supervised depth refinement system
for geometrically consistent dense mapping from monocular sequences. As shown
in Fig. 2, our system consists of three parallel modules, i.e., a RAFT-SLAM
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module, an Online Depth Refinement module, and a Global Mapping module.
We detail the first two modules in the following sub-sections.

3.1 RAFT-SLAM

It is well-known that monocular visual SLAM has several drawbacks: (i) its
front-end often fails to track features under adverse environments, e.g., with
low-texture, fast motion, and large rotation; (ii) it can only reconstruct the
scene up to an unknown global scale. To improve the performance of SLAM, a
few methods [50,62,61] have been proposed to improve back-end optimization of
direct LSD-SLAM [11]. In this work, we instead seek to improve the front-end of
feature-based SLAM based on the observation that front-end tracking lose is one
of the most common causes for failures and accuracy decrease. We thus present
RAFT-SLAM, a hybrid SLAM system that runs a learning-based flow front-end
and a traditional back-end optimizer.

3.1.1 RAFT-Flow Tracking RAFT [52] is one of the state-of-the-art optical
flow methods that has shown strong cross-dataset generalization performance. It
constructs a correlation volume for all pairs of pixels and uses a gated recurrent
unit (GRU) to iteratively update the flow. In our system, we replace the front-
end feature matching in ORB-SLAM [5] with RAFT-flow, but still sample sparse
points for robust estimation in the back-end. This simple strategy allows us to
have the advantages of both learning-based flow and traditional robust estimator
in one system.

More specifically, for each feature from last frame Ii−1, once it is associated
with a map point, we locate its correspondence in incoming frame Ii by adding
the flow F(i−1)→i. If there are multiple candidates within a predefined radius
around a target pixel in Ii, we choose the one with the smallest descriptor resid-
ual; or if there is none, we create a new feature instead, with the descriptor being
copied from Ii−1. In all our experiments, we set the radius to 1 pixel. For the sake
of robustness, we only keep Nf = 0.1 · Nt matched correspondences for initial
pose calculation, where Nt is the total ORB features within the current frame.
We note that, compared to leveraging the entire flow, sampling a subset of pixels
is more beneficial to the accuracy. We do a forward-backward consistency check
on predicted flows to obtain a valid flow mask by using a stringent threshold of 1
pixel. Similar to [5], we then perform a local map point tracking step to densify
potential associations from other views and further optimize the camera pose.
The reason for combining ORB features with flow is that traditional features
can help us keep the structural information, mitigating drifting caused by flow
mapping in long sequential tracking.

3.1.2 Multiple Sensor Modes Our RAFT-SLAM inherits the good prop-
erties of ORB-SLAM3 [5] in supporting multiple sensor modes. In our system,
we consider a minimum sensor setup, i.e., using a monocular camera with (or
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without) IMU sensor. Thus, two SLAM modes are supported, i.e., the monoc-
ular and Visual-Inertial (VI) modes. As we have a CNN depth model to infer
the depth map for every image, we additionally form a pseudo-RGBD (pRGBD)
mode as in [54].
Monocular Mode. Under the monocular mode, RAFT-SLAM reconstructs
camera poses and 3D map points in an arbitrary scale. Since we have a pretrained
depth model available in our system, we then leverage the CNN predicted depth
maps to adapt the scale of map points and camera poses for SLAM. This scale
alignment step is necessary in our system because SLAM outputs will be used in
the downstream task of refining the depth model. If the scales between these two
modules differ too much, depth refinement will be sub-optimal or even totally
fail. After initial map points are constructed in our system, we continuously align
the scale for a few steps by solving the following least-squares problem:

min
s

∑
x

(
d(x)− s · d̂(x)

