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Config
Value

pre-training fine-tuning

optimizer AdamW [4] AdamW

learning rate schedule CosineAnnealingLR [3] MultiStepLR

learning rate 0.001 0.001

weight decay 0.01 0.01

optimizer momentum β1, β2 = 0.9, 0.999 β1, β2 = 0.9, 0.999

batch size 92 92

augmentation no no

Table S1. Pre-training and fine-tuning settings.

A Overview

This document provides additional technical details and more visualization re-
sults. Specifically, in section B, we first describe the implementation details of
M3PT. Next, we conduct additional experiments in section C. Finally, in sec-
tion D, we show more visualizations of the depth prediction and 3D reconstruc-
tion on Matterport3D, Stanford2D3D, and 3D60 datasets.

B Implementation Details

Backbone architecture. We employ GuideNet [5] as the default architecture.
It consists of two hourglass units, one for encoding RGB image input and another
for modeling sparse depth input. Synchronized Cross-GPU Batch Normalization
[1] is deployed. M3PT does not require any network structure adjustment when
fine-tuning compared to pre-training.
Pre-training. The default setting is reported in Table S1. Our M3PT does
not use additional data augmentation, including the color jittering and random
horizontal flip conducted in GuideNet. We use cosine annealing learning rate
strategy [3] with default ‘T max=20, eta min=0.00001, last epoch=-1’.
Fine-tuning. The setting of fine-tuning is very similar with that of pre-training
apart from the learning rate strategy with default ‘milestons=50, 100, 150,
gamma=0.5, last epoch=-1’, which is reported in Table S1.
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Dataset
pre-training & fine-tuning

Stanford2D3D Matterport3D 3D60

testing

Stanford2D3D 167.7 159.4 248.5

Matterport3D 254.7 146.2 224.3

3D60 262.6 151.9 142.3

Table S2. Generalization capability of M3PT. We train it on one dataset but test on
all three datasets. Best RMSE results of each column are marked in bold. The mask
size and ratio on three datasets are 16 and 0.75, respectively.

C Additional Experiments

C.1 Testing on Different Datasets

Table S2 lists the generalization capability of M3PT. We pre-train and fine-
tune M3PT on single dataset, but test it on all three datasets. In each column
of Table S2, the performances of testing on other dataset is worse due to the
different data distribution. We can also find that the generalization capability is
weaker when training on Stanford2D3D, which is probably caused by the least
amount of data and incomplete pixels of color images nearby the top and bottom
areas. 3D60 dataset contains parts of Stanford2D3D and Matterport3D, which
are potentially hard for models to generalize very well.

C.2 Reconstruction under Different Pre-Training Settings

Figure S2 demonstrates the reconstruction results of M3PT during pre-training
on Stanford2D3D. As we can see that the model can partly recover depth clues
given masked RGB-D pair and supervised by invisible areas of sparse depth,
although the recovery is different from ground-truth depth annotation.

Figure S3 shows the generalization of M3PT which is pre-trained on Stan-
ford2D3D but transferred to 3D60. Though the reconstruction results are far
away from the ground-truth, it is probably plausible.

In addition, we also explore the generalization capability of M3PT under
different mask settings. As shown in Figure S4, on Stanford2D3D, we test the
model pre-trained with mask size 16 and ratio 0.75 on other mask sizes and ratios.
We can find that the model can also recover depth clues in certain degree.

C.3 Testing with Different Data Patterns

Table S3 reports the performances of M3PT with different data synthesis pat-
terns. Note that the sparse depths of all patterns contain 6144 valid points,
accounting for about 4.69% of the entire maps, shown in Figure S1. As we can
see from Table S3, the scanning pattern can help to recover better depth, indi-
cating it’s reasonable to synthesize sparse depths by imitating laser scanning.
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Fig. S1. Different patterns of data synthesis, including scanning, uniform, gaussian,
and grid. Note that original cubical sampling results have been projected into equirect-
angular maps.

Pattern
Error Metric ↓ Accuracy Metric ↑

MRE MAE RMSE RMSElog δ1.25 δ1.252 δ1.253

Scanning 0.0274 52.9 149.0 0.0263 0.9859 0.9963 0.9988

Uniform 0.0598 121.3 227.7 0.0398 0.9764 0.9955 0.9984

Gaussian 0.0563 115.4 221.3 0.0384 0.9783 0.9957 0.9984

Grid 0.0511 104.6 195.8 0.0335 0.9851 0.9972 0.9991

Table S3. Generalization capability of M3PT on Stanford2D3D under different data
synthesis patterns, which are shown in Figure S1.

D More Visualizations

This section shows more visualizations on three datasets. As illustrated in Figure
S5, it is obviously that our M3PT can produce better depth predictions and 3D
reconstructions than other related methods.
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Fig. S2. Example of M3PT reconstructions during pre-training on Stanford2D3D
testing split. The mask size is 16 and the mask ratio is 0.75. Best color of view.
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Fig. S3. Example of M3PT reconstructions during pre-training on 3D60 testing split,
using the M3PT pre-trained on Stanford2D3D (the same model weights as in Figure
S2).
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Fig. S4. Example of M3PT reconstructions during pre-training on Stanford2D3D test-
ing split, using the M3PT with mask size 16 and mask ratio 0.75 that is pre-trained on
Stanford2D3D (the same model weights as in Figure S2), but applied on inputs with
different mask sizes and mask ratios.
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Fig. S5. Qualitative comparison of different methods, including UniFuse [2], GuideNet
[5], and our M3PT on Matterport3D (the first four rows), Stanford2D3D (the second
four rows), and 3D60 (the third four rows) datasets.
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