)2
, (1)

where s is the scale alignment factor to be estimated, and d(x), d̂(x) are the
depth values from a pretrained depth model and SLAM map points respectively.
However, if the scales of two modules are already in the same order, e.g., when
SLAM runs in the VI or pRGBD mode, such an alignment step is not necessary.
VI Mode. VI SLAM is usually more robust than monocular SLAM under chal-
lenging environments with low-texture, motion blur, and occlusions [5]. Since
the inertial sensors provide scale information, camera poses and 3D map points
from VI RAFT-SLAM are recovered in metric scale. In this mode, given a scale-
aware depth model (i.e., a model that predicts depth in metric scale), we can
run the online depth refinement module without taking special care of the scale
discrepancy between the two modules.
pRGBD Mode. The pRGBD mode provides a convenient way to incorporate
deep depth priors into geometric SLAM. However, we observe that it results
in sub-optimal SLAM performance if we näıvely treat depth predictions as the
groundtruth to run the RGBD mode (as done in [54]) due to noisy predictions.
In the RGBD mode of ORB-SLAM3 [5], the depth is mainly used in two stages,
i.e., system initialization and bundle adjustment. By using the input depth, the
system can initialize instantly from the first frame, without the need of waiting
for enough temporal baselines. For each detected feature point, employing the
depth and camera parameters, the system creates a virtual right correspondence,
which leads to an extra reprojection error term in bundle adjustment [5]. To mit-
igate the negative impact of the noise in depth predictions, we make two simple
yet effective changes in the pRGBD mode as compared to the original RGBD
mode: i) we take as input the refined depth maps from the online refinement
module (as described in the next subsection) to ensure that the input depth
maps are more accurate and temporally consistent; ii) we remove the reprojec-
tion error term for the virtual right points in bundle adjustment. Note that the
input CNN depth is still used in the map point initialization and new keypoint
insertion, benefiting the robustness of the SLAM system.
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3.2 Online Depth Refinement

The depth refinement module receives map points and camera poses from RAFT-
SLAM. The depth model is then incrementally refined with self-supervised losses,
including a photometric loss, an edge-aware depth smoothness loss, a map-point
loss, and a depth consistency loss.

Similar to [67], the photometric loss is defined as the difference between a
target frame Ii and a synthesized frame Ij→i warped from a source frame Ij
using the depth image Di and the relative pose Tj→i, i.e.,

Lp =
∑
j

pe(Ii, Ij→i) , (2)

where pe() is the photometric loss function computed with the ℓ1 norm and the
SSIM [59]. Instead of only using 3 neighboring frames to construct the photo-
consistency as in [67,16], we employ a wider baseline photometric loss, e.g., by
using a 5-keyframe snippet with j ∈ Ai = {i− 9, i− 6, i− 3, i+1}. Another im-
portant difference is that the relative pose Tj→i comes from our RAFT-SLAM,
which is more accurate than the one predicted by a pose network.

Following [16], we use an edge-aware normalized smoothness loss, i.e.,

Ls = |∂xd∗i |e−|∂xIi| + |∂yd∗i |e−|∂yIi| , (3)

where d∗i = di/d̄i is the mean-normalized inverse depth to prevent depth scale
diminishing [57].

The map points from RAFT-SLAM have undergone extensive optimization
through bundle adjustment [55], so the depths of these map points are usually
more accurate than the pretrained CNN depths. As in [62,54], we also leverage
the map-point depths to build a map-point loss as a supervision signal to the
depth model. The map-point loss is simply the difference between SLAM map
points and the corresponding CNN depths as follows,

Lm =
1

Ni

Ni∑
n=1

∣∣Di,n −Dslam
i,n

∣∣ , (4)

where we have Ni 3D map points from RAFT-SLAM after filtering with a strin-
gent criterion (see Sec. 4.1) to ensure that only accurate map points are used
as supervision. In addition to the above loss terms, we propose an occlusion-
aware depth consistency loss and a keyframe strategy to build our online depth
refinement pipeline.

3.2.1 Occlusion-Aware Depth Consistency Given the depth images of
two adjacent images, i.e., Di and Dj , and their relative pose T = [R|t], we aim
to build a robust consistency loss between Di and Dj to make the depth predic-
tions consistent with each other. Note that the depth values are not necessarily
equal at corresponding positions of frame i and j as the camera can move over
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time. With camera pose T, the depth map Dj can be warped and then trans-

formed to a depth map D̃i of frame i, via image warping and coordinate system
transformation [1,21]. We then define our initial depth consistency loss as,

Lc(Di,Dj) =

∣∣∣∣1− D̃i/Di

∣∣∣∣ . (5)

However, the loss in Eq. (5) will inevitably include pixels in occluded regions,
which hamper model refinement. To effectively handle occlusions, following the
per-pixel photometric loss in [16], we devise a per-pixel depth consistency loss
by taking the minimum instead of the average over a set of neighboring frames:

Lc = min
j∈Ai

Lc(Di,Dj) . (6)

3.2.2 Degenerate Cases and Keyframe Selection Self-supervised pho-
tometric losses are not without degenerate cases. If they are not carefully con-
sidered, self-supervised training or finetuning will deteriorate, leading to worse
depth predictions. A first degenerate case happens when the camera stays static.
This degeneracy has been well considered in the literature. For example, Zhou et
al. [67] remove static frames in an image sequence by computing and threshold-
ing the average optical flow of consecutive frames. Godard et al. [16] propose an
auto-masking strategy to automatically mask out static pixels when calculating
the photometric loss.

A second degenerate case is when the camera undergoes purely rotational mo-
tion. This degeneracy is well-known in traditional computer vision geometry [19],
but has not been considered in self-supervised depth estimation. Under pure ro-
tation, motion recovery using the fundamental matrix suffers from ambiguity, so
homography-based methods are preferred [19]. In the context of the photometric
loss, if the camera motion is pure rotation, i.e., the translation t = 0, the view
synthesis (or reprojection) step does not depend on depth anymore (i.e., depth
cancels out after applying the projection function). This is no surprise as their
2D correspondences are directly related by a homography matrix. So in this
case, as long as the camera motion is accurately given, any arbitrary depth can
minimize the photometric loss, which is undesirable when we train or finetune
the depth network (as depth will be arbitrarily wrong).

To circumvent the degenerate cases described above, we propose a simple yet
effective keyframe mechanism to facilitate online depth refinement without dete-
rioration. After we receive camera poses from RAFT-SLAM, we can simply select
keyframes for depth refinement according to the magnitude of camera transla-
tions. Only if the norm of the camera translation is over a certain threshold (see
Sec. 4.1), we set its corresponding frame as a keyframe, i.e., the candidate for
applying self-supervised losses. This ensures that we have enough baselines for
the photometric loss to be effective.

3.2.3 Overall Refinement Strategy
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Algorithm 1 GeoRefine: self-supervised online depth refinement for geometri-
cally consistent dense mapping.

1: Pretrain the depth model. ▷ supervised or self-supervised
2: Run RAFT-SLAM. ▷ on separate threads
3: Data preparation: buffer time-synchronized keyframe data into a fixed-sized

queue Q∗; (optionally) form another data queue Q for per-frame data.
4: while True do
5: Check stop condition. ▷ stop-signal from SLAM
6: Check SLAM failure signal. ▷ clear data queue if received
7: for k ← 1 to K∗ do ▷ keyframe refinement
8: Load data in Q∗ to GPU, ▷ batch size as 1
9: Compute losses as in Eq. (7),
10: Update depth model via one gradient descent step. ▷ ADAM optimizer
11: end for
12: Run inference and save refined depth for current keyframe.
13: for k ← 1 to K do ▷ Per-frame refinement
14: Check camera translation from last frame, ▷ skip if too small
15: Load data in Q∗ and Q to GPU, ▷ batch size as 1
16: Compute losses as in Eq. (7),
17: Update depth model via one gradient descent step. ▷ ADAM optimizer
18: end for
19: Run inference and save refined depth for current frame.
20: end while
21: Run global mapping. ▷ TSDF or bundle fusion
22: Output: refined depth maps and global TSDF meshes.

Our overall refinement loss writes as

L = Lp + λsLs + λmLm + λcLc , (7)

where λs, λm, λc are the weights balancing the contribution of each loss term.

GeoRefine aims to refine any pretrained depth models to achieve geometrically-
consistent depth prediction for each frame of an image sequence. As RAFT-
SLAM runs on separate threads, we buffer the keyframe data, including images,
map points, and camera poses, into a time-synchronized data queue of a fixed
size. If depth refinement is demanded for every frame, we additionally maintain
a small data queue for per-frame data and construct the 5-frame snippet by
taking 3 recent keyframes and 2 current consecutive frames. We conduct online
refinement for the current keyframe (or frame) by minimizing the loss term in
Eq. (7) and performing gradient descent for K∗ (or K) steps. After depth re-
finement steps, we run depth inference using the refined depth model and save
the depth map for the current keyframe (or frame). Global maps can be finally
reconstructed by performing TSDF or bundle fusion [37,8]. The whole GeoRefine
algorithm is summarized in Alg. 1.
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4 Experiments

We mainly conduct experiments on three public datasets: EuRoC [3], TUM-
RGBD [49], and ScanNet [7]. For quantitative depth evaluation, we employ the
standard error and accuracy metrics, including the Mean Absolute Error (MAE),
Absolute Relative (Abs Rel) error, RMSE, δ < 1.25 (namely δ1), δ < 1.252

(namely δ2), and δ < 1.253 (namely δ3) as defined in [9]. All of our experiments
are conducted on an Intel i7 CPU machine with 16-GB memory and one 11-GB
NVIDIA GTX 1080.

4.1 Implementation Details

Our GeoRefine includes a RAFT-SLAM module and an online depth refine-
ment module. RAFT-SLAM is implemented based on ORB-SLAM3 [5] (other
SLAM systems are also applicable) which support monocular, visual-inertial,
and RGBD modes. In our experiments, we test the three modes and show that
GeoRefine achieves consistent improvements over pretrained models. The pose
data queue is maintained and updated in the SLAM side, where a frame pose is
stored relative to its reference keyframe which is continuously optimized by BA
and pose graph. The online learning module refines a pretrained depth model
with customized data loader and training losses. In our experiments, we choose a
supervised model, i.e., DPT [39], to showcase the effectiveness of our system. The
initial DPT model is trained on a variety of public datasets and then finetuned
on NYUv2 [46]. We utilize Robot Operating System (ROS) [48] to exchange
data between modules for cross-language compatibility. We use ADAM [22] as
the optimizer and set the learning rate to 1.0e−5. The weighting parameters λs,
λm, and λc are set to 1.0e−4, 5.0e−2, and 1.0e−1 respectively. We freeze its de-
coder layers of DPT for the sake of speed and stability. We filter map points with
stringent criterion to ensure good supervision signal for online depth refinement.
To this end, we discard map points observed in fewer than 5 keyframes or with
reprojection errors greater than 1 pixel. We maintain a keyframe data queue of
length 11 and a per-frame data queue of length 2. The translation threshold for
keyframe (or per-frame) refinement is set to 0.05 m (or 0.01 m). The number
of refinement steps for keyframes (or per-frame) is set to 3 (or 1). All system
hyper-parameters are tuned on a validation sequence (EuRoC V2 01).

4.2 EuRoC Indoor MAV Dataset

The EuRoC MAV dataset [3] is an indoor dataset which provides stereo image
sequences, IMU data, and camera parameters. An MAV mounted with global
shutter stereo cameras is used to capture the data in a large machine hall and a
VICON room. Five sequences are recorded in the machine hall and six are in the
VICON room. The ground-truth camera poses and depths are obtained with a
VICON device and a Leica MS50 laser scanner, so we use all Vicon sequences as
the test set. We rectify the images with the provided intrinsics to remove image
distortion. To generate ground-truth depths, we project the laser point cloud
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Table 1: Quantitative depth evaluation on EuRoC under different SLAM modes.
Method

Monocular Visual-Inertial pRGBD
MAE ↓ AbsRel ↓ RMSE ↓ δ1 ↑ MAE ↓ AbsRel ↓ RMSE ↓ δ1 ↑ MAE ↓ AbsRel ↓ RMSE ↓ δ1 ↑

V1 01

DPT [39] 0.387 0.140 0.484 0.832 0.501 0.174 0.598 0.709 0.387 0.140 0.484 0.832
CodeMapping [34] - - - - 0.192 - 0.381 - - - - -
Ours-DPT 0.153 0.050 0.241 0.980 0.147 0.048 0.241 0.980 0.151 0.049 0.239 0.982

V1 02

DPT [39] 0.320 0.119 0.412 0.882 0.496 0.182 0.586 0.712 0.320 0.119 0.412 0.882
CodeMapping [34] - - - - 0.259 - 0.369 - - - - -
Ours-DPT 0.171 0.058 0.255 0.967 0.166 0.058 0.251 0.972 0.160 0.056 0.240 0.973

V1 03

Monodepth2 [16] 0.305 0.111 0.413 0.886 0.360 0.132 0.464 0.815 0.305 0.111 0.413 0.886
DPT [39] 0.305 0.112 0.396 0.890 0.499 0.185 0.581 0.700 0.305 0.112 0.396 0.890
CodeMapping [34] - - - - 0.283 - 0.407 - - - - -
Ours-DPT 0.202 0.074 0.297 0.949 0.188 0.067 0.278 0.956 0.190 0.068 0.286 0.949

V2 01

Monodepth2 [16] 0.423 0.153 0.581 0.800 0.490 0.181 0.648 0.730 0.423 0.153 0.581 0.800
DPT [39] 0.325 0.128 0.436 0.854 0.482 0.205 0.571 0.703 0.325 0.128 0.436 0.854
CodeMapping [34] - - - - 0.290 - 0.428 - - - - -
MonoIndoor [21] - 0.125 0.466 0.840 - - - - - - - -
Ours-DPT 0.170 0.054 0.258 0.973 0.162 0.052 0.258 0.970 0.181 0.057 0.0269 0.970

V2 02

Monodepth2 [16] 0.597 0.191 0.803 0.723 0.769 0.233 0.963 0.562 0.597 0.191 0.803 0.723
DPT [39] 0.404 0.134 0.540 0.838 0.601 0.191 0.727 0.699 0.404 0.134 0.540 0.838
CodeMapping [34] - - - - 0.415 - 0.655 - - - - -
Ours-DPT 0.177 0.053 0.208 0.976 0.193 0.063 0.312 0.966 0.167 0.053 0.267 0.976

V2 03

Monodepth2 [16] 0.601 0.211 0.784 0.673 0.764 0.258 0.912 0.498 0.601 0.211 0.784 0.673
DPT [39] 0.283 0.099 0.366 0.905 0.480 0.154 0.564 0.746 0.283 0.099 0.366 0.905
CodeMapping [34] - - - - 0.686 - 0.952 - - - - -
Ours-DPT 0.163 0.053 0.231 0.970 0.159 0.055 0.220 0.973 0.152 0.051 0.214 0.975

onto the image plane of the left camera using the code by [18]. The original
images have a size of 480× 754 and are resized to 384× 384 for DPT.

Quantitative Depth Results in the Monocular Mode. We conduct quan-
titative evaluation by running GeoRefine under monocular RAFT-SLAM on the
EuRoC VICON sequences, and present the depth evaluation results in the left
columns of Tab. 1. Following [16], we perform per-frame scale alignment between
the depth prediction and the groundtruth. From Tab. 1, we can observe consis-
tent and significant improvements by our method over the baseline model on
all test sequences. In particular, on V1 01, “Ours-DPT” reduces Abs Rel from
14.0% (by DPT) to 5.0%, achieving over two-times reduction in depth errors.

Quantitative Depth Results in the Visual-Inertial Mode. When IMU
data are available, we can also run GeoRefine under visual-inertial (VI) RAFT-
SLAM to get camera poses and map points directly in metric scale. Note that, in
the visual-inertial mode, no scale alignment is needed. We present the quantita-
tive depth results in Tab. 1, from which we can see that our system under the VI
mode performs on par with the monocular mode even without scale alignment.
Compared to a similar dense mapping, i.e., CodeMapping [34], our GeoRefine is
significantly more accurate with similar runtime (i.e., around 1 sec. per keyframe;
see the supplementary), demonstrating the superiority of our system design.

Quantitative Depth Results in the pRGBD Mode. We present the quan-
titative depth evaluation under the pRGBD mode in the right columns of Tab. 1.
We can see that the pRGBD mode performs slightly better than the other two
modes in terms of depth results. This may be attributed to the fact that under
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Fig. 3: Visual comparison of depth maps by the pretrained DPT and our system.
Regions with salient improvements are highlighted with green/blue boxes.

Fig. 4: Global reconstruction on EuRoC (left) and TUM-RGBD (right) using the
refined depth maps by GeoRefine.

Table 2: Monocular SLAM results on EuRoC (RMSE ATE in meters).

Method MH 01 MH 02 MH 03 MH 04 MH 05 V1 01 V1 02 V1 03 V2 01 V2 02 V2 03 Mean

DeepFactor [6] 1.587 1.479 3.139 5.331 4.002 1.520 0.679 0.900 0.876 1.905 1.021 2.040
DeepV2D [51] 0.739 1.144 0.752 1.492 1.567 0.981 0.801 1.570 0.290 2.202 2.743 1.298
D3VO [61] - - 0.080 - 0.090 - - 0.110 - 0.050 0.019 -
DROID-SLAM [53] 0.013 0.014 0.022 0.043 0.043 0.037 0.012 0.020 0.017 0.013 0.014 0.022

ORB-SLAM [35] 0.071 0.067 0.071 0.082 0.060 0.015 0.020 x 0.021 0.018 x -
DSO [10] 0.046 0.046 0.172 3.810 0.110 0.089 0.107 0.903 0.044 0.132 1.152 0.601
ORB-SLAM3 [5] 0.016 0.027 0.028 0.138 0.072 0.033 0.015 0.033 0.023 0.029 x -

RAFT-SLAM (Ours) 0.012 0.018 0.023 0.045 0.041 0.032 0.010 0.022 0.019 0.011 0.025 0.023

this mode, the SLAM and depth refinement modules form a loosely-coupled loop
so that each module benefits from the other.

Qualitative Depth Results. We show some visual comparisons in Fig. 3,
from which we can clearly observe the qualitative improvements brought by
our online depth refinement method. In particular, our system can correct the
inaccurate geometry that is commonly present in the pretrained model. For
example, in the first row of Fig. 3, a piece of thin paper lying on the floor is
predicted to have much higher depth values than its neighboring floor pixels by
the pretrained models (DPT); our GeoRefine is able to rectify its depth to be
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Table 3: Ablation study on EuRoC Sequence V2 03. Each component in our
method improves the depth results.

Method
Monocular

MAE ↓ Abs Rel ↓ RMSE ↓ δ1 ↑ δ2 ↑ δ3 ↑
DPT [39] 0.283 0.099 0.366 0.905 0.979 0.994
Our BaseSystem 0.269 0.090 0.347 0.905 0.983 0.997
+ RAFT-flow 0.248 0.083 0.331 0.915 0.985 0.997
+ Scale Alignment 0.199 0.064 0.274 0.952 0.991 0.998
+ Depth Consistency 0.163 0.053 0.231 0.970 0.995 0.999

Method
pRGBD

MAE ↓ Abs Rel ↓ RMSE ↓ δ1 ↑ δ2 ↑ δ3 ↑
DPT [39] 0.283 0.099 0.366 0.905 0.979 0.994
Our BaseSystem 0.216 0.076 0.288 0.933 0.989 0.998
+ Refined Depth 0.199 0.065 0.268 0.958 0.995 0.999
+ RAFT-flow 0.171 0.056 0.237 0.972 0.995 0.998
+ Remove BA Term 0.152 0.051 0.214 0.975 0.997 0.999

consistent with the floor. A global map of the EuRoC VICON room is shown in
Fig. 1 and 4, where we can reach geometrically consistent reconstruction.

Odometry Results. Tab. 2 shows the odometry comparisons of our proposed
RAFT-SLAM with current state-of-the-art methods on the EuRoC dataset in
the monocular mode. For fairness, we adopt the same parameter settings with
ORB-SLAM3 [5] in all our experiments. Note that, although our system is not
elaborately designed for SLAM, it significantly outperforms other monocular
baselines both in terms of accuracy and robustness, and achieves comparable
results against DROID-SLAM [53] (with 19 steps of global bundle adjustment).

Ablation Study. Without loss of generality, we perform an ablation study on
Seq. V2 03 to gauge the contribution of each component to our method under
both monocular and pRGBDmodes. Specifically, we first construct a base system
by running a vanilla online refinement algorithm with the photometric loss as in
Eq. (2), the depth smoothness loss as in Eq. (3), and the map-point loss as in
Eq. (4). Note that the photometric loss uses camera poses from RAFT-SLAM in-
stead of a pose network. Under the monocular mode, we denote this base model
as “Our BaseSystem”. We then gradually add new components to this base
model, including the RAFT-flow in SLAM front-end (“+RAFT-flow”), the scale
alignment strategy in RAFT-SLAM (“+Scale Alignment”), and the occlusion-
aware depth consistency loss (“+Depth Consistency”). Under the pRGBD mode,
“Our BaseSystem” takes the pretrained depth as input without using our pro-
posed changes, and this base system uses the depth consistency loss. We then
gradually add new components to the base system, i.e., using refined depth from
the online depth refinement module (“+Refined Depth”), using the RAFT-flow
in SLAM front-end (“+RAFT-flow”), and removing the reprojection error term
in bundle adjustment (“+Remove BA Term”).

We show a complete set of ablation results in Tab. 3. Under the monocular
mode, “Our BaseSystem” reduces the absolute relative depth error from 9.9%
(by the pretrained DPT model) to 9.0%, which verifies the effectiveness of the
basic self-supervised refinement method. However, the improvement brought by
our base model is not significant and the SLAM module fails. Using RAFT-flow
in SLAM front-end makes SLAM more robust, generating more accurate pose
estimation, which in turn improves the depth refinement module. Adding our
scale self-alignment in RAFT-SLAM (“+Scale Alignment”) improves the depth
quality significantly in all metrics, e.g., Abs Rel decreases from 8.3% to 6.4% and
δ1 increases from 91.5% to 95.2%. Our occlusion-aware depth consistency loss
(“Depth Consistency”) further achieves an improvement of 1.1% in terms of Abs
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Table 4: Quantitative depth evaluation on TUM-RGBD.

Method
Monocular pRGBD

MAE ↓ AbsRel ↓ RMSE ↓ δ1 ↑ δ2 ↑ δ3 ↑ MAE ↓ AbsRel ↓ RMSE ↓ δ1 ↑ δ2 ↑ δ3 ↑
freiburg3 structure texture near

DPT [39] 0.280 0.140 0.529 0.794 0.924 0.968 0.280 0.140 0.529 0.794 0.924 0.968
Ours-DPT 0.138 0.057 0.314 0.943 0.977 0.990 0.140 0.056 0.317 0.941 0.974 0.992

freiburg3 structure texture far

DPT [39] 0.372 0.134 0.694 0.810 0.939 0.968 0.372 0.134 0.694 0.810 0.939 0.968
Ours-DPT 0.108 0.035 0.317 0.974 0.985 0.997 0.105 0.036 0.290 0.975 0.985 0.996

Rel and 1.8% in terms of δ1. From this ablation study, it is evident that each
component of our method makes non-trivial contributions in improving depth
results. We can draw a similar conclusion under the pRGBD mode.

4.3 TUM-RGBD Dataset

TUM-RGBD is a well-known dataset mainly for benchmarking performance of
RGB-D SLAM or odometry [49]. This dataset was created using a Microsoft
Kinect sensor and eight high-speed tracking cameras to capture monocular im-
ages, their corresponding depth images, and camera poses. This dataset is par-
ticularly difficult for monocular systems as it contains a large amount of motion
blur and rolling-shutter distortion caused by fast camera motion. We take two
monocular sequences from this dataset, i.e., “freiburg3 structure texture near”
and “freiburg3 structure texture far”, to test our system, as they satisfy our
system’s requirement of sufficient camera translations. The quantitative depth
results are presented in Tab. 4. As before, under both SLAM modes, our GeoRe-
fine improves upon the pretrained DPT model by a significant margin, achieving
2-4 times’ reduction in terms of Abs Rel. A global reconstruction is visualized in
Fig. 4, where the scene geometry is faithfully recovered.

5 Conclusions

In this paper, we have introduced GeoRefine, an online depth refinement system
that combines geometry and deep learning. The core contribution of this work
lies in the system design itself, where we show that accurate dense mapping from
monocular sequences is possible via a robust hybrid SLAM, an online learning
paradigm, and a careful consideration of degenerate cases. The self-supervised
nature of the proposed system also suggests that it can be deployed in any unseen
environments by virtue of its self-adaptation capability. We have demonstrated
the state-of-the-art performance on several challenging public datasets.
Limitations. Our system does not have a robust mechanism for handling mov-
ing objects which are outliers both for SLAM and self-supervised losses. Hence,
datasets with plenty of foreground moving objects such as KITTI [15] would not
be the best test-bed for GeoRefine. Another limitation is that GeoRefine cannot
deal with scenarios where camera translations are small over the entire sequence.
This constraint is intrinsic to our system design, but it is worth exploring how
to relax it while maintaining robustness.
